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ABSTRACT

This paper explores the stability of an Earth-like planet orbiting a solar mass star

in the presence of an outer-lying intermediate mass companion. The overall goal is to

estimate the fraction of binary systems that allow Earth-like planets to remain stable

over long time scales. We numerically determine the planet’s ejection time τej over a

range of companion masses (MC = 0.001 – 0.5 M⊙), orbital eccentricities ǫ, and semi-

major axes a. This suite of ∼ 40, 000 numerical experiments suggests that the most

important variables are the companion’s mass MC and periastron distance Rmin = a(1−
ǫ) to the primary star. At fixed MC , the ejection time is a steeply increasing function

of Rmin over the range of parameter space considered here (although the ejection time

has a distribution of values for a given Rmin). Most of the integration times are limited

to 10 Myr, but a small set of integrations extend to 500 Myr. For each companion

mass, we find fitting formulae that approximate the mean ejection time as a function

of Rmin. These functions can then be extrapolated to longer time scales. By combining

the numerically determined ejection times with the observed distributions of orbital

parameters for binary systems, we estimate that (at least) 50 percent of binaries allow

an Earth-like planet to remain stable over the 4.6 Gyr age of our solar system.

Subject headings: astrobiology – binaries: general – celestial mechanics – solar system:

general

1. Introduction

Most stars have companions. Recent discoveries of extrasolar planetary systems have shown

that Sun-like stars often have planetary mass companions and that these extrasolar planets reside

in a wide variety of orbital configurations (Butler et al. 1999, Marcy et. al 2001; Fischer et al. 2002;
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Tinney et al. 2002; see also the extrasolar planet almanac1). In addition, most solar type stars are

known to reside in binary systems (Abt 1983) and thus often have stellar mass companions; the

distributions of orbital parameters for these binaries are relatively well known (e.g., Duquennoy

& Mayor 1991; hereafter DM91). If terrestrial planets are also present in these solar systems, the

companions can affect their long term orbital stability. This paper addresses this issue of planetary

stability with the overall goal of estimating the fraction of binary systems that allow an Earth-like

planet to remain stable over the current age of our solar system.

Although terrestrial planets have not been detected in extrasolar systems (with main-sequence

primaries) due to their small masses, they are expected to form in planetary systems alongside their

Jovian counterparts (e.g., Ruden 1999; Lissauer 1993). The probable existence of such planets mo-

tivates this present work and underlies recent efforts to built the Terrestrial Planet Finder in the

near future.2 To study the stability of Earth-like planets in these systems, we must undertake a

numerical investigation of the three-body problem. Although the dynamics of systems containing

three gravitationally attracting bodies was considered over a century ago by Poincaré, an exact

analytic solution to the general problem is not possible. The robust nature of these celestial sys-

tems is still being explored numerically. Indeed, it is now understood that multi-body gravitational

systems generally exhibit chaotic behavior, thereby making it impossible to draw specific univer-

sal conclusions about their dynamics. A complete understanding of how a specific system evolves

can only be garnered through a thorough numerical investigation. Furthermore, due to sensitive

dependence on the initial conditions, the results of any numerical study must be presented statis-

tically, in terms of the full distribution of outcomes resulting from effectively equivalent starting

conditions. In this context, we consider equivalent starting conditions to be those with the same

masses, eccentricities, and semi-major axes for the orbits, but with differing choices of initial phase

angles (and other orbital elements – see Murray & Dermott 2000). As we illustrate in greater detail

below, the ejection time displays a distribution of values for an ensemble of effectively equivalent

initial conditions.

A great deal of work, both analytical and numerical, has already been done on stability (e.g.,

Szebehely 1980) and the development of chaos in celestial mechanics (e.g., Lecar, Franklin & Holman

2001). But many of the recent investigations of planetary stability focus on specific astronomical

systems and are relatively narrow in scope (e.g., Benest 1996; Wiegert & Holman 1997; Laughlin

& Adams 1999, 2000; Rivera & Lissauer 2000; Rivera & Haghighipour 2002; Dvorak et al. 2003).

More general investigations of planetary stability in binary systems have been carried out (e.g., Rabl

& Dvorak 1988; Holman & Wiegert 1999, hereafter HW99), but previous studies have not found

the fraction of binaries that allow for stable Earth-like planets. In this paper, we re-examine the

three-body problem by considering the stability of Earth-like planets in the presence of a companion

with mass in the range 0.001 < MC/(1M⊙) < 0.5. This mass range includes companions as small

1http://exoplanets.org/almanacframe.html

2http://planetquest.jpl.nasa.gov/TPF/tpf index.html
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as Jupiter and as large as K stars. The portion of parameter space (the a − ǫ plane) is chosen

so we can combine the numerical stability results with the observed distributions of binary orbital

parameters to estimate the fraction of systems that allow Earth-like planets to remain stable over

long time scales.

The first result of this investigation is a determination of the ejection time for Earth-like planets

over an extensive range of the companion’s initial orbital eccentricity ǫ and semi-major axis a. In

this context, the Earth-like planet is assumed to have the mass of Earth and starts in a circular orbit

with a radius of 1 AU. To a reasonable approximation, we find that the ejection time τej depends

primarily on the periastron distance Rmin = a(1 − ǫ) of the companion (for a given companion

mass MC). Over the sampled regime of parameter space, the dependence of the mean ejection

time 〈τej〉(Rmin) is well characterized by straight lines in a semi-log plot in the τej − Rmin plane,

even though the ejection time displays a distribution of values for a given value of periastron. The

ejection time thus shows an exponential dependence on Rmin over a particular range of periastron

values. For higher mass companions, the plots also display an inner regime, where Rmin is small and

the ejection times are consistently short (a few hundred years – much shorter than any astrophysical

[or geological] time scales of interest). Although this work focuses on the stability of Earth-like

planets, scaling laws allow the results to be applied in a broader context.

The second result of this investigation addresses the possible habitability of extrasolar terres-

trial planets (e.g., Kasting, Whitmire & Reynolds 1993; Rampino & Caldeira 1994). Approximately

two-thirds of main-sequence stars (of solar type) are found in multiple systems (Abt 1983), and

the binary frequency is even higher for pre-main-sequence stars (Ghez, Neugebauer, & Matthews

1993). These companions can disrupt the orbit of an Earth. Although this issue has been explored

by several groups (e.g., Gehman, Adams, & Laughlin 1996; Laughlin, Chambers, & Fischer 2002;

Menou & Tabachnik 2002), our numerical simulations shed further light on the subject. Our nu-

merical results indicate that distant stellar companions (specifically, those with sufficiently large

values of Rmin) will not disrupt the orbits of Earth-like planets. This work extends the range of

parameter space studied previously and provides estimates for the fraction of binary systems that

allow habitable planets.

This paper is organized as follows. The numerical methodology is described in §2, along with

considerations of both Hill stability and scaling laws. The results from this suite of numerical

experiments are presented in §3, along with an analytic characterization of the dependence of the

mean ejection time τej on the periastron value Rmin. In §4, we use the numerically determined

ejection times in conjunction with observed binary parameters to estimate the fraction of binary

systems that can contain habitable planets. The paper concludes in §5 with a summary and

discussion of these results, including an application to the stability of Earth-like planets in known

extrasolar planetary systems.
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2. Methodology

Although gravitationally interacting, three-body systems have been studied at length, their

deceptively complicated nature has stymied efforts toward a complete solution. In this paper, we

explore one special case of the three-body problem (the results can be scaled to other parameter

choices – see below). Specifically, we consider the possible ejection of an Earth-like planet that

starts in an initially circular orbit with radius 1 AU (around a primary star with one solar mass).

Through long term dynamical interactions with an outer companion, the orbital elements of the

Earth-like planet evolve, generally in chaotic fashion, until the planet is ejected from the system.

In order to explore this stability issue on intermediate time scales, we use two different types

of numerical codes to perform a series of three-body experiments. For the first method, we use

a symplectic mapping code (written for Laughlin & Adams 1999, following the lead of Wisdom

& Holman 1991). Using a relatively small time step of 4 days, we can maintain high accuracy

over the course of our 10 Myr integrations. In the second method, Newton’s equations of motion

are integrated directly using a Bulirsh-Stoer (B-S) scheme (Press et al. 1992). Although direct

integration is computationally more expensive, it is accurate and explicit. For the systems at hand,

our B-S scheme incurs errors in relative accuracy of order 1 part in 1011 per total time step (where

each time step in the three-body problem is variable, but has a typical value of about 10 days).

The Earth’s initial orbit is always set to be circular (ǫE = 0) with radius r = aE = 1 AU. The

mass MC , eccentricity ǫ and semi-major axis a of the companion body are then specified for each run.

For the vast majority of our numerical experiments, both the Earth and the companion are started

in the same plane. (We briefly explore the case of non-coplanar orbits in follow-up simulations.)

With given values for the masses, semi-major axes, and eccentricities, the initial conditions for the

simulations must also specify the orbital phases. We consider numerical experiments with the same

binary orbital parameters (MC , a, ǫ) and a random distribution for the remaining phase angles (see

Murray & Dermott 2000).

For each set of initial conditions, we integrate the system forward in time. For the sake of

definiteness, and in order to cover a large range of parameter space, we use ten million years as the

upper limit for the integration time. These experiments give us either a time scale for instability

or a lower limit of ten million years on the possible ejection time. The planet is considered to

be ejected if any of the following conditions are met: The energy of the planet becomes positive;

the eccentricity of the planet exceeds unity; the periastron of the planet becomes smaller than the

stellar radius (assumed to be 1 R⊙) so the planet is accreted; or the semi-major axis of the planet

exceeds a maximum value (taken here to be 100 AU).

For numerical experiments with the same binary properties (MC , a, ǫ), the ejection time τej

varies with the choices of orbital phases. Because the systems are chaotic, this variation is not

smooth, i.e., small differences in the starting phase angles can lead to large differences in the

resulting ejection times. An exploration of parameter space shows that the ejection time displays

a log-normal distribution for an ensemble of different phases, i.e., different realizations of the same



– 5 –

underlying problem (see Figure 1). We have found the distribution of ejection times using both

the symplectic and the B-S code and find the same distribution. Figure 1 shows the resulting

distribution for the case with binary companion mass MC = 0.1 M⊙, eccentricity ǫ = 0.5, and

semi-major axis a = 5 AU. Also shown is a normal (gaussian) distribution (in log τej) with the

same mean and width. Figure 1 illustrates several properties of this stability problem that guide

the rest of this investigation: First, the width of the distribution is substantial (σ = 0.51 for the

case shown here). Second, both numerical methods give essentially the same result. Third, the

distribution is log-normal so that we average our ejection times in log τej for the remainder of the

paper.

In addition to the two main numerical codes, a limited number of our results were verified and

extended using the MERCURY symplectic integration package (developed by Chambers 1999).

First, twelve sets of simulations were repeated for a Jupiter-mass companion, with each set con-

taining three runs at constant periastron distance Rmin (with varying eccentricities and semi-major

axes); these runs were done to make sure that the different codes give the same results. Next, taking

advantage of the increased speed of the MERCURY code, we used it to extend a limited number of

runs out to integration times of 100 Myr. A more detailed examination was then performed for a

range of systems that remained stable over a 100 Myr time scale by extending the integration time

to 500 Myr and sampling over a wider range of Jupiter’s initial eccentricity.

The numerical results obtained here can be compared with analytical results obtained previ-

ously. As a reference point, we use standard theory to specify the condition for Hill stability of the

system (following Gladman 1993). We first define the dimensionless quantities

γj = [1 − ǫ2
j ]

1/2 , ηj =
mj

m1 + m2

, µ12 =
m1 + m2

(1M⊙)
, (1)

where the subscripts j=1,2 refer to the Earth-like planet and the companion, respectively. The

condition for Hill stability can then be written

[η1 + η2/a2][η1γ1 + η2γ2

√
a2]

2 > 1 + 34/3η1η2µ12
2/3 , (2)

where a2 is the semi-major axis of the companion, expressed in units where the semi-major axis of

Earth is unity. In the present context, we start Earth with an initially circular orbit so that ǫ1 = 0

and γ1 = 1. In the limit m1 ≪ m2, the above expression simplifies to the form

γ2 = [1 − ǫ2
2]

1/2 > η
−3/2

2 − 1

2
a2η1η

−5/2

2 − η1a
−1/2

2 η−1
2 . (3)

Saturating this bound, we thus obtain the eccentricity ǫ2 required for the system to become Hill

unstable (for a companion with a given mass η2 and semi-major axis a2).

This criterion predicts that three-body systems will become Hill unstable for modest values of

the eccentricity. For example, with a Jupiter-like companion, the Earth becomes Hill unstable for

ǫ2 > 0.1, i.e., a periastron distance of 4.7 AU. As many previous authors have found for this regime

of parameter space (e.g., Valsecchi et al. 1984; Milani and Nobili 1983; Gladman 1993), systems
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that are unstable according to the criterion [2] may live for an extraordinarily long time (e.g.,

longer than the age of the universe) before showing any signs of instability (e.g., see also HW99;

Levison, Lissauer, & Duncan 1998; Duncan & Lissauer 1998; Wisdom & Holman 1991; Laughlin

& Adams 1999). In this context, if the system is unstable according to the Hill criterion [2], then

it has a chance to decay (by ejecting a planet) in the long term. The time scale for decay can be

described in terms of a half-life (e.g., Adams & Laughlin 2003); in a large sample of equivalent

solar systems, half of the systems will decay by ejecting a planet in a well-defined time, but any

particular system could decay over a wide range of times. If the half-life (or expectation value of

the decay time3) is longer than the expected lifetime of the star (typically billions of years) or the

age of the universe (12–14 Gyr), then the system can be considered as stable for evaluating the

prospects for the survivability of Earth-like planets. In this paper, we study systems that are Hill

unstable with half-lifes in the approximate range 102 yr < t1/2 < 109 yr.

The results of this investigation can be scaled to other parameter choices. Here, we concentrate

on the case of an Earth-like planet and fix its starting radius at r = a = 1 AU. The equations of

motion, however, have a radial scale invariance. As illustrated by the Hill stability criteria in

equations [1 – 3], all length scales in the problem can be scaled by the semi-major axis a1 of the

Earth’s orbit. If we rescale the problem by changing a1 by a factor F , then the resulting dynamics

are the same, except that the time scales differ by a factor of F3/2. Similarly, we perform simulations

using a value of 1.0 M⊙ for the mass of the primary. If we rescale the problem for an arbitrary

mass m ≡ M∗/(1.0M⊙), the calculated time scales change by a factor of m−1/2 and are applicable

to companion masses that are rescaled according to MC → mMC . The mass of the ‘Earth’ that is

being modeled by the simulations also changes such that ME → mME. Because ME ≪ MC ,M∗,

however, the Earth acts essentially like a test particle and its mass is of little consequence.

3. Results

Using the methodology outlined above, we have performed a large number of simulations of the

Sun-Earth-companion system using both the symplectic and B-S numerical integration schemes.

The long term evolution of these numerical experiments follows the same general trend. Over the

first several thousand years, the companion drives Earth into an orbit with ever higher eccentricity.

Because the companion is much more massive than Earth, its orbital elements change far less than

those of the planet. In addition, Earth’s orbital eccentricity does not show a slow and steady

increase, but rather shows a cyclic and often chaotic pattern (for examples of this type of behavior,

see Laughlin & Adams 1999; Rivera & Lissauer 2000; Lecar et al. 2001). As a result, Earth’s

eccentricity is best described as a distribution of possible values. As the Earth continues to orbit

its star, it samples all of the eccentricity values in this distribution, but the distribution itself evolves

3The expectation value is the mean decay time averaged over the probability distribution. For an exponential

decay law, the expectation value τ is related to the half-life t1/2 via t1/2 = τ ln 2.
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with time. Figure 2 illustrates this behavior for one particular case near the center of our parameter

space, i.e., a binary with companion mass MC = 0.1 M⊙, eccentricity ǫ = 0.5, and semi-major axis

a = 5 AU. The figure shows the distributions of eccentricity for Earth near the beginning of the

integration, at two intermediate times, and near the ending of the integration (just before ejection

of the Earth-like planet). In general, the Earth samples the distribution more quickly than the

distribution changes; this result is consistent with the Lyapunov time being correlated with (but

much shorter than) the ejection time (see Lecar, Franklin, & Murison 1992). Over longer times,

however, the distribution of eccentricities grows broader and samples larger and larger values of ǫ.

When the distribution becomes sufficiently wide, the Earth stands a fair chance of entering into an

orbit of extremely high eccentricity, which ultimately leads to instability. The Earth then either

plunges into the star or is ejected from the solar system altogether.

Using the symplectic integration scheme, we have performed an ensemble of approximately

35,000 simulations of the Sun-Earth-companion system. The semi-major axis of the companion is

chosen to vary in even increments from 1 AU (where Earth is ejected almost immediately) out to 15

AU (for the 1 mJ companion), 20 AU (for the 10 mJ companion), and 80 AU (for the 0.1 and 0.5 M⊙

stellar mass companions). For each choice of semi-major axis, the eccentricity is chosen to sample

a range of periastron values from Rmin = 1 AU out to values so large that the ejection time always

exceeds the 10 Myr range of our integrations. For each choice of companion mass, eccentricity, and

semi-major axis, the remaining phase angles are chosen from a random distribution. This sampling

of parameter space fills a broad band in the a− ǫ plane, as shown by the gray scale plots in Figures

3 – 6. For the portion of the a − ǫ plane to the upper left of the chosen region, the companion

crosses the Earth orbit and would lead to rapid ejection. For the portion of the a − ǫ plane to the

lower right of the sampled region, the ejection times are longer than 10 Myr.

The results obtained using the symplectic code are presented by ascending order of companion

mass in Figures 3 – 6. The top panel of each figure depicts a grayscale plot of ejection times in the

a− ǫ plane, where the darker shades correspond to longer ejection times. Contour lines of constant

periastron Rmin = a(1− ǫ) are included for reference. A natural dependency of the ejection time on

Rmin is clearly illustrated by the grayscale plots, with the largest gradients occurring perpendicular

to contour lines. To elucidate this trend, we plot the ejection time versus Rmin for each companion

mass in the corresponding lower panel. Although the ejection time depends most sensitively on

the periastron value, the relevant initial conditions that describe the binary continue to be the

eccentricity and semi-major axis. In the Figures, the star symbols represent the average value of

log τej (for each given value of Rmin) and the vertical bars represent one standard deviation about

the mean. The width of the distribution (at constant periastron) arises from two sources: (A) For

a given type of binary (i.e., given ǫ and a), the ejection time has a distribution of values as shown

in Figure 1. (B) For binaries with differing values of (a, ǫ), but constant periastron Rmin = a(1− ǫ),

the ejection time has additional variation (e.g., see HW99). Although the ejection times vary by

an order of magnitude at a given value of Rmin, a clear functional dependence for the mean value

can nonetheless be extracted from the results. Over the sampled range of periastron values Rmin,



– 8 –

the mean ejection time follows a straight line in the semi-log plots. In the following section, we will

use this property to extrapolate our results out to longer ejection time scales.

We note that the importance of the periastron distance has been found in related dynamical

investigations. In a study of scattering of Trans-Neptunian objects by the planet Neptune (Holman,

Grav, & Gladman 2001), the borders of the region where the bodies become chaotic are approxi-

mately described by lines of constant perihelia (that study also discusses the departures from this

trend). In a related work (Duncan, Levison, & Budd 1995), objects with perihelia less than about

35 AU were found to be unstable, apparently due to cumulative effects of random forces from

Neptune (exerted near perihelion). Finally, the ejection time in systems of terrestrial planets can

be modeled with an equation similar to our equation [4] (see Chambers, Wetherill, & Boss 1996).

In an alternate set of simulations, we have performed an ensemble of approximately 8000

numerical integrations using the B-S code. The results from the sympletic code suggested that

the periastron is the most important variable for determining the ejection time. For the B-S

integrations, we chose even increments in periastron Rmin of the companion. For each value of

Rmin, we sample the eccentricity over the full range 0 ≤ ǫ ≤ 1 and perform multiple realizations of

the experiments using different (random) choices for the remaining phase angles. This coverage of

parameter space is complementary to that used for the symplectic code. The symplectic code was

used to sample as much of the a − ǫ plane as possible. The B-S code was used to sample fewer

values of (a, ǫ), and fewer values of the periastron, but each point in the a − ǫ plane was studied

with more realizations of the various phase angles in the problem. The ejection time, as a function

of periastron, follows the same general trend for both ensembles of numerical experiments, as shown

in the bottom panels of Figures 3 – 6 (where results from the B-S code are plotted as triangular

symbols). The main difference between the two explorations of parameter space is that the latter

displays a somewhat wider distribution of ejection times for a given periastron value. However, the

expectation values of the distributions are in good agreement.

To package these results in a useful format, we fit the numerically determined mean ejection

times with an empirical relation of the form

τej = τej0
exp

[
α(p − 1)

]
, (4)

where τej0
is a fiducial time scale, p is the dimensionless periastron distance p ≡ (Rmin/1 AU), and

α is the dimensionless fitting parameter (the slope of the lines in Figures 3 – 6). The variables for

the functional fits are presented in Table 1 below, for the four companion masses MC considered

here. The Table also lists the range in Rmin over which the fitting formulae have been numerically

determined. For the stellar mass companions, the ejection time is extremely short (hundreds of

years) for a small range of periastron near 1 AU; the fit to equation [4] thus begins at larger

periastron values.

Table 1: Parameters for ejection time scaling laws
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mass MC (M⊙) τej0
(yr) α periastron range

0.001 1800 9.8 ± 3.0 1 AU < Rmin < 1.8 AU

0.01 400 6.8 ± 1.1 1 AU < Rmin < 2.1 AU

0.10 110 4.1 ± 0.67 1.6 AU < Rmin < 3.5 AU

0.50 0.64 4.7 ± 0.32 2.4 AU < Rmin < 4.4 AU

Although the ejection time depends most sensitively on the variable Rmin, this time scale τej

is basically a function of a and ǫ. Close inspection of Figures 3 – 6 shows that nearby points in the

a − ǫ plane can lead to rather different ejection times. In addition, systems with the same values

of a and ǫ can display differing ejection times for varying starting phases of the orbiting bodies

– as illustrated in Figure 1. These systems are thus chaotic, in the technical sense, and display

sensitive dependence on their initial conditions. This variation leads to a range of values for τej,

as quantified by the error bars in the lower panels of Figures 3 – 6. For a given value of Rmin,

the ejection time τej displays a full distribution of values. As mentioned earlier, the width of this

distribution arises from two sources. First, the distribution of ejection times has an intrinsic spread

for a given pair (a, ǫ), as shown in Figure 1. Second, we are averaging over many pairs (a, ǫ) with the

same periastron; since the ejection time can depend on both a and ǫ (e.g., HW99), this averaging

increases the width of the distribution as shown by the error bars in the lower panels of Figures 3

– 6. The fitting formulae found above (see Table 1) provide an estimate for the expectation value

of this distribution as a function of Rmin (where the expectation value is the mean value, averaged

over the underlying probability distribution of ejection times).

The results shown in Figures 3 – 6 are in basic agreement with previous work. In a study of

Alpha Centauri, test particles were found to be stable for initially circular orbits within about 3

AU of either star (Wiegert & Holman 1997), where the integration time was 32,000 binary periods.

In this binary, the mass ratio is close to 0.5, the periastron distance is 11.2 AU, and the semi-major

axis is 23 AU. Scaled to the units of this paper, the boundary of stability corresponds to a time

scale of τ ≈ 4.8 × 105 yr for p ≈ 3.7. This point falls just above the best fit line shown in the

bottom panel of Figure 6, but well within the allowed range. In a more general study, HW99 found

the critical radius acr for which a planet will remain stable for 104 binary periods. For a given

binary mass ratio, the critical radius is a function of eccentricity (see Table 3 of HW99). When

scaled to the Sun-Earth-companion systems considered here (with one year planetary orbits), the

function acr(ǫ) can be converted to a function τej(p), where τej corresponds to 104 binary orbits.

The resulting function τej(p) includes only one eccentricity value for a given value of p, rather than

an average over a path in the a− ǫ plane as we use here. Nonetheless, the RMS value of the relative

difference4 (in log τ) between the HW99 result and that predicted by equation [4] is only about 7%

for a companion mass MC = 0.1 M⊙ and 12% for MC = 0.5 M⊙.

4This RMS difference is calculated using equation (1) of HW99 and averaging over the range of eccentricity

0 ≤ ǫ ≤ 0.8, i.e., the range listed in their Table 3.



– 10 –

The results from our lowest companion mass simulations were confirmed for a limited number

of cases using the MERCURY integration package (Chambers 1999). For systems with a Jupiter-

mass companion, integrations were performed for periastron Rmin ranging from 1.04 – 2.60 AU.

For some of these simulations, the companion began in the same orbital plane as the Sun-Earth

system (as before). We also ran an alternate series of simulations in which Jupiter began with an

inclination of 1.3◦ relative to the Sun-Earth orbital plane; for comparison purposes, identical sets

of simulations were also performed treating the Earth as a mass-less test particle. In all of the

simulations, the other orbital elements were chosen at random. Each system’s evolution was then

followed for 100 Myrs or until the Earth was lost from the system.

For simulations with a starting inclination angle for Jupiter, the results for periastron Rmin =

1.04 AU show an interesting departure from the co-planar simulations. These simulations (where

Jupiter starts with i = 1.3◦) display a wider range of ejection times, but the average value remains

essentially the same. Although the orbit of the companion brings it alarmingly close to Earth’s

orbit, some of the simulations show relatively long ejection times. For example, in a simulation with

Jupiter’s Rmin = 1.04 AU and ǫ=0.83, after 20,000 years, the (massive) Earth has been perturbed

into an orbit with a = 9.2 AU, ǫ = 0.6, and an inclination of i = 139◦. The Earth’s eccentricity

and inclination continue to oscillate for several hundred thousand years until the Earth is ejected

from the system.

The MERCURY results verify that the range 1.6 AU < Rmin < 1.8 AU marks the transition

between instability and stability. Most of the systems with Rmin < 1.7 AU lose the Earth in less

than 10 Myr, whereas systems with Rmin > 1.9 AU remain stable for 100 Myr. The stability of

the high Rmin systems was examined further through a series of 500 Myr runs using Rmin = 1.87

– 2.01 AU and Jupiter’s eccentricity ǫJ = 0.1 – 0.8. Many of the systems remained stable for the

duration of the integration, although there were several exceptions: With Rmin = 1.87 and ǫ=0.1,

for example, the Earth was ejected from the system in only 0.3 Myr. However, the other systems

with ǫ = 0.1 and Rmin > 1.87 remained stable for the full 500 Myr, as did the systems with 0.1

≤ ǫ ≤ 0.7. On the other hand, half of the systems with ǫ = 0.8 became unstable, with Earth

being ejected from the system or accreted by the star. Taken together, these results are consistent

with the ejection times predicted by the fit of equation [4], although the ejection time may be even

longer (at large values of periastron) than that predicted by the fitting function. A larger ensemble

of long term integrations is needed to clarify this issue. One should also keep in mind that equation

[4] represents the expectation value of the distribution; for a given value of Rmin, the distribution

has a width of nearly an order of magnitude in ejection time τej.

4. Fraction of binary systems that allow Earths

This set of numerical experiemnts can be used to address the question of habitable planets.

Although habitability includes many aspects, a key requirement is for the planet to remain stable

over long time intervals. The majority of stars reside in binary systems and these companions can
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preclude the possibility of an Earth-like planet, i.e., a small planet in a 1 AU (nearly circular and

stable) orbit about a solar type star. The results of the previous section indicate that the survival

time of such an Earth increases with the periastron distance Rmin. In this section, we extrapolate

our numerical results to longer times and find an approximate lower bound on the fraction of binary

star systems that allow for habitable planets.

The numerical results of the previous sections are complete out to ejection times of 10 million

years and include limited results out to 500 million years. Although the time required for life to

develop on a planet is largely unknown, the most familiar habitable planet – our Earth – has an

age of 4.6 Gyr. Since we want to find a conservative estimate for the fraction of binary systems

that allow for habitability, we assume that an Earth-like planet must remain stable for 4.6 Gyr.

The ejection times for a given value of Rmin span a wide range, as shown in Figures 3 – 6. Again

adopting a conservative approach, we assume that the ejection times take the shortest values within

their allowed range, and hence the ejection times are about 10 times shorter than the numerically

determined expectation values (as fit by equation [4]). Our estimate for the minimum periastron

distance required for survival over a time τSS thus takes the form

p > 1 + α−1 ln[10τSS/τej0
] , (5)

where p is the periastron Rmin in units of AU. For the sake of definiteness, we take τSS = 4.6 Gyr,

the current age of the solar system. In adopting the form [5], we are assuming that equation [4]

continues to hold out to larger periastron values and longer ejection times. Since our (limited)

longer term integrations indicate that Earth-like planets may survive even longer than predicted by

an extrapolation of equation [4], the limit implied by equation [5] represents a conservative bound.

The parameters τej0
and α are given in Table 1 for companions of various masses.

We note that this constraint can be generalized. If we consider an Earth-like planet with

circular orbit of radius ã = a/(1AU) in orbit about a primary star of mass m = M∗/(1M⊙), and

we want to enforce stability for a time τ , the required constraint becomes

p > ã
{

1 + α−1 ln[(10τ/τej0
)m1/2ã−3/2]

}
. (6)

The values of α and τej0
, as listed in Table 1, apply to rescaled companion masses M̃C = mMC

(where MC are the masses given in the table).

Now we specialize back to our standard case of a 1.0 M⊙ primary and an initial Earth orbit of

1 AU. For companion masses MC = 0.1 and 0.5 M⊙, the minimum value of the periastron distance

required for stability (according to equation [5]) is about p = 6 − 7, as derived from the range

of allowed slopes listed in Table 1. To be conservative, once again, we use the high end of this

estimated range.5 To find a lower limit on the fraction of binaries that allow for habitable Earths,

we thus need to find the fraction of binary systems with dimensionless periastron p > 7.

5We note that this limit is consistent with a related result (HW99). Assuming that our solar system had a solar
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The observed population of binaries has a well-defined period distribution (DM91), which takes

a log-normal form. Focusing on the case of primary stars with masses of approximately 1.0 M⊙,

we can convert the period distribution into the probability distribution for semi-major axes a. The

resulting normalized distribution thus takes the form

dPa = f(ln a)d ln a =
1√

2π σ
exp

[
−(x − x0)

2

2σ2

]
dx , (7)

where the variable x is the logarithm of the dimensionless semi-major axis. The parameters x0 and

σ are determined from fits to the observed binary period distribution (as reported in DM91). The

dimensionless width σ = 3.53. To convert the period distribution to a distribution of semi-major

axis, we must include the ratio µ of the companion mass to the primary mass through the relation

x0 = 3.44 +(1/3) ln[1 + µ]. As a result, the distribution depends (weakly) on the value of the mass

ratio µ.

The distribution of eccentricity is also well defined, but the observed distribution takes a

different form for close, intermediate, and wider binaries (DM91). In the present context, we are

interested in binaries with periastron distances greater than about 7 AU, so the semi-major axes

are also greater than 7 AU and we can use the eccentricity distribution for wider binaries. In this

regime, the eccentricity distribution has the simple form dPǫ = 2ǫdǫ (DM91). Furthermore, for

these wider binaries, the eccentricity is independent of semi-major axis (DM91, Heacox 1998).

For a given mass ratio µ, we define Fµ(p) to be the fraction of binary systems with dimensionless

periastron greater than p. To evaluate Fµ(p), we must integrate over the portion of the a− ǫ plane

with periastron a(1− ǫ) > p, where the integrand is weighted by both the eccentricity distribution

and the distribution of semi-major axes (described above). The eccentricity integration can be

done analytically and the remaining integral – which defines the fraction Fµ(p) as a function of p

– takes the form

Fµ(p) =
1√

2π σ

∫
∞

ln p
dx(1 − pe−x)2 exp[−(x − x0)

2/2σ2] . (8)

The fraction Fµ(p) is a slowly varying function of the mass ratio µ. To estimate the fraction F (p)

of all binary systems for which Earth-like planets can remain stable, we must find the weighted

average of Fµ(p), i.e.,

F (p) ≡
∫ 1

0

w(µ)Fµ(p)dµ , (9)

where the distribution of mass ratios dPµ = w(µ)dµ. This distribution has been observed and is

presented in DM91 (see Table 7 and Figure 10). The peak of the distribution occurs near µ =

0.3 and the majority of systems have mass ratios in the range 0.1 ≤ µ ≤ 0.5. We use DM91 to

mass companion, HW99 found the minimum semi-major axis required for stability of the planets. For ǫ = 0.4, they

found that a > 400 − 500 AU. Since the outermost planet is Neptune with aNep = 30 AU, this result corresponds to

a dimensionless periastron in the range p = 5.3 − 6.6, consistent with the constraint discussed here.
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specify the distribution w(µ) of mass ratios and evaluate the integral of equation [9]. The resulting

function F (p) is shown in Figure 7.

Figure 7 also shows a fit to the numerically determined result. The fitting function is chosen

to have the simple form

F̃ (p) = F1 exp[−(aξ + bξ2)] , (10)

where F1 = 0.711, a = 0.101, b = 0.0287, and ξ = ln[p]. The function [10] provides a good approx-

imation to the numerically determined result, with an absolute error less than about 0.011 and a

relative error less than 4 percent. More exact fits are not warranted, as the observed distributions

of binary orbital parameters are not known to this accuracy. This function can be used to estimate

the fraction of binary systems with periastron greater than any specified value within the allowed

range 1 < p < 105.

As argued above, stability of Earth over 4.6 Gyr requires a stellar companion to have p > 7

(Rmin > 7 AU), where this value has been estimated from numerical experiments using companion

masses in the range MC = 0.1−0.5M⊙ (which are typical values – see DM91). The fraction of binary

systems that meet this constraint and allow habitable Earth-like planets is 0.5 (or 50 percent). This

estimate should be regarded as a lower bound on the fraction. Additional binary systems could allow

for habitable Earths if the orbits can be inclined. Notice also that this estimate does not include

close binary systems, those with separations a ≪ 1 AU. Although sufficiently close binary systems

could allow Earth to remain stable (see, e.g., HW99), the companion will necessarily reside within 1

AU of the Earth and the companion’s radiative flux could affect considerations of habitability. For

the wider binaries considered here, the requirement of dynamical stability demands that Rmin > 7

AU so that the companion is always farther than about 6 AU from Earth. The additional radiative

flux of the secondary is always less than about 3% of that of the primary. For a more typical

companion mass, say MC = 0.4M⊙, the flux from the secondary is less than 0.2% of the total.

The numerical results of the previous section show that Sun-Earth-companion systems can

remain stable for relatively long times – such as the current 4.6 Gyr age of our solar system – even

though they do not meet the analytic criteria for stability (see equations [1–3]). To illustrate this

point, Figure 8 shows the allowed region of the a− ǫ plane for Earth-like planets in binary systems.

The solid curves delineate the region of the plane that allows Earth to remain stable for 4.6 Gyr,

as estimated here, whereas the dashed curves delineate the (much smaller) region of the plane for

which the system is Hill stable. The allowed region is that below each curve. Figure 8 emphasizes

that the requirement of system stability over geological, biological, and even cosmological time

scales (equations [5, 6]) can be less restrictive and more relevant than the requirement of Hill

stability (equation [2]).
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5. Conclusion

This paper presents numerical simulations of Earth-like planets in binary systems. These

binaries have solar mass primaries and companion masses in the range 0.001 M⊙ (Jovian mass)

to 0.5 M⊙ (K stars), although the results can be scaled to other choices. The first result of this

work is an estimate of the ejection times for Earth-like planets in these systems (Figs. 3 – 6).

For a given companion mass, the ejection time depends most sensitively on the periastron distance

Rmin. Although the ejection time shows a wide range for a given value of Rmin, the overall trend

is well-defined and the expectation value of the distribution can be described by an exponential

function of Rmin. We have fit our numerical results, for each companion mass, to find the mean

ejection time as a function of periastron (see equation [4] and Table 1).

The second result of this work is an estimate for the fraction of binary systems with Sun-

like primaries that allow an Earth-like planet to remain stable for a specified time period. Our

numerical experiments suggest that the requirement for stability can be written in terms of a

minimum periastron distance for the binary orbit. The resulting constraint is provided by equations

[5 – 6] (where the fitting parameters α and τej0
have been calculated for companion masses MC =

0.001 – 0.5 M⊙). For the observed distributions of binary orbital parameters (DM91), the fraction

of binaries that have periastron distances greater than a given value is specified by equations [9 –

10] and Figure 7. Taken together, these results imply that at least 50 percent of the binary systems

allow an Earth-like planet to remain stable for 4.6 Gyr (the current age of the solar system). Because

the ejection time is a much more sensitive function of periastron than the fraction of binary systems

(with periastron greater than a given value), this estimate is quite robust; for example, if we were

to adopt the overly conservative stability requirement that Rmin > 20 AU, the fraction of viable

binary systems would still be 40 percent. We also note that the condition of system stability over

billions of years is much less restrictive than the requirement of Hill stability (see Figure 8).

This type of stability analysis can be applied to the observed planetary systems now being

discovered in association with nearby stars (e.g., Mayor & Queloz 1995; Butler et al. 1999, Marcy

et al. 2001, Fischer et al. 2002). For a subset of the known extrasolar planetary systems, those

with a > 1.5 AU, we have performed additional sets of numerical simulations using the masses and

orbital properties of the observed giant planets as the companions. An Earth-like planet, with the

mass of Earth and an orbital radius of 1 AU, is assumed to reside in each system; we then study its

intermediate term prospects for stability. Figure 9 shows the result – the estimated ejection time

for Earth-like planets plotted as a function of the observed periastron distance of the giant planet.

Each system displays a range of ejection times for the hypothetical Earth (the vertical bars in the

Figure show the standard deviation of this distribution). The systems with periastron greater than

about 1.8 AU allow an Earth-like planet to survive for more than 10 Myr. Extrapolating this result

to the age of the galaxy, about 10 Gyr, we estimate that systems with Jupiter mass companions

and periastron greater than 2.8 AU would remain stable; for companions with 10 Jupiter masses,

the minimum periastron distance is about 4 AU.
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The parameter space available to this class of systems is enormous and additional numerical

work should be carried out. This paper provides an exploration of the a− ǫ plane using integration

times out to 10 Myr, but longer term simulations should be done for t ≫ 10 Myr. In the regime

studied here, the ejection time varies according to the exponential law of equation [4]. At sufficiently

large value of periastron, however, chaotic motion should no longer occur and the system should

become stable. In addition, this work focuses on co-planar orbits, although longer ejection times

can be realized for varying orbital inclinations. This work also studies only single planets, whereas

multiple planets systems can also be considered. Under favorable circumstances, multiple planets

can protect each other from ejection (M. Holman, private communication); if the orbital precession

induced by the other planets occurs on a shorter time scale than that induced by the binary

companion, the perturbations of the companion can be washed out. This work only considers

the stability of Earth-like planets with outer binaries, where the Earth lies within the orbit of

the secondary; the case of inner binaries, with Earth orbiting the binary pair, should also be

investigated. Finally, this paper studies the stability of three-body systems after the Earth-like

planet has formed. The presence of a binary companion can affect the planetary formation process,

and an investigation of this issue is underway (Quintana 2003).
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Fig. 1.— The distribution of ejection times for different realizations of the same system. In this

set of the experiments, the binary companion has mass MC = 0.1 M⊙, eccentricity ǫ = 0.5, and

semi-major axis a = 5 AU. The solid histogram shows the distribution of ejection times resulting

from the B-S code (for a random sampling of the starting phase angles). The dashed histogram

shows the corresponding distribution of ejection times resulting from the symplectic code (again,

for a random sampling of phase angles). The smooth curve shows a log-normal distribution with the

same peak value and width as the computed distributions. Notice that the distributions predicted

by both numerical codes are similar and that both have a log-normal form (with the same width

and peak location).
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Fig. 2.— The distribution of eccentricity for the Earth-like planet for different epochs of a single

numerical integration. In this experiment, the binary companion has mass MC = 0.1 M⊙, ec-

centricity ǫ = 0.5, and semi-major axis a = 5 AU. The dotted histogram on the left shows the

distribution of eccentricity over the first 104 yr of the integration. The next three histograms show

the eccentricity distribution over 104 yr intervals starting at 5 × 104 yr (dashed curve), 8 × 104 yr

(dot-dashed curve), and the final interval ending at ∼ 105 yr (solid curve). The eccentricity of the

Earth-like planet thus displays a distribution of values, and this distribution evolves toward higher

eccentricity values with time.
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Fig. 3.— Results of numerical simulations for MC = 0.001M⊙. Top panel shows the gray scale plot

of survival time as a function of the location in the a − ǫ plane (using results from the symplectic

code). The lower panel shows the empirical form for the survival time as a function of periastron

distance Rmin. The starred symbols show the results from the symplectic code, whereas the filled

triangles show the results from the B-S code (the triangles are slightly offset for clarity).
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Fig. 4.— Results of numerical simulations for MC = 0.01M⊙. Top panel shows the gray scale plot

of survival time as a function of the location in the a − ǫ plane (using results from the symplectic

code). The lower panel shows the empirical form for the survival time as a function of periastron

distance Rmin.The starred symbols show the results from the symplectic code, whereas the filled

triangles show the results from the B-S code (the triangles are slightly offset for clarity).
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Fig. 5.— Results of numerical simulations for MC = 0.1M⊙. Top panel shows the gray scale plot

of survival time as a function of the location in the a − ǫ plane (using results from the symplectic

code). The lower panel shows the empirical form for the survival time as a function of periastron

distance Rmin. Only the top part of the plane (ǫ ≥ 0.7) is shown in the upper panel, but the full

range of ǫ was sampled to obtain the slope of fitted line depicted in the lower panel. The starred

symbols show the results from the symplectic code, whereas the filled triangles show the results

from the B-S code (the triangles are slightly offset for clarity).
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Fig. 6.— Results of numerical simulations for MC = 0.5M⊙. Top panel shows the gray scale plot

of survival time as a function of the location in the a − ǫ plane (using results from the symplectic

code). The lower panel shows the empirical form for the survival time as a function of periastron

distance Rmin. Only the top part of the plane (ǫ ≥ 0.7) is shown in the upper panel, but the full

range of ǫ was sampled to obtain the slope of fitted line depicted in the lower panel. The starred

symbols show the results from the symplectic code, whereas the filled triangles show the results

from the B-S code (the triangles are slightly offset for clarity).
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Fig. 7.— Fraction of binary systems that have dimensionless periastron distances greater than

p, plotted as a function of p = a(1 − ǫ)/(1AU). This fraction is determined from the observed

distributions of binary periods and orbital eccentricities (as reported in DM91). The dashed curve

shows an analytic fit to the numerical result (see equation [10]). The numerical simulations depicted

in the previous figures indicate that the minimum periastron required for Earth to survive 4.6 Gyr

is about 7 AU. This constraint, in conjunction with the distribution shown above, indicates that

more than 50 percent of binary systems allow for habitable Earths.
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Fig. 8.— Comparison of analytic and numerical constraints on survival time for Earth-like planets

in binary systems with Sun-like primaries. The solid curves show the portion of the a − ǫ plane

that allow for Earth-like planets to remain stable over the current age of the solar system. The

allowed region of the plane falls below the curves, which are displayed for companion masses MC

= 0.001 M⊙ (top), 0.01 M⊙, 0.1 M⊙, and 0.5 M⊙ (bottom). The dashed curves show the analytic

constraints (eqs. [1 – 3]) that require the system to be stable according to the Hill condition. Again,

the allowed region falls below the curves, which are shown for companion masses MC = 0.001 M⊙

(top), 0.01 M⊙, 0.1 M⊙, and 0.5 M⊙ (bottom). Hill stability implies a much stronger constraint

than the requirement that Earth has a stable orbit for 4.6 Gyr.
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Fig. 9.— Results of numerical simulations for known extrasolar planetary systems. The estimated

survival time for Earth-like planets is plotted as a function of the observed periastron distance of

the secondary (the extrasolar giant planet). The size of the plotting symbols is proportional to

the logarithm of the planet mass. The vertical bars on each planetary symbol show the standard

deviation for the distribution of ejection times for the hypothetical Earth in the system. The

solid curve shows the expectation value of the ejection time for a planetary companion with mass

MC = 0.001M⊙; the dashed curve shows the expectation value for MC = 0.01M⊙.


