
1. Introduction and motivation for thesis projects 
This study works to provide information to scientists concerned with dangerous 

near surface air temperatures, specifically in three areas: large-scale temporal variability, 
small-scale spatial variability, and the validity of useful datasets.  Extremely high 
temperatures contribute to death (Baccini 2008; Basu 2009) and between 2001-2010 the 
average United States fatalities for heat was behind hurricanes by only one fatality per 
year (NWS 2011).  Globally the number of deaths will likely increase due solely to 
population growth (Kapitza 2006) and urbanization (United Nations 2012).  However, a 
climate assessment (IPCC AR4) recently reported the minimum 21st century increase in 
global mean surface air temperatures to be 0.1 °C per decade.  Furthermore, it is 
generally speculated that heat as a cause of death is underestimated (Donoghue et al. 
1997).  Understanding how extreme temperatures vary in time and space, and which 
datasets describe them properly is currently important and will remain important in the 
future. 

Climate scientists generally undertake examining past trends in extreme surface 
air temperatures, but to save lives the public health sector must play major roles by 
establishing the relevant exposure variables (meteorological) and designing the systems 
that protect the public.  Practical trend analyses of extreme heat events (EHEs) should 
consider the findings within the epidemiological literature.  However, extreme 
temperature trend analyses rarely are designed to quantify those important aspects; for 
example annual counts of elevated temperatures lack summertime focus.  A lack of trend 
analyses from the pubic health community is likely due to the difficulties in assessing 
climate trends (e.g. availability and limitations of datasets).  Subsequently there is a lack 
of EHE trend studies that particularly contribute to both the public health and climate 
EHE discussions. 

Similarly, urban climate studies quantifying alteration of exposure variables 
deemed relevant in the epidemiology literature would contribute to the heat-health 
discussion.  While urban climate studies are extensive and numerous, they rarely are 
designed to cater to the public health users of such information.  Conversely, the urban 
climatologists often overlook studies by scientists not familiar with urban meteorological 
observing practices because important steps are often absent (e.g. instrument siting 
consistency, data quality control, etc.).  Urban climate studies regarded as legitimate by 
urban climatologists/meteorologists, that are significant contributions to the public health 
community’s heat-health discussion, are not commonplace. 

Additionally, there is a new generation of gridded climate datasets being used by 
climate information end users that have not been robustly validated.  These datasets 
originate out of the need for high-resolution datasets by various modeling sectors outside 
of the atmospheric science sector.  The datasets are of such high resolution that many 
scientists use them, but are unaware of the limitations regarding trends.  In the literature, 
studies evaluating these datasets are scarce, and subsequently many of these datasets exist 
without robust validation being published.  Thus this is a third gap between the end users 
and the climate community that could be bridged better. 



In general, this work looks to bridge these gaps between the climate community 
and climate information end users.  The next three sections will elaborate on the how this 
body of work accomplishes that. 

2. EHE trends analysis 
a) Literature review  

The relationships between elevated temperatures and mortality statistics have been 
investigated in the epidemiological literature.  The majority of studies use the daily 
maximum temperature to predict mortality (Hajat et al. 2002; Diaz et al. 2002; Grize et 
al. 2005; Hajat et al. 2006; Tan et al. 2007; Fouillet et al. 2007; Baccini et al. 2008; 
Fouillet et al. 2008; Anderson and Bell 2009).  Many studies also show daily minimum 
temperatures to relate to mortality statistics (Kalkstein 1989; Hajat et al. 2002; Grize et 
al. 2005; Schwartz 2005; Hajat et al. 2006; Fouillet et al. 2007; Fouillet et al. 2008; Basu 
et al. 2008), and numerous studies also demonstrate the daily mean (usually derived from 
the daily minimum and maximum) temperature’s ability (Hajat et al. 2002; Hajat et al. 
2006; Basu et al. 2008; Anderson and Bell 2009; Ostro et al. 2009).  Notably, 
biometeorological indices (e.g. heat index) are typically better correlated with mortality 
statistics than the traditional measure of temperature (Grize et al. 2005; Hajat et al. 2006).  
Many of the EHEs with infamously intense mortality impacts had both elevated daily 
minimum and maximum temperatures.  Fouillet et al. (2006) showed in France during the 
2003 EHE that mortality was associated with simultaneously elevated daily highs and 
lows.  Similarly Karl and Knight (1997) in the 1995 Chicago EHE, Henschel et al. (1969) 
in the 1966 St. Louis EHE and Grumm (2011) in the 2010 Russian EHE, observed 
elevated daily highs and lows.  EHEs with both daily extremes elevated are potentially 
interesting to the heat-health discussion but have a lack of representation in the literature. 

In the epidemiological literature there exist extreme heat exposure variables that 
influence an EHE’s impact on mortality.  For example, duration of elevated temperatures 
is important (Kalkstein 1989; Díaz et al. 2002; Hajat et al. 2002; Anderson and Bell 
2009; Ostro et al. 2009), as is the event’s sum of “cumulative degree-days” over a heat 
stress-relevant threshold (Díaz et al. 2002; Díaz et al. 2006; Fouillet et al. 2007; Fouillet 
et al. 2008; Gershunov et al. 2009).  Also timing within the heat season is significant; 
studies indicate that EHEs earlier in the season have a larger impact on mortality 
(Kalkstein 1989; Kalkstein and Smoyer 1993; Rooney et al. 1998; Hajat et al. 2002; 
Páldy et al. 2005; Baccini et al. 2008).  Trend analyses of EHE characteristics linked with 
mortality are potentially valuable to the heat-health discussion. 
 The climatology literature has several studies concerning the trends in occurrences 
of daily maximum and minimum extreme (e.g. 90th and 10th percentiles) temperature.  
Studies exist on the global scale (Frich et al. 2002; Alexander et al. 2006), and regional 
studies have focused on regions such as the Northeastern U.S. (Griffiths and Bradley 
2007; Brown et al. 2010), the CONUS (Gaffen and Ross 1998; DeGaetano and Allen 
2002; Peterson et al. 2008; Portmann et al. 2009), Italy (Tomozeiu et al. 2006), Europe 
(Klein Tank and Können 2003; Moberg and Jones 2005; Della-Marta et al. 2007), South 
Africa (New et al. 2006), and south and central Asia (Klein Tank et al. 2006).  The 
findings are that warm (cold) nighttime lows are becoming more (less) frequent; and hot 
(cool) daytime highs are becoming more (less) frequent.  Nevertheless, these studies also 



show trends very considerably in space and time. 
 Occasionally extreme temperature trend analyses include a requirement of duration, 
which makes them extreme temperature event trend analyses (e.g. Gaffen and Ross 1998; 
Frich et al. 2002; DeGaetano and Allen 2002; New et al. 2006; Alexander et al. 2006; 
Tomozeiu et al. 2006; Della-Marta et al. 2007; Griffiths and Bradley 2007; Tamrazian et 
al. 2008; Gershunov et al. 2009; Kyselý et al. 2010; Brown et al. 2010; Kuglitsch et al. 
2010; Wu et al. 2012).  Unfortunately the majority of the studies that do require duration 
use oversimplified indices.  For example the commonly used indices “Warm Spell 
Duration Indicator” (Frich et al. 2002; Alexander et al. 2006; New et al. 2006; Brown et 
al. 2010), Heat Wave Frequency index (Wu et al. 2012) and Heat Wave Duration Index 
(Griffiths and Bradley 2007) do not require anything of the daily minimum temperatures, 
quantify the number of separate EHEs nor consider EHE’s with short durations (e.g. 
under five days). 
 Many studies that have duration requirements do not use definitions, or indices, that 
require both elevated daily high and daily low temperatures.  Most studies with EHE 
definitions only impose requirements on the daily lows (Tamrazian et al. 2008) or daily 
highs (Tomozeiu et al. 2006; Kyseĺý et al. 2010; Huth et al. 2000; Meehl and Tebaldi 
2004).  The Kuglitsch et al. (2010) study was the only study found that required both 
extremes to be elevated.  Furthermore it is important to have requirements on both daily 
extremes because it is not uncommon for the daily high (low) to be warm while the daily 
low (high) is cool. 
 Aside from those shortcomings, it is also unusual for studies to analyze the EHE 
trends in multiple aspects.  Quantifying the trends in only one aspect (e.g. mean EHE 
duration) only partially describes the trends in EHEs.  One study that did a robust job of 
EHE characterization was a study by Gershunov et al. (2009) that evaluated the 
California region’s trends in EHE intensity, duration and spatial extent.  In the Kuglitsch 
et al. (2010) study of the Mediterranean region; the EHE intensity was quantified as well 
as duration and number of EHEs per summer.  Studies that characterize varied aspects of 
the EHE trends are scarce and none found focused on the CONUS. 
 A similar study to this endeavor (DeGaetano and Allen 2002) focused on the long-
term (1900-1996) CONUS trends in both EHEs and single-day extreme temperature 
occurrences.  The EHEs had either two or three days, at various percentiles, for either 
(not both) the daily maximums or minimums.  This study has many differences from the 
DeGaetano and Allen (2002) study for example the quantification of the EHEs is from 
numerous aspects, the EHEs are specific to summertime and dynamic (with calendar 
date) percentiles were used instead of annual percentiles. 
 The Gaffen and Ross (1999) study quantified the trends across the CONUS in 
EHEs in regards to heat stress.  Trends of high interest were presented to public health 
scientists as apparent temperatures (Steadman 1984) were used instead of conventional 
temperatures.  Differences between that study and this project are also plentiful such as 
independence from the hydrological trends, quantifying more than one EHE 
characteristic and quantifying EHEs with respect to the daily extreme (instead of daily 
average) temperatures. 
b) Project general hypothesis 



In this study some specific questions about EHE trends are explored.  First since 
1930 do CONUS average trends exist in the characteristics of EHEs?  Is there spatial 
variability in those trends over the CONUS?  Do the trends differ from the earlier to later 
half of the 81 years?  Do discrepancies exist between the trends of EHEs with different 
definitions?  Lastly, how do the trends in EHEs relate to the trends in average 
summertime temperature trends? 
c) Data and Methods 

 The United States Historical Climate Network (USHCN) climate dataset is a long-
term climate dataset based on the COOP network observations.  It has two versions, one 
is daily and not homogenized (Menne et al. 2012) and the other is monthly (Menne et al. 
2009, 2011) and not homogenized (Menne and Williams 2005, 2009; Williams et al. 
2012).  Homogenization refers to a process of making all stations spatially and 
temporally consistent with themselves and their neighbors; primarily correcting non-
climatic biases such as station moves, urbanization and instrument changes.  In order to 
create a daily dataset that includes the bias corrections from the monthly dataset, this 
study combined the two datasets similarly to how past datasets have (Hamlet and 
Lettenmaier 2005, Di Luzio et al. 2008). 
 First the anomaly of each day’s minimum (maximum) w.r.t. the current monthly 
mean of minimum (maximum) temperatures was calculated.  That anomaly time series 
was superimposed onto the monthly timeseries to give the dataset this study utilized.  
Following the methodology of the Zhang et al. (2005) study, those temperatures are then 
converted into percentiles w.r.t. a 30-year base period of that stations temperatures.  This 
study is separated into three periods, from 1930-1970, 1970-2010 and 1930-2010; which 
allowed two periods of equal length as well as focus on the general CONUS warming 
since 1970 and cooling from roughly 1930 until 1970. 

EHEs in this study were required to have a two-day duration requirements of 
temperatures exceeding the 92.5th local percentile.  This study separately quantified EHEs 
requiring a) only daily minimum compliance (Tmin type), b) only daily maximum 
compliance (Tmax type) and c) both minimum and maximum compliance (Tmnx type).  
In this study, EHE type refers to one of these three types of EHEs.  The seven following 
characteristics of each EHE were quantified each summer: number of EHEs, mean EHE 
duration, number of days classified as EHEs, mean EHE intensity (Diaz et al. 2006), 
summer sum of EHE intensities, number of early season EHE days and mean EHE onset 
date.  The magnitude and significance of trends in those EHE characteristics is then 
calculated. 

First the continental average trends for each EHE characteristic, EHE type and 
time period were calculated.  Then for all periods, EHE types and EHE characteristics, 
the ratio of the sample mean to standard deviation and percentage of significant (and 
insignificant) positive and negative trends were calculated.  Next, the maps of the trend 
magnitudes and significance at each station created and used to spatially characterize the 
trends.  For example the results were spatially structured or consist of entirely noise.  
Lastly regions of warming and cooling are called attention to. 
 To understand the relationships between the Tmin, Tmax and Tmin&Tmax type 
EHE trends the Pearson’s correlation coefficients were calculated between the three 



trends for each EHE characteristic and time period.  Furthermore, Student’s t-tests were 
used to determine if the magnitude means were statistically different at the 0.10 
significance level. 
 d) Current results/conclusions 

For EHEs w.r.t. either the daily minimum or maximum temperatures (Tmin or 
Tmax type EHEs), the different non-timing EHE aspects (e.g. duration, intensity, 
frequency) were consistent in sign, leading to unambiguous results.  This was 
predominantly seen in the CONUS average results where all periods and EHE types were 
consistent in sign throughout the EHE characteristics, and also the similar spatial patterns 
of EHE characteristics supported this conclusion.  The Kuglitsch et al. (2010) study in 
Europe showed a similar consistency between intensity, duration and number of EHEs 
during the 1960-2010 period.  The results of the Gershunov et al. (2009) study also 
showed (for both Tmin and Tmax type EHEs) in California the EHE intensity, spatial 
extent and frequency all increased. 

During the 1930-190 period all EHE types grew weaker, shorter and less 
commonplace, but during the 1970-2010 period all EHE types grew stronger, longer and 
more frequent.  The CONUS average EHE characteristics indicated that during the 1930-
1970 period all non-timing EHE characteristics, regardless of EHE type, decreased and 
during the 1970-2010 period all non-timing EHE characteristics increased.  Also the 
disparity in the percentages of stations with significant negative and positive trends, per 
time period, supported such conclusions.  These conclusions agree with the findings of 
Peterson et al. (2008) that showed both Tmin and Tmax extreme percentiles decreased 
during the 1950-1970 period and increased in the 1970-2005 period.  The DeGaetano and 
Allen 2002 study by showing the percentage of increasing trend stations since 1960 was 
much larger than the percentage of decreasing stations loosely supported these results as 
well.  We do not believe our results disagree with the Gaffen and Ross (1998) paper that 
found a larger increase in the CONUS average number of EHEs from 1949 to 1995.  We 
believe the hydrological trends, as well as the differences in EHE definitions and time 
period, caused the difference between the two studies results. 

Over the 1930-2010 period the Tmin type EHEs grew stronger, longer and more 
commonplace, the Tmax type EHEs became weaker, shorter and less commonplace and 
the EHEs w.r.t. both daily extreme temperatures (Tmnx type) became negligibly stronger, 
longer and more commonplace.  This was seen in the CONUS average EHE 
characteristic results that showed during the 1930-2010 period all non-timing EHE 
characteristics increased for the Tmin type, all non-timing characteristics decreased for 
the Tmax type EHE and the results of the Tmnx type EHE non-timing characteristics 
increased by an order of magnitude less than the other EHE types.  The only study that is 
able to compare with our study, the DeGaetano and Allen (2002) study, suggested the 
Tmin and Tmax 90th and 99th percentiles decreased (weaker) between 1930-1996, and 
increased (stronger) between 1970-1996. 

Spatial variability existed across the CONUS for all periods, EHE characteristics 
and EHE types.  This was indicated in the mean-to-standard deviation ratios, but 
regional-scale spatial patterns were also clearly seen in the maps.  For example the lack 



of warming in the central and north central CONUS during the 1970-2010 period or the 
cooling in the central and north central CONUS regions during the 1930-2010 period.  
Several other studies also showed regional-scale spatial variability (Gaffen and Ross 
1998; Degaetano and Allen 2002; Peterson et al. 2008; Portmann et al. 2009; Wu et al. 
2012).  Additionally, small-scale variability was seen in the maps.  This likely arises from 
the local level where landcover/landuse play larger roles; a study by Pielke Sr. et al. 
(2011) elaborates on the local land use/land cover impact on surface temperature trends.  
Maps in similar studies (Gaffen and Ross 1998; Degaetano and Allen 2002; Portmann et 
al. 2009) confirmed the existence of such small-scale variability. 

The spatial pattern of the trends differed strongly with time period, differed some 
with EHE type and did not discernibly differ with EHE characteristic.  During the 1930-
1970 period the overall general pattern was negative trends in the north Central and East 
regions and mixed results in the West and south Central regions.  No maps were found 
that could corroborate with these earlier period conclusions.  During the 1970-2010 
period the general spatial pattern of increase was that of a loose horseshoe with a lack of 
positive significance in the middle of the country.  The map of 90th percentile trends 
during the 1960-1996 period in the DeGaetano and Allen (2002) paper was different from 
our results, but we believe the differences can be explained by study/figure differences.  
During the 1930-2010 period, the general spatial pattern was negative in the 
central/interior region and positive in the East and West.  The DeGaetano and Allen 
(2002) manuscript has a map of daily maximum type EHE trends from 1930-1996 that 
supports those conclusions.  The Peterson et al. (2008) study also presented a map in the 
number of daily minimum 90th percentile exceedence days during the 1950-2005 period 
similar to our 1930-2010 period map of the number of Tmin EHE days in all regions 
except the south East region; where that study showed insignificant decrease but our map 
showed significant increase. 

The relationships Tmin and Tmax type EHE trends had with the Tmnx type EHE 
trends were modest but no relationship was seen between the Tmin and Tmax trends.  
These conclusions stem from both the correlation coefficient and Student’s t-test results 
between the EHE types.  Theoretically, weather patterns conducive to each type of EHE 
are dissimilar; for example cloudy overcast weather lends itself to Tmin type EHEs, but 
not Tmax type EHEs.  Our conclusion of a lack of relationship between the Tmin and 
Tmax type EHE trends was loosely supported by the Portmann et al. (2009) study that 
showed substantially different spatial patterns and continental averages in the 90th 
percentile exceedence occurrences for minimum and maximum temperatures.  Also the 
Gaffen and Ross (1998) study supported these conclusions; it showed substantial 
differences in the average (both continental and regional) trends in the daily minimum 
and maximum apparent temperature percentile exceedences. 

3. Investigation into Detroit’s urban climate 
a) Urban climate literature review 

 Air temperatures 2-meters above ground level vary spatially because the land cover 
land use (LCLU) types vary.  Specifically, LCLU types affect the way energy interacts 
with the environment at the ground level.  LCLU types can affect heating/cooling rates 



and storage; latent and sensible heat flux partitioning; effectiveness of radiative energy 
exchanges and turbulent heat transport (Oke 1982, Grimmond 2010).  Metropolitan areas 
are essentially congregations of LCLU types that cause the overnight temperatures to be 
warmer than the rural surroundings; this effect is termed the Urban Heat Island effect 
(UHI effect) (Oke 1982).  On a smaller scale than the UHI effect, within a city the 
temperature also varies (Oke 1984).  In urban climate science the delineation of scales 
was a major theoretical advancement with a microscale (related to the immediate vicinity, 
commonly 0.1 – 100 m), local scale (related to neighborhoods with similar types of urban 
development, often 1-5 km) and the mesoscale (related to the size of the entire 
metropolitan region, 10s of km) (Oke 1984). 

Observational studies have not substantially changed since the 1980’s, although 
numerical modeling studies have emerged.  Typical methods of the observational studies 
include time trends at singular locations (i.e. the site is becoming more urban) (e.g. 
Tarleton and Katz 1995; Tereshchenko and Filonov 2001), comparative time trends at 
one or more urban stations and one of more rural stations (e.g. Ackerman 1985; Magee et 
al. 1999; Philandras et al. 1999; Morris and Simmonds 2000; Zhou and Shepherd 2009), 
networks of fixed stations within and around a city (e.g. Basara et al. 2008, 2010; 
Camilloni, I., and M. Barrucand, 2010) and transects across an urban area (e.g. Saitoh et 
al. 1996; Goh and Chang 1999; Bottyán and Unger 2003; Wong and Yu 2005; Yokobori 
and Ohta 2009).  Nor is it uncommon for studies to use more than one method in concert 
(Kuttler et al. 1996; Montávez et al. 2000; Longxun et al. 2003). 

Most urban climate studies focus on the UHI effect on a large scale, or the 
temperature differences between an urban station and its rural counterparts (Zhou and 
Shepherd 2009; Basara et al. 2008; Camilloni and Barucand 2011; Chow and Roth 2006; 
Morris et al. 2001; Mohsin and Gough 2011; Velazquez-Lozada et al. 2006).  The metric 
is often termed the magnitude of the UHI, UHI magnitude, Intensity of the UHI or UHI 
Intensity.  Its effectiveness of this metric is dependent to the studies ability to site the 
stations as rural and urban, and a limitation is the ability to convince the reader the 
temperature gradient is radial. 
 Some studies investigated the smaller scale variability of temperatures throughout 
a city.  Some of those studies confirm the existence/amount/sign of variability over urban 
and/or suburban areas (Saaroni et al. 2000, Basara et al. 2008, Gaffin et al. 2008); others 
mapped the spatial structure (Montávez et al. 2000; Longxun et al. 2003; Bottyán and 
Unger 2003; Kim and Baik 2005, Hart and Sailor 2009).  More involved studies linked 
the variability to local scale spatial attributes (Kuttler et al. 1996; Goh and Chang 1999; 
Bottyán and Unger 2003; Hart and Sailor 2009; Buttstädt et al. 2010) and land cover 
types (Wong and Yu 2005; Yokobori and Ohta 2009).  Spatial variables found to be good 
predictors were building height, building area, building height-to-street width ratios, 
building use type, canopy cover, sky view factor, water surface ratio, percentage of 
impervious surface and ground elevation. 
 Studies have shown the largest UHI magnitude resides after sunset but before the 
daily low (Oke 1982, Morris and Simmonds 2000) and this is the time of day nearly all 
UHI studies focus, because they focus on the physical impacts of the urban landscape.  
However epidemiology literature shows the summertime daily high to be associated with 
both heat-related medical dispatches (Dolney and Sheridan 2006; Golden et al. 2008) and 



mortality rates (Basu 2009, Gosling et al. 2009).  Also summertime daily minimums are 
associated with mortality rates, as well as daily mean (often derived from the daily 
maximum and minimum) temperatures (Basu 2009, Gosling et al. 2009); is not clear 
which of the three variables is more important.  Therefore this study focuses on the 
spatial variability only during summertime daily maximum and minimum temperatures; 
exchanging the most robust signal from the urban landscape with practicality to the 
public health scientists. 
 
b) Project hypotheses 

 Do summertime average daily extreme temperatures vary spatially across the 
urban/suburban domain?  Is the magnitude of that variability diagnosable by the large-
scale weather?  Is the spatial pattern predictable by the land attributes?  Lastly, does the 
spatial variability exist during hot/oppressive weather? 

c) Data and Methods 

To improve spatial density, this study integrated multiple observation networks 
into a single network.  The standard observations managed by the NWS were used as this 
network’s baseline.  To this baseline, observations were added from both an existing 
network run by the Michigan Department of Environmental Quality (MDEQ) and a 
temporary network that was established for this study.  The temporary network ran for 
the length of this study, and consisted of only the 110 days from 13 June – 30 September 
2009. 

This unique observational network, in part, led to unique methods.  First the 
observations are reported as spatial anomalies instead of temperatures; anomalies with 
respect to the network-wide average at that particular time (e.g. daily low on June 21st) 
but beyond the specific monitoring uncertainty inherent to each network (i.e. uncertainty 
subtracted from the anomaly magnitude).  For example, if a downtown airport monitor 
showed a daily high of 30°C, that date’s daily high network mean value was 26°C and 
there is a 0.5°C uncertainty associated with the airport network’s daily highs, then there 
was a +3.5°C spatial anomaly at the downtown airport location on this date.   

Furthermore, the network used in this study lacked true representation of the rural 
surroundings; therefore this study could only assess the spatial variability throughout the 
urban and suburban regions of Detroit.  This variability is herein referred to as the intra-
urban/suburban spatial variability in temperature (IUSSVT).  The IUSSVT was 
quantified by calculating the range of the simultaneously (e.g. same date and daily 
extreme) observed spatial anomalies (herein referred to as the range of simultaneously 
observed spatial anomalies (SOSAs)).  The range of SOSAs quantifies the range in 
temperature across the urban and suburban landscapes whereas the common metrics UHI 
magnitude and UHI intensity quantify the temperature difference between sufficiently 
urban and rural locations.  At night the range of SOSAs is similar to the UHI magnitude 
metric but likely underestimates it.  During the daytime the range of SOSAs allows a 
positive value even if the downtown area is cooler than the suburban areas (commonly 
known as an urban cool island or oasis effect).  Knowledge of the typical spatial pattern 
of temperature is essential when using the range of SOSAs metric. 



First the amount of IUSSVT was examined by examining the range of SOSAs.  
The histograms, means and maximums of the range of SOSAs were calculated for both 
daily extremes.  Then the range in SOSAs’ relationship with the lager scale weather was 
investigated.  The spatially averaged airport weather observations of overnight wind 
speed, overnight cloud cover and the previous afternoon’s cloud cover were correlated 
with the daily low ranges of SOSAs; the variables correlated with the daily high were 
afternoon cloud cover and afternoon wind speed.  Then for both predictands, stepwise 
multiple regression was performed using the variables deemed appropriate.  
Bootstrapping techniques were used to evaluate confidence in the regression coefficients. 
The regression coefficients determined from scaled inputs was done in order to determine 
each predictor’s relative contributions to the models.  Then the goodness of those 
regression models was determined from model diagnostics such as RMSE and R2.  
Models that passed initial scrutiny were further tested for their functionality by evaluating 
their ability in a cross-validation test (Draper and Smith 1981).  Once the relationships 
with the airport weather observations were investigated the investigation was repeated 
with corresponding reanalysis data in order to assess the ability to forecast Detroit’s UHI 
magnitude from model data.  The North American Regional Reanalysis data was 
similarly averaged and correlated with the range of SOSAs. 
 Confirmation of the existence of IUSSVT during hot weather was undertaken 
because of its implications on heat stress during heat events.  Initially this subject was to 
be evaluated by isolating times classified as heat events or oppressive via three 
independent methods but the summer of 2009 in Detroit lacked heat events and NWS 
heat advisories.  Instead it was explored via ordinary least squares regression fitting 
between apparent temperature percentiles and the amount of spatial variability; to test the 
statistical significance the confidence intervals were calculated in the slopes and 
intercepts of those regressions. 
 Then the relationships were investigated between the spatial anomalies means and 
three land-cover and location variables.  First, the variables distance to sizeable water 
body, distance from city center, and local percent impervious surface were theoretically 
justified and then created with ArcGIS software.  Then each station was assigned values 
for each variable and those three values were correlated with both each other and the 
observed mean spatial anomalies across all stations.  Then the backwards elimination 
method was employed with these variables, to determine the appropriate multiple 
regression model for both daily temperature extremes.  Again bootstrapping methods 
were employed to explore the confidence in the regression coefficients.  Regression 
coefficients calculated with normalized input indicated which variables were most 
influential.  Then the goodness of those regression models was determined from model 
diagnostics such as RMSE and R2.  Models that passed initial scrutiny were subjected to 
the leave-one-out cross validation testing method (Hoek et al. 2008, Draper and Smith 
1981).  
d) Main conclusions 

 The IUSSVT is typically larger during the daily low, which was indicated by 
examining the simple statistics (mean, maximum, histogram) of the range of SOSAs.  
The observed day-to-day variability in the daily low range of SOSAs was also large 
however.  A multiple regression method indicated that all three large-scale weather 



variables should be used (cloud cover, previous day cloud cover and wind speed; from 
strongest to weakest predictor) to predict the amount of daily low variability.  Cross 
validation efforts confirmed its utility as a predicative model.  A similar model using 
analogous NARR derived large-scale weather variables was also found to be successful.  
These findings are consistent with other recent studies that indicated both the nighttime 
intra-urban spatial variability (Eliasson 1996, Wilby 2003, Kim and Baik 2005, Erell and 
Williamson 2007) and UHI magnitude (Runnalls and Oke 2000, Morris et al. 2001, 
Gedzelman et al. 2003, Wilby 2003, Camilloni and Barrucand 2010) to be largest during 
low wind speed and clear sky weather conditions.  However, our results elaborate on 
these findings by suggesting an explicit relationship between daily low IUSSVT and the 
previous afternoon’s average cloud cover, which was not found in the literature.  
Conversely, the daily high range of SOSAs could not be effectively modeled using the 
large-scale weather variables. 
 On average there was a statistically significant amount of IUSSVT, and during days 
flagged as hot, or oppressive, the range of SOSAs was comparable to the overall mean 
value.  Our results agreed with the findings of a previous study (Basara et al. 2010) that 
demonstrated the existence of intra-urban and intra-suburban temperature variability in 
general and during a heat event.  Specifically, our results showed during the daily high 
the range of SOSAs was indifferent of apparent temperature percentile but the daily low 
decreased with increasing apparent temperature percentile.  Neither daily minimum nor 
maximum trend decreased to zero at the 100th percentile. 
 Results suggested that the land cover-location variables could predict the mean 
intra urban/suburban spatial pattern in temperatures.  The daily low spatial pattern could 
be predicted well, as oppose to the daily highs, which were not predicted meaningfully.  
For the daily low the most influential predictor was the percent impervious surface, with 
distance to city center and distance to water being secondary.  Cross validation efforts 
again confirmed the utility of this model as a predictor.  Similar studies using statistical 
models to statistically explain the nighttime intra-urban/suburban spatial pattern of 
temperature (Kuttler et al. 1996, Bottyán and Unger 2003, Buttstädt et al. 2010) 
confirmed it could be done well (R2 between 0.50-0.85) and with only a small number of 
variables (e.g. between two and four). 
 
4. A trend evaluation of three modern high-resolution climate datasets 
a) Climate community datasets 

 In general, observational datasets developed within the climate community are the 
appropriate choice for determining trends, oscillations and behavior of temperature at 
multiple spatial scales.  Decades have been invested to creating the optimal systematic 
processes of homogenization (i.e. a spatially and temporally consistent network), and 
subsequent updating, that each dataset has in current operation.  Common datasets are the 
National Climatic Data Center’s (NCDC) Global Historical Climatology Network 
(GHCN)/United States Historical Climatology Network (USHCN), (Lawrimore et al. 
2011, Menne et al. 2009), the NCDC’s United States Climate Reference Network 
(USCRN) (Heim Jr. 2001), the Hadley Centre and University of East Angila’s CRU 
datasets (Mitchell and Jones 2005), the National Aeronautics and Space Administration’s 



(NASA) GISS dataset (Hansen et al. 2010) and the University of Delaware’s (UDel) 
datasets (Matsuura and Willmott 2009).  Most datasets operate at the monthly resolution 
although some have daily data available.  The GHCN, USHCN and USCRN are 
ungridded datasets and the CRU, GISS and UDel datasets are all gridded datasets with 
resolutions of 0.5°, 2.0° and 0.5°, respectively. 
 The USHCN and GHCN datasets use roughly 1,200 and 7,300 stations, 
respectively.  The USHCN is a subset, generally based on quality and longevity of the 
data, of the COOP network (Newkirk 2007).  The GHCN also includes similarly trusted 
data from countries around the globe, not including ocean temperature measures.  The 
gridded (0.5°) version of the GHCN has serious limitations to it’s utility.  The newest 
quality control (QC) algorithms used for the monthly USHCN and GHCN datasets are 
considered to be the best at what they do (compare a station to it’s neighbors to detect 
abrupt and gradual discontinuities) (Menne and Williams 2009).  The daily versions of 
the both datasets do not have any homogenization or infilling applied to them. 
 The CRU dataset is a global dataset with many more stations than the GHCN 
dataset. The GHCN is one of the data sources and another is the World Weather Records 
(WWR) dataset (NCDC 2011a), numerous sources are included (Mitchell and Jones 
2005, New et al. 2000, Jones and Moberg 2003).  The homogenization process is similar 
to the newest versions of the USHCN and GHCN, but with requirements relaxed to 
maximize the number of stations accepted into the dataset.  The large number of stations 
in turn allow for confident high-resolution grids to be created.  The interpolation method 
to grid is simple angular distance weighting (New et al. 2000). 
 The GISS dataset is a global dataset that uses only a subset of the GHCN dataset’s 
stations.  Additionally, Antarctic data (Turner et al. 2004) and an oceanic gridded dataset 
(Rayner et al. 2003) are used to fill those areas the GHCN did not include.  The method 
used to correct for the urbanization effect, was through a satellite derived nightlight 
(radiance) dataset.  The interpolation methods are unclear in the publications but there is 
indication that the gridding is simple. 
 The UDel dataset is a global dataset that uses a significantly larger number of 
stations from a variety of networks (NCDC’s Global Summary of the Day is a large 
portion (NCDC 2011b)).  The QC and homogenization efforts were very little to none for 
this dataset.  However the interpolation techniques employed are robust; elevation 
changes are explicitly accounted for (Willmott and Matsuura 1995) and a technique 
called “climatology aided interpolation” (Willmott and Robeson 1995) allowed for smart 
interpolation. 
 The United States Climate Reference Network (USCRN) (Heim Jr. 2001) is a new 
network with a focus on measurement accuracy and quality.  The monitoring sites are 
robust in the variables they observe, specifically sited away from any biases and operated 
by the USCRN network.  A network of 114 stations has been operating since 2008 and 
covers the CONUS well. 
b) Hydrological community datasets 

 Recently climate datasets have emerged from the hydrological community with 
very high resolution.  Hydrological models require as inputs, serially complete gridded 



surface observational datasets of such resolution (Ghosh and Misra 2010).  However 
climate information end users, including atmospheric scientists, use these datasets with 
confidence.  Here is a review of datasets spanning the complete CONUS domain with 
temporal resolution of a day and spatial resolution higher than a third of a degree latitude. 
 The DAYMET (Thornton et al. 1997) dataset (1 km resolution) is an example of 
such a dataset; its spatial domain is global but its temporal domain is short (1980-1997).  
The Maurer et al. (2002) dataset (12 km resolution) is another example of one of these 
datasets, and has made its way into in the climate community literature.  The dataset 
described by Hamlet and Lettenmaier (2005) corrects important issues in the Maurer et 
al. (2002) dataset but it is only available west of the continental divide.  This 
methodology by Hamlet and Lettenmaier (2005) has been used to create other sub-
continental-scale datasets for regional assessments (Sinha et al. 2010).  The dataset 
described by DeGaetano and Belcher (2007) covers only the northeastern U.S. and is not 
focused on here.  The serially complete dataset described by Eischeid et al. (2000) is not 
focused on here because it is not gridded.  The PRISM (Daly et al. 2008) dataset (4 km) 
is not an example because it is monthly, however the Di Luzio et al. (2008) dataset (4 
km) is essentially a daily version of the monthly PRISM dataset.  The global dataset 
described by Hijmans et al. (2005) dataset (1 km) is also not focused on because it is 
monthly. 
 These datasets vary by more than just resolution.  The interpolation methods used 
are more sophisticated than the climate community datasets, and manuscripts explaining 
these datasets spend a significant portion describing both the interpolation methods and 
the variables used in the interpolation process.  The density of source stations used in the 
interpolations is much larger due to relaxed requirements.  Besides the Hamlet and 
Lettenmaier (2005) manuscript, there is surprisingly little quality control discussion and 
no discussion regarding the detection and correction of temporal discontinuities due to 
non-climatic biases (e.g. equipment change, small station move, etc.).  Typical validation 
efforts are accomplished often only through cross-validation (Thornton et al. 1997; Daly 
et al. 2008), by comparison to one another (Daly et al. 2008), through the ability for 
hydrological models to recreate historical stream flows (Maurer et al. 2002) or not 
explicitly validated within the literature (Di Luzio et al. 2008).   
 Some studies (Hamlet et al. 2005; Bonfils et al. 2008, Lobell et al. 2008) have 
mentioned the Maurer et al. (2002) dataset is less optimal for use and opted for either 
using other datasets or correcting it using the Hamlet and Lettenmaier (2005) method.  
Conversely, another study (Das et al. 2009) did not see significant differences between 
the Maurer et al. (2002) and Hamlet and Lettenmaier (2005) datasets.  Scully (2010) 
evaluated the PRISM and DAYMET datasets and concluded the PRISM dataset should 
be preferred unless daily data is required, and Guentchev et al. (2010) tested the Maurer 
et al. (2002) and PRISM datasets for inhomogeneities and found both to contain them but 
the Maurer et al. (2002) dataset had more. 
 Hydrological models require these datasets, not only because of the high resolutions 
but because they require more than just temperature and precipitation (e.g. humidity, 
precipitation, wind speed, short and long wave radiation).  A large literature body exists 
of hydrological modeling studies that employed temperature data from these datasets.  
Here a few examples involving the Maurer et al. (2002) dataset (Haddeland et al. 2006; 



Haddeland et al. 2007; Mao et al. 2009; Acharya  et al. 2011), the DAYMET (Schaefer 
and Alber 2007; Schaefer et al. 2009; Potter et al. 2010) dataset and the Di Luzio et al. 
(2008) dataset (Marshall 2011; Kannan et al. 2008; Santhi et al. 2008; Srinivasan et al. 
2010) are listed. 
 Many non-hydrological modeling studies use these datasets as well.  For example 
the Maurer et al. (2002) dataset has been used to assess summer nighttime temperature 
trends in the California’s Central Valley (Bonfils et al. 2007), assess trends in annual 
maximum temperatures in Florida (Waylen et al. 2012) and quantify the U.S. spatio-
temporal patterns in surface temperature caused by the El-Niño/Southern Oscillation 
(Zhang et al. 2012).  The DAYMET dataset has been widely used by several non-climate 
groups such as those modeling past fire hazard and risk (Keane et al. 2010), modeling 
past productivity of forest (Turner et al. 2011; Littell et al. 2010), modeling past 
biogeochemical cycling rates (Hartman et al. 2011; Pan et al. 2009), mapping past and 
future corn pest risk (Diffenbaugh et al. 2008) and modeling the transmission risk of 
human diseases (Konrad et al. 2011; Wimberly et al. 2008).  Similar examples for the Di 
Luzio et al. (2008) dataset were not found, however one paper (Williams et al. 2010) did 
cite the findings Di Luzio et al. (2008) of a 0.65°C increase in average annual 
temperatures over the continental U.S. 
c) Project hypothesis 

 First do the Maurer et al. (2002), Di Luzio et al. (2008) and DAYMET (Thornton et 
al. 1997) datasets reproduce the CONUS average trends of the reference climate dataset?  
Do they reproduce the spatial structure of the reference dataset?  Lastly, do the biases or 
uncertainties act as random spatial variables or are they a function of physical 
characteristics of the stations themselves (e.g. elevation)? 
d) Project Methods 

 This study tests the ability of these datasets to reproduce the trends of the reference 
dataset by quantifying the bias or uncertainty.  This requires a reference dataset, and the 
USHCN dataset will be used because it is a) considered to be a top tier climate reference 
dataset for trends, b) it is not gridded and c) it has a version (Menne et al. 2012) which 
describes the daily scale variability.  For this project the grids points are interpolated to 
the reference dataset locations, and then compared over the temporal duration of each 
dataset being evaluated.  This was done because evaluation of the interpolation methods 
was not desired, rather we wanted to evaluate at the locations where no interpolations are 
needed.  There is no reason to believe these three datasets would not use these stations in 
the reference dataset in creating their respective grids. 
 This study compared the trends of four variables between the datasets at each 
location.  The first two are the number of summertime occurrences of summertime daily 
minimum and maximum 90th percentile exceedences.  These variables are 
straightforward, physical and at a temporal scale of interest to most users of these 
datasets (daily scale).  The third and fourth variables are the number and average duration 
of summertime EHEs, respectively.  These variables are less straightforward/physical but 
at a temporal scale of interest to many users of these datasets (event or synoptic 
timescale).  These EHEs require two days of both elevated daily highs and lows. 



 The method of evaluation will be the same for all variables.  Time series of raw and 
absolute difference between the reference dataset and each target dataset will be 
constructed for each location.  To quantify the trend bias the raw difference time series 
was used, and the trend uncertainty used the absolute difference time series.  For both 
variables, the magnitude and significance of any trend will be calculated using the 
ordinary least squares method because it is so commonly used. 
 First, maps of the station-specific results showing trend bias and uncertainty 
magnitudes and significance will be constructed.  Then conclusions of the ability to 
reproduce the spatial structure will be based on these results.  Also the maps may be 
insightful into whether the causation of bias and uncertainty is the same between the three 
datasets the maps may be helpful.  If not helpful, the 2D spatial correlations between 
biases and uncertainties derived from different datasets can be calculated.  Then the 
percent of locations with statistically significant/non-significant positive/negative trends 
will also be given.  Also continental averages of the trend biases and uncertainties will be 
calculated. 
 Lastly the causes behind the bias and uncertainty are examined.  Testing for spatial 
autocorrelation allowed investigation into whether the bias/uncertainty behaves as a 
random variable.  Then regression analysis between physical land characteristics (e.g. 
elevation and distance to water) will be used to further investigate the cause. 
e) Desired results and conclusions 

 In general the CONUS average uncertainty and bias of the gridded datasets will 
give end users an idea of the suitability of these datasets for trend analysis at the 
continental scale.  Next, maps of uncertainty and bias will give climate information end 
user’s the knowledge of whether these datasets can reproduce the spatial pattern and how 
the gridded datasets perform in a particular region. 
 The rest of the investigation will attempt to explain the cause of bias and 
uncertainty amongst the gridded datasets.  Preliminary tests determining whether the 
biases and uncertainties are similar between gridded datasets and whether there is spatial 
autocorrelation give rise to the causation of errors.  Then regression between the physical 
characteristics of the stations and the bias and uncertainty will give us insight into the 
causes behind the errors.  Lastly, our results in the context of the results of a paper by 
Menne et al. (2009) that discusses the non-climatic biases detected in the USHCN 
datasets by an objective pairwise detection method will be discussed in the context of our 
findings. 
  
5.  How the conclusions of the three projects satisfies the thesis motivations 
 The obvious connection between the projects is presenting information for end 
users who are concerned with summertime near surface air temperatures.  Trends in EHE 
characteristics and how they relate to average trends and EHE definition differences is 
useful information to public health scientists protecting the public from hazardous heat.  
How the intra-urban spatial variability of daily maximums and minimums relates to 
synoptic weather and the urban landscape might aid public health officials in 
metropolitan regions protect the community.  Evaluation of two high-resolution climate 



datasets w.r.t. trends in hazardous heat could give climate information end user’s 
confidence in using these datasets for trend analyses. 
 A less obvious commonality between projects was the attempt to act as an interface 
to transfer knowledge by employing vital meteorological and climatological practice 
standards to quantify specific variables relevant to end users.  Approaching the first study 
like a climatologist, a dataset well suited to assess long-term trends was used, the stations 
used were carefully selected and percentiles calculated with pitfalls in mind.  To transfer 
the knowledge directly to the public health discussion, this project a) studied trends in 
EHE characteristics important to that discussion, b) required elevated temperatures to 
have a duration, c) focused on summertime EHEs and d) evaluated the differences 
between different EHE definitions. 
 For the second project, approaching the problem from a meteorologist’s perspective 
included explicitly considering uncertainties in urban meteorological monitoring and 
basing our network on the local NWS standard observing sites.  Then to facilitate the 
translation of knowledge into the heat-health discussion this study a) focused on daily 
extreme temperatures, b) evaluated the spatial variability during hot weather and c) 
provided a methodology for temporally and spatially predicting the variability.  The third 
venture was approached carefully as it used an appropriate reference dataset and the 
stations used were warily selected and percentiles calculated with pitfalls in mind.  
Evaluating datasets popular within end user assessments and evaluating a phenomenon 
important to the heat-health discussion aided the translation of knowledge to end-users. 
 The last theme these projects share was to advance the level of knowledge within 
the climate discussion.  Our first project was an extension of the DeGaetano and Allen 
(2002) study that focused in the continental U.S.’s long-term trends (1900-1996) in EHE 
trends and the Gaffen and Ross (1998) study that quantified apparent temperature trends.  
Foremost it is an extension simply because it includes the more recent 1996/1997-2010 
data.  However, neither of those studies required both elevated daily highs and lows in 
their EHE definitions.  Lastly, the DeGaetano and Allen (2002) study didn’t focus on 
summertime EHEs and the Gaffen and Ross (1998) study didn’t focus on trends in 
temperature only.  Additionally, our study more robustly characterized the EHE trends, 
similar to how the Kuglitsch et al. (2010) Mediterranean region study did.  Our study was 
also designed to look at the differences between the trends of EHEs w.r.t. the daily 
extreme temperature requirements (Kuglitsch et al. (2010) did not).  Thus we felt this 
project added to the EHE discussion from the climatologist’s perspective. 
 The second project studied Detroit, MI, USA for the first time in over thirty years, 
and in a much more spatially robust way.  While there are previous studies that built 
statistical models between observed temperatures and land cover attributes, our study 
uses two variables not used in the previous studies (distance to city center, local 
imperviousness).  Additionally, no previous studies were found that looked at the 
relationship between apparent temperature percentiles and the amount of spatial 
variability over a metropolitan region.  Similar studies have used synoptic scale 
meteorological variables to predict the urban heat island magnitude, however this study 
used a variable unused previously (previous day cloud cover) in the statistical model.  
Lastly, our study’s unique observing network can be an example for future urban climate 
studies (Grimmond et al. 2010).  Subsequently, we felt from an urban climate science 



point of view this project added to the level of knowledge. 
 The third project also adds to the climate community discussion.  Evaluation of 
datasets occasionally used in the climate community (e.g. to downscale GCM output 
(Hayhoe et al. 2010)) and sometimes used to calculate trends gives climate scientists 
confidence to use them more.  Also the discussion of how lack of climate data 
homogenization affects index trends in gridded high-resolution datasets is beneficial as 
well. 
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