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ABSTRACT

On an annual basis, heat is the chief cause of weather-related deaths in the United States. Therefore,

understanding the temperature structure where people live is important for reducing the health burden im-

posed by hot weather. This study focused on the air temperatures in the Detroit, Michigan, metropolitan

region during the summer of 2009. An observational network was established that included 1) monitors sited

in the backyards of residential participants, 2) National Weather Service standard observations, and

3) a network of monitors operated by the State of Michigan. Daily high and low temperatures were analyzed

for spatial pattern, magnitude of spatial variability, and relationships with weather conditions. The existence

of spatial variability was confirmed specifically during weather that was considered to be dangerous to public

health. The relationships between temperature observations and distance to water, distance to city center, and

local percent of impervious surface were investigated. The spatial variability during the daily low was typically

stronger in magnitude and the spatial pattern was more consistent than were those during the daily high. The

largest correlation with land-cover and location attributes was between values of percent of impervious

surface and daily low temperatures. Daily high temperatures were most correlated with distance to water.

Consistent with previous studies on spatial variability in urban environments, the results suggest a need for

sensitivity to the spatially variable nature of exposure to heat events in both public health and urban planning.

For example, these results showed that the downtown area experienced elevated temperatures during nights

and that the eastern portions of Detroit experienced decreased temperatures during afternoons.

1. Introduction

In 2010, more than one-half of the world’s population

was estimated to live in urban regions, with a projection

of 70% by 2050 (United Nations Population Division

2010). Heat is a leading annual cause of natural weather-

related fatalities (NWS Office of Climate, Weather, and

Water Services 2010b), and city size has been correlated

with the magnitude of temperature alteration by cities

(Oke 1973; Stone et al. 2010). Therefore, the importance

of studying urban climates and health-related urban

climate factors is increasing in both the fields of public

health and atmospheric science.

Standard observational and forecast products of the

National Weather Service (NWS) typically trigger

watches and warnings about dangerously hot weather

(NWS Office of Climate, Weather, and Water Services

2010a) in metropolitan regions. The meteorological

monitors are often located at the official recording

sites of the NWS and are specifically sited to avoid the

effects of developed land cover (Observing Systems

Branch 1989; Peterson 2003). Developed land cover
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can alter the air temperatures and cause the urban

heat island (UHI) effect, defined as the elevated tem-

peratures within urban environments relative to the

surrounding rural areas (Oke 1982). The UHI effect is

well understood (Oke 1982; Bonan 2008; Grimmond

et al. 2010). In general, studies focusing on either the

UHI effect or spatial variability of air temperatures use

either a pair (Ackerman 1985; Magee et al. 1999) or

several fixed stations (Gedzelman et al. 2003; Basara

et al. 2008) or use various forms of in situ transects

(Wong and Yu 2005; Yokobori and Ohta 2009). Both

spatial variability (at the local scale) and the UHI effect

(at the mesoscale) are caused by differences between

various land-cover types in heating rates and storage,

latent and sensible heat flux partitioning, effectiveness

of radiative energy exchanges and turbulent heat

transport, and differences in downwelling radiative

energy from gases and aerosols (Oke 1982).

Therefore, in addition to the urban–rural difference in

temperature, significant spatial variability of air tem-

perature also exists within developed regions (Bonan

2008). It has been suggested (Kunkel et al. 1996) that not

enough studies investigate the variability of tempera-

tures throughout a city during heat events. A recent

study during a heat event in 2008 confirmed the exis-

tence of temperature spatial variability in Oklahoma

City, Oklahoma (Basara et al. 2010). Knowledge of the

sources and magnitude of variability is potentially

useful to public-health practitioners and city planners

to better identify parts of the city that are especially

vulnerable to heat-related health threats (Wilhelmi

et al. 2004).

One difficulty in taking urban ground-level meteoro-

logical observations is that the environmental surround-

ings can compromise the measurements. Networks of

meteorological observing stations do exist within the

urban and suburban environments and are typically

run by utilities, educational institutions, transportation

departments, and environmental quality agencies.

Examples of such network data providers can be

found at The University of Utah’s MesoWest Data-

base (e.g., http://mesowest.utah.edu/cgi-bin/database/

stn_owner.cgi?owner57 from the Utah Department

of Transportation, http://mesowest.utah.edu/cgi-bin/

database/stn_owner.cgi?owner5250 from the Oregon

Department of Environmental Quality, and http://

mesowest.utah.edu/cgi-bin/database/stn_owner.cgi?

owner5345 from the WeatherForYou Internet site).

The monitoring standards employed are unique to the

specific purpose of each network. In addition, networks

associated with private weather information providers

such as Weather Underground and WeatherBug are

designed to meet the requirements of the sponsoring

organizations but frequently do not meet the more-

rigorous observing standards (networkwide standardi-

zation, maintenance of calibration, and monitors not at

rooftop level; Davey et al. 2002; Oke 2004) required to

quantify the spatial variability of temperature. Although

problems do exist, such nontraditional networks provide

a potential resource to better characterize the highly

variable structure of temperature that is found between

the limited numbers of stations of standard meteoro-

logical observations within developed regions.

This study focuses only on the daily extremes of air

temperature observed by a fixed network of several

observing stations. The spatial variability of conven-

tional air temperature, rather than a more sophisti-

cated measure of physiological equivalent temperature

(Steadman 1984; Jendritzky et al. 2001), is characterized

because the results are more clear-cut. Neither the UHI

effect nor spatial variability in temperature is typically

largest during either daily high or low temperatures

(Oke 1982); the spatial variability in the temperature is

likely most important to public health during these

daily extremes, however. The literature shows the daily

high to be associated with both heat-related medical

dispatches (Dolney and Sheridan 2006; Golden et al.

2008) and mortality rates (Basu 2009; Gosling et al.

2009). Daily minima are also associated with mortality

rates, as are daily mean (often derived from the daily

maximum and minimum) temperatures (Basu 2009;

Gosling et al. 2009), although is not clear which of the

three variables is more important. This has led to def-

initions of heat events that are based on these daily

temperature extremes (Karl et al. 1996; Huth et al. 2000;

Easterling et al. 2007). In addition, studies focusing on

both heat events (Gershunov et al. 2009; Dole et al.

2011) and the UHI effect (Wilby 2003) have shown that

they often occur during similar conditions (e.g., high

pressure weather systems). The built environment af-

fects both the daytime and overnight temperatures (Oke

1982; Grimmond and Oke 1995; Magee et al. 1999;

Grimmond et al. 2010); therefore, understanding the spatial

variations in both daily temperature extremes is important.

This study is part of a comprehensive study of heat

and human health in Detroit, Michigan (Zhang et al.

2011). This study’s first objective was to quantify and

characterize the spatial variability in temperatures across

the Detroit metropolitan region. Then, confirmation

was sought of that spatial variability, specifically dur-

ing hot weather. In addition, the relationships between

three land-cover and location variables and the mean

daily temperature extreme observations were investigated.

It is hypothesized that relevant land-cover and location

attributes may assist in the localization required to

predict the spatial variability in temperature. The next
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section describes the study area and the metrics for

comparing observation data from different sources,

followed by the methods.

2. Methods

a. Study area and climatological description

Detroit (42.338N, 83.058W), like all of southeastern

Michigan, has a humid continental climate. The climate

is affected by the city’s proximity to the Great Lakes and

its position on a major storm track; storms pass to the

north during the summer, creating periods of warm,

humid weather with sporadic thunderstorms that are

followed by days of mild, dry weather. The land is ef-

fectively flat, rising lightly northwestward from the

waterways, which are roughly 580 ft (177 m) above

mean sea level. The 1980–2010 average number of

cooling degree-days in Detroit was 167 in June, 271 in

July, 225 in August, and 84 in September (National

Weather Service 2011). Nearly 40 years have passed

since the last published article that focused on the

Detroit metropolitan region’s UHI effect (Sanderson

et al. 1973). Since then the city population has declined

by 40% (Hobbs and Stoops 2002), with past rebuilding

efforts focused only on the downtown district (Ryan

2008) and current efforts focused on only a subset of

neighborhoods (MacDonald 2011).

b. Metrics of comparability

This study integrated multiple observation networks

into a single network. The standard observations man-

aged by the NWS were used as this network’s baseline.

To this baseline, observations were added from both an

existing network run by the Michigan Department of

Environmental Quality (MDEQ) and a temporary net-

work that was established for this study. The temporary

network ran for the length of this study and consisted of

only the 110 days from 13 June to 30 September 2009.

These networks, the data used, and the work undertaken

to homogenize them are described in detail in the ap-

pendix. In addition to the observational network data,

the hourly 2-m temperature and dewpoint temperature

recorded at Detroit Metropolitan Airport (KDTW;

Mannarano 1998) from 1979 through 2009 was acquired

from the National Climatic Data Center (NCDC;

National Climatic Data Center 2010).

Complications arise when integrating multiple net-

works; each network has unique monitoring uncertainties

and also further uncertainties arise when using them in

concert. The appendix describes in detail how the un-

certainties associated with each network’s observations

are derived. A metric of comparison was desired that

would allow for comparison of values across the net-

work but would also ensure that any spatial variability

found would exceed the uncertainty of the networks.

This new-formed metric is herein referred to as the

‘‘spatial anomaly’’ and is defined mathematically as

spatial anomaly
i,j,d

[ (Ti,j,d 2 Tj,d ) 6 uncerti,j

1, (Ti,j,d 2 Tj,d) , 0

2, (Ti,j,d 2 Tj,d) . 0
,

(

with d being the day, j signifying either daily high or

low, and i indicating location. First, the differences

between each day’s value Ti,j,d of the daily high (or low)

at each location and the network mean (i.e., across all

sensors) of that particular daily high or low T
j,d

were

calculated. Then, depending on the sign of the first term

(Ti,j,d 2 Tj,d), the network-specific uncertainty value

uncerti,j was either subtracted or added in a manner

that always worked to reduce the absolute value of the

first term (as indicated by the rules to the right of the

curly brace).

The network used in this study lacked true represen-

tation of the rural surroundings (Fig. 1). Therefore this

study could only assess the spatial variability throughout

the urban and suburban regions of Detroit. This vari-

ability is herein referred to as the intraurban/suburban

spatial variability in temperature (IUSSVT). In in-

formally applying Oke’s system of urban climate zones

(Oke 2004), it is seen that the sites spanned all zones

except the downtown tall-building zone (i.e., urban

climate zone 1). The IUSSVT was quantified by calcu-

lating the range of the simultaneously (across all moni-

tors in the network) observed spatial anomalies [herein

referred to as the range of simultaneously observed

spatial anomalies (SOSAs)]. The range of SOSAs is

similar to the common metrics UHI magnitude and UHI

intensity that are the temperature differences between

urban and rural locations; in this case, however, the

range of SOSAs only quantifies the range in tempera-

tures across the urban and suburban landscape. At night

the range of SOSAs is similar to the UHI-magnitude

metric but likely underestimates it. During the daytime

the range of SOSAs allows a positive value even if the

downtown area is cooler than the suburban areas

(commonly known as an urban cool island). Therefore

knowledge of the typical spatial pattern of temperature

is crucial when using the range-of-SOSAs metric. In

addition, the metrics intraurban heat island intensity

(Eliasson 1996; Erell and Williamson 2007; Yokobori

and Ohta 2009) and intraurban and intrasuburban spa-

tial variability in temperatures (Basara et al. 2008) are
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different from the range-of-SOSAs metric. These three

metrics would be problematic in Detroit because the

water bodies likely create large variability among

similarly classified (e.g., suburban) locations. In addi-

tion, because it was unclear where to draw the dis-

tinction between urban, suburban, and rural/open

locations (Peterson and Owen 2005), this study does

not rigorously classify locations as such. The intra-

urban heat island metric difference between urban

canyon and suburban value is likely larger than the

range of SOSAs, because this study has no sites within

a canyonlike environment. The intraurban and intra-

suburban metrics likely have smaller values than the

range-of-SOSAs metric because they are restricted to

either the urban or suburban domains. The range of

SOSAs was subsequently calculated for each day in the

study, separately for both daily high and low.

c. General characterization of the IUSSVT
and summer 2009

The histograms and the maximum and mean values of

the range of SOSAs, of both daily extremes, were cal-

culated during the study period. Student’s t tests were

performed to confirm that the mean range of SOSAs was

larger than zero at the 5% significance level. Next, the

Spearman rank correlation coefficients r and significance

values p (Spearman 1907) were calculated between the

ranges of SOSAs and both mean cloud-cover percentages

and wind speeds (at 10 m). Nonparametric correlations

were used throughout this study because of their ro-

bustness to departures from normality in data distribu-

tions. For this correlation, we chose to spatially average

wind speed and cloud cover across three surrounding

airports (KVLL, KDET, and KDTW; see Fig. 1) and

temporally average for the morning between 0400 and

0800 eastern daylight time (EDT; UTC 2 4 h) and for the

afternoon between 1400 and 1800 EDT. Overnight wind

speed, overnight cloud cover, and the previous-afternoon

cloud cover were the variables that were correlated with

the daily low ranges of SOSAs; the daily high variables

were afternoon cloud cover and afternoon wind speed.

Next the temporal averages were assessed. The aver-

age of the spatial anomalies over the duration of the field

study (110 days) was calculated for all locations and is

referred to as the mean spatial anomaly. The spatial

pattern of the mean spatial anomalies was displayed by

plotting them on a map, and then the range of these

spatial anomalies was calculated. To quantify the con-

sistency in the spatial pattern of spatial anomalies, the

range in the mean spatial anomalies was compared with

FIG. 1. Combined observational network in Detroit during the 2009 study, superimposed over a map of the area that

shows impervious surface as captured by satellite imagery. Only western portions of the lakes are shown.
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the mean range of SOSAs. We suggest a smaller range in

the mean spatial anomalies is caused by a lack of con-

sistency. We were, however, unable to find this method

of assessing spatial consistency used previously in the

urban-climate or pollution-monitoring literature.

A weeklong high pressure system from 31 August to

6 September 2009 had weather conditions that were

highly conducive (i.e., low wind speeds and clear skies;

Bonan 2008) to the influence of the urban landscape.

This period was analyzed separately so that the IUSSVT

during high pressure systems could be compared with

the 110-day mean IUSSVT. To do so, the mean range of

SOSAs during the period of the high pressure system was

calculated and was compared with its 110-day-derived

counterparts. In another effort to assess the consistency

of the spatial pattern, the averaged high pressure system

spatial anomalies were correlated with similar values de-

rived from all available days not included in this week (103

days) in a way that is similar to another study (Finkelstein

and Jerrett 2007).

To quantify how stressful the weather was relative to

long-term summer weather data, the 2009 temperature

data were compared with the 30 years of data observed

at KDTW. Apparent temperatures (Steadman 1984),

rather than conventional air temperatures, were used for

this comparison because this region often has high levels

of water vapor. For each day during the observational

period, both the maximum afternoon daily high and

minimum morning daily low apparent temperatures

were calculated, using temperature and water vapor

content. The percentile for each day during the ob-

servational period was subsequently determined, for

both daily extremes, using the past 30 years of appar-

ent temperatures experienced in Detroit on that date.

This allowed us to use a heat-event definition that is

based on climatological percentiles, to quantify both

daily extremes’ percentiles for each day, and then to

calculate the study-period average percentiles.

Next, the existence of IUSSVT during weather con-

ditions that were objectively classified as stressful in

terms of heat was investigated. First, days were iden-

tified that could be classified as either heat events or

‘‘oppressive,’’ as defined by either a climatologically

based or an airmass-based definition. In general, such

methods characterize days as oppressive if the weather

conditions result in high heat stress, and if the condi-

tions are sustained it is termed a heat event. The cli-

matologically based definition, described by Easterling

et al. (2007), requires three days with the daily high

exceeding the 80th percentile of daily highs for that day

and subsequent daily lows exceeding the 80th percen-

tile of lows for that day. Once such heat events were

determined during the study period, the mean range of

SOSAs was calculated during those periods. Then

Student’s t tests were performed to confirm that the

sample means were greater than zero at the 5% sig-

nificance level. If no heat events existed according to

that definition, then the individual days indicated as

oppressive were analyzed as a group. In addition, any

heat events or individual oppressive days, as indicated

by the airmass-based Spatial Synoptic Classification 2

(SSC2) (Sheridan 2002; Kalkstein and Sheridan 2003)

system, were examined in the same manner. The cal-

endar data provided by Dr. S. Sheridan’s website

(Sheridan 2010) were used for this purpose.

d. Correlation with land-cover and location attributes

The intraurban/suburban temperature pattern was

modeled statistically using land-cover and location in-

formation. First the relevant land-cover and location

variables were proposed and created. Then correlations

between the different land-cover and location variables

and the mean spatial anomalies at each station were cal-

culated. Then multiple-variable regression equations were

created, evaluated for goodness, and validated. This

method is similar to the land-use regression common in

the literature on air-pollution exposure (Hoek et al. 2008).

The first variable, percent of impervious surface, is an

indicator of the built environment (Oke 1982; Arnold

and Gibbons 1996). Impervious surfaces were identified

from Landsat imagery, taken in 2001 (U.S. Geological

Survey 2008), as the hard constructed surfaces that cover

buildings, roadways, parking lots, and so on. Areas with

more impervious surface are more likely to store heat

and then release that heat overnight. Imperviousness

does not take into account the three-dimensional geo-

metrical factors or distance from city center. Maps were

constructed with both the sites of the networks and su-

perimposed satellite-image-based measurements that

characterized the imperviousness. Using ArcGIS pro-

prietary software (ESRI Corporation of Redlands,

California), the percent of surrounding surface indicated

as impervious was calculated for each station. To deter-

mine the strongest relationship between values of percent

of impervious surface and both daily extremes, the cor-

relation coefficients were repeatedly calculated between

the station’s mean spatial anomalies, both highs and

lows, and the values of percent of impervious surface

within various circular radii from 0.2 to 3.0 km. The

rest of the assessment then moved forward with those

radii of strongest correlation.

The next variable investigated was proximity to

a significant water body. In theory, both local lake

breezes and synoptic cold-air advection can cool the

nearshore regions during the daily highs. As well, the

higher thermal inertia of a water body should dampen
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the diurnal cycle and affect both daily extremes.

Straight-line distances to a sizeable water body at each

station were calculated in ArcGIS, and the correlations

between those values and both extreme’s mean spatial

anomalies were calculated.

Last, distance from city center was examined for

correlation with the intraurban/suburban temperature

pattern. In theory, daily highs might be warmer at the

city center because of increased anthropogenic heat flux

and roughness length at the city center, and the latent

heat flux and shortwave albedo should be lowest in the

city’s interior. One can make the case for a cooler

downtown in Detroit during the daily high, however,

given the water bodies’ close proximity (Fig. 1). As an

alternative, the relationship between the daily lows and

distance from city center is straightforward, given that

anthropogenic heat flux, urban-canyon effect and volu-

metric heat capacity are all expected to be largest at the

city center. Straight-line distances from the western side

of the downtown district (Fig. 1) to each station were

calculated in ArcGIS, and the correlations between those

values and both daily extreme’s mean spatial anomalies

were calculated.

Stepwise regression using the backward-elimination

method (Draper and Smith 1981) was employed with the

aforementioned land-cover and location variables, per

daily extreme, to create a regression model that pre-

dicted the mean spatial anomalies. The regression as-

sumptions that the residuals have a normal distribution

and constant variance were confirmed in each model

(results not shown). Calculation of the coefficient of

determination R2, the full-model p value, and the root-

mean-square error (RMSE) allowed for evaluation of

the model goodness of fit (Draper and Smith 1981). Last,

validation of the models was done using the leave-one-

out cross-validation method (Hoek et al. 2008), in which

the model is developed on the basis of n 2 1 stations and

the predicted value at the location of the left-out station

is compared with the actual measured value at that

station. This procedure was repeated n times, and the

mean RMSE between the predicted and observed spa-

tial anomalies, across all sites, was then calculated and

was compared with the RMSE of the model fit to data

from all of the stations.

3. Results

a. Summer of 2009 climatological behavior

Each day’s percentile of apparent temperature at

KDTW was calculated for both daily extremes. Both

were slightly cooler than climatic normal, with the av-

erage lows and highs at the 47th and 43rd percentiles,

respectively. (The daily climate percentiles as a function

of time, for both daily extremes and over the 110 days,

are available as supplemental material Fig. S1 at the

Journals Online website: http://dx.doi.org/10.1175/

JAMC-D-11-0127.s1.)

b. General characterization of the IUSSVT

The histograms of the daily high and low range of

SOSAs during the observational period (Fig. 2) show

that the two distributions were noticeably different,

with the daily highs being right skewed. The largest

individual ranges of SOSAs of the daily high and low

temperatures were 4.88 and 6.38C, respectively. The

mean range of SOSAs was 1.48C in the daily highs and

2.88C in the lows. For both daily extremes, a Student’s t

test rejected the null hypothesis that either of the true

mean range of SOSAs could be zero.

The correlation coefficients that were calculated be-

tween each day’s range of SOSAs and mean morning

wind speeds (r 5 20.60; p , 0.001), cloud-cover per-

centage (r 5 20.67; p , 0.001), and previous-afternoon

cloud-cover percentage (r 5 20.45; p , 0.001) were all

both significant and negative (Fig. 3). For the daily high

ranges of SOSAs, however, a significant and negative

correlation coefficient was found with mean afternoon

wind speeds (r 5 20.40; p , 0.001) but not with cloud

cover (r 5 0.07; p 5 0.47).

The differences between daily highs and lows are also

evident in the temporal averages. The spatial pattern of

both the mean spatial anomalies were calculated and

plotted on a map of Detroit (Fig. 4). The range of these

mean spatial anomalies was 2.08C in the daily lows (72%

of the mean range of SOSAs), but the daily high range of

the mean spatial anomalies was only 0.68C (42% of its

respective mean range of SOSAs).

FIG. 2. Histograms of observed range of SOSAs during the ex-

periment for (a) daily low and (b) daily high temperature extremes.

Sample size for both is 110 days.
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During a weeklong high pressure system, each sta-

tion’s spatial anomaly was temporally averaged. The

range in the daily low mean spatial anomalies was 4.18C,

and the range was 1.38C in the daily highs. The mean

range of SOSAs in the daily lows was 4.38C, and the

mean range of SOSAs in daily highs was only 1.98C. A

comparison of the values observed during the high pres-

sure system with 110-day mean derived values showed

that the 110-day mean range of SOSAs was 65% of the

high pressure mean range of SOSAs during the daily

lows and 74% during the daily highs. The correlation

coefficients calculated between the high pressure system

mean spatial anomalies and the average spatial anom-

alies derived from all the other days was 0.88 in the daily

lows and 0.63 in the daily highs.

There was a heat event according to the Easterling

et al. definition on 21, 22, and 23 September 2009.

During this period the mean range of SOSAs was 0.68C

during the nightly lows and 1.18C during the daily highs.

Student’s t tests could not reject the null hypotheses that

the true mean ranges in SOSAs could be zero for either

daily extreme, however—possibly because of the small

FIG. 3. Scatterplots of the range of SOSAs as

a function of weather conditions for (a),(c),(e) the daily

low range of SOSAs and; (b),(d) the daily high range of

SOSAs. Lines of best ordinary least squares fit are

shown, and the sample size is 110 days for all plots.

FIG. 4. Observed mean spatial anomalies over the duration of the observational period. Spatial anomalies shown are the means from all

110 observations between 13 Jun and 30 Sep for both (a) daily low and (b) daily high temperature extremes. Circle sizes coordinate with

eight equal-interval groupings; the ranges vary between the two figures.
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sample size. Then, any daily extreme meeting the 80th

percentile criterion was considered (n 5 19 for lows;

n 5 12 for highs). The recalculated mean range of SOSAs

was 2.28C in the lows and 1.68C in the daily highs. With

this larger sample size, the Student’s t tests for both daily

extremes rejected the null hypothesis that the true mean

ranges in SOSAs could be zero. The SSC2 method did not

indicate any consecutive days with oppressive weather

during the study; hence, there were no heat events. In-

stead all days classified as oppressive-type air masses

(‘‘dry tropical,’’ ‘‘moist tropical 1,’’ and ‘‘moist tropical

11’’; Kalkstein and Sheridan 2003) were grouped to-

gether (n 5 3), and the mean ranges in SOSAs in both the

daily lows and highs were calculated at 2.08 and 0.98C,

respectively. Student’s t tests for both daily extremes

during those three days could not reject the null hypoth-

esis that the true mean ranges in SOSAs could be zero.

c. Correlation with land-cover attributes

The strongest correlations between the mean spa-

tial anomalies and percent impervious surface values

were with the 0.2-km radius in daily lows and with the

1.95-km radius for the daily highs. (The correlation

coefficients as a function of radius, for both daily ex-

tremes, are available as supplemental material Fig. S2

at the Journals Online website: http://dx.doi.org/10.1175/

JAMC-D-11-0127.s2.) The correlation coefficient between

the mean daily low spatial anomalies and the values of

0.2-km-radius percent of impervious surface was much

larger than the correlation coefficient between the mean

daily high spatial anomalies and the values of percent of

impervious surface at the 1.95-km radius (Table 1; Fig. 5).

The correlations between proximity to water and both

the mean daily high and low spatial anomalies were

found to be similar and significant but with different

signs (Table 1; Fig. 5). It was also noted that the cor-

relations between the proximity to water values and

both values of percent of impervious surface were

without significance at both distances (Table 1).

Proximity to the city’s center showed relatively weak

correlations with both the mean daily highs and lows

(Fig. 5). The correlation with the mean daily low spatial

anomalies was significant and negative but with less

significance than that with the values of 0.2-km percent

of impervious surface (Table 1). The daily highs were

not a significant function of proximity to city center

(Table 1). The usefulness of this variable as a predictor

was further limited by strong correlations with the other

land-cover and location variables (Table 1).

The stepwise-regression backward-elimination method

resulted in including all three land-cover and location

variables in the daily low regression model. The

coefficients of the normalized variables indicated

that percent of impervious surface was significantly

more influential than the other two variables (Table 2).

The RMSE for this model was calculated at 0.38C (as

compared with the range in mean spatial anomalies,

which was 2.08C), the R2 was 0.62, and the p value was

on the order of 1025. Model validation results from the

cross-validation method of an RMSE of 0.48C were com-

parable to the RMSE of the full model.

For the daily high regression model, the backward-

elimination method indicated that the distance-to-

city-center and proximity-to-water variables were the

appropriate predictor land-cover and location variables.

The coefficients of the normalized predictor variables

suggested similar influence from both variables. This

model led to an RMSE of 0.18C (as compared with, the

range in mean spatial anomalies, which was 0.68C), an R2

of 0.33, and a p value on the order of 1023. These results

indicated an unsatisfying model (RMSE of ;17% of

range), and thus further validation was not undertaken.

4. Discussion

a. Spatial variability in comparison with previous
studies

IUSSVT was more prominent in the study area/period

during the daily lows than during the highs, based on the

calculated means and histograms of the observed ranges

of SOSAs. This is similar to other recent studies that

TABLE 1. Spearman rank correlation coefficients (with p values in parentheses) between land-cover and location variables and both 110-

day mean spatial anomalies and other variables. SAI_0.2 km 5 percent of impervious surface within a 0.2-km radius, SAI_1.95 km 5

percent of impervious surface within a 1.95-km radius, H2O_dist 5 straight-line distance to large water body, and CC_dist 5 straight-line

distance to city center.

Field SAI_0.2 km SAI_1.95 km H2O_dist CC_dist

Low spatial anomalies 0.68 (,0.001) 0.27 (0.15) 20.52 (,0.01) 20.45 (0.014)

High spatial anomalies 0.11 (0.57) 0.39 (0.04) 0.50 (,0.01) 0.21 (0.28)

SAI_0.2 km 1 (0) 0.47 (,0.01) 20.30 (0.11) 20.60 (,0.001)

SAI_1.95 km 0.47 (,0.01) 1 (0) 20.12 (0.54) 20.65 (,0.001)

H2O_dist 20.30 (0.11) 20.12 (0.54) 1 (0) 0.74 (,0.001)
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found both the UHI magnitude (Runnalls and Oke 2000;

Wilby 2003; Erell and Williamson 2007; Gaffin et al. 2008;

Basara et al. 2008; Camilloni and Barrucand 2012) and

intraurban spatial variability (Wilby 2003; Erell and

Williamson 2007; Gaffin et al. 2008; Basara et al. 2008) to

be largest at nighttime. Similar to findings in Oklahoma

City in 2003 (Basara et al. 2008), our results also show an

amount of IUSSVT also existed during the daily high.

The correlation coefficients calculated between the

amount of IUSSVT and wind speeds and cloud cover

indicated that IUSSVT is strongly controlled by the

larger-scale weather conditions. This is consistent with

other recent studies that indicated both nighttime

intraurban spatial variability (Eliasson 1996; Wilby

2003; Kim and Baik 2005; Erell and Williamson 2007)

and UHI magnitude (Runnalls and Oke 2000; Morris

et al. 2001; Gedzelman et al. 2003; Wilby 2003; Camilloni

and Barrucand 2012) to be largest during weather con-

ditions of low wind speed and clear sky. Our results

elaborate on these findings by suggesting an explicit

relationship between daily low IUSSVT and the pre-

vious afternoon’s average cloud cover that was not readily

found in the literature.

Greater consistency in the spatial pattern of tempera-

ture during the daily lows than during the daily highs was

indicated both by comparison between the daily high and

low ratios (of range in mean spatial anomalies to the

mean range in spatial anomalies), and by comparison of

the correlation coefficients between the average spatial

anomalies derived from a weeklong high pressure system

and the rest of the study. We concluded that the daily high

IUSSVT consisted primarily of spatial noise whereas the

daily low IUSSVT manifested itself in a more consistent

TABLE 2. Regression coefficients of the predictor variables

within the statistical models predicting the observed mean spatial

anomalies. Const 5 y-intercept value (8C), SAI_0.2 km 5 the

percent of impervious surface at the 0.2-km radius, H2O_dist 5

the straight-line distance to large water body (km), and CC_dist 5

straight-line distance to city center (km). Normalized indicates

with normalized predictor variables.

Field Daily low (Normalized) Daily high (Normalized)

Const 20.9144 20.9144 20.0423 20.0423

SAI_0.2 km 0.0177 0.3762 — —

H2O_dist 20.0314 20.2965 0.0121 0.1169

CC_dist 0.0257 0.2696 20.0071 20.0767

FIG. 5. Scatterplots of temperature observations as a function of three land-cover and location attributes. Spatial

anomalies are averaged over the study’s 110-day duration. The sample size is 30 and 28 for daily low and highs,

respectively. Also shown are lines of ordinary least squares fit.
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spatial pattern. In the literature there is a relative lack of

comparable assessments of the consistency of intraurban

or intrasuburban spatial patterns.

b. Spatial variability exists, even during hot weather

A nonzero amount of IUSSVT exists across the

Detroit region on average during the summer, and the

statistical tests confirmed that. This mirrors the con-

clusions of many other studies (Saaroni et al. 2000; Hart

and Sailor 2009; Basara et al. 2008; Bottyán and Unger

2003; Yokobori and Ohta 2009) that showed that sig-

nificant intraurban variability in temperatures exists.

IUSSVT, particularly in the daily lows, was larger than

average during high pressure conditions—shown by

calculating and comparing metrics during a weeklong

high pressure period. This conclusion complements

results from other studies that have explicitly shown

the UHI magnitude to be large during high pressure

(Wilby 2003; Yagüe et al. 1991).

The results suggested that during weather of high

heat stress the IUSSVT still existed. The mean range

of SOSAs calculated during hot weather was compa-

rable to the temporal average, and statistical test re-

sults indicated the true mean range of SOSAs during

hot weather was not zero. Previous studies (Hajat and

Kosatky 2010) have documented the public-health

significance of even a 18C change in temperature

during hot temperature (1%–3% increase in mortality

risk); the mean range of SOSAs observed during hot

weather was comparable to that and thus can be seen

as significant. Very few studies have investigated this

aspect, but our results confirm the findings of a pre-

vious study (Basara et al. 2010) that examined both

the intraurban and intrasuburban temperature vari-

ability during a heat event.

c. Predicting the intraurban/suburban spatial pattern
of temperature

The daily low, but not daily high, mean spatial intra-

urban/suburban temperature pattern could be explained

by relevant land-cover and location information as in-

dicated by model diagnostics. All three land-cover and lo-

cation variables were found to be significant in a statistical

model of the daily low mean spatial anomalies. Simi-

lar studies using statistical models to statistically explain

the nighttime intraurban/suburban spatial pattern of

temperature (Kuttler et al. 1996; Bottyán and Unger

2003; Buttstädt et al. 2010) confirmed it could be done well

(R2 between 0.50 and 0.85) and with only a small number of

variables (2–4). Other studies (Gaffin et al. 2008), however,

failed to find land-cover variables driving temperature

but did not use the same variables that this study did.

The daily low regression model produced adequate

cross-validation results. Percent of impervious surface

was the most influential predictor, even over the more-

traditional distance-to-city-center variable (Table 1),

and we suggest future studies attempt to include it in

similar statistical models. Regression results also con-

firmed the significance (both day and night) of distance

to water as a predictor (Table 1), and this was reminis-

cent of similar conclusions in two nearby cities: Chicago

(Ackerman 1985) and Toronto, Canada (Mohsin and

Gough 2012). This model is specific to the context of

Detroit and therefore is unlikely to be useful in pre-

dicting the intraurban/suburban spatial patterns of

temperature in other cities.

d. Implications for public-health officials

This study’s results suggest that officials in charge of

reducing heat-related mortality and morbidity should be

aware of relevant IUSSVT across the Detroit region

during hot weather. Officials in charge of protecting the

public should be aware that the IUSSVT is likely more

significant when the weather consists of calm winds and

clear skies (e.g., during a high pressure system). Detroit’s

intraurban/suburban spatial temperature patterns of

daily highs and lows could lead to differing tempera-

ture exposures to people, depending on their physical

location in the area, even on the same day and at the

same time. Thus, these patterns are an important com-

ponent in vulnerability mapping and should be relevant in

the decision of where to focus heat-adaptation strategies

(Wilhelmi et al. 2004). For example, since the IUSSVT is

most relevant during the daily low, the results (Fig. 4)

suggest focusing heat-adaptation efforts (e.g., community

buddy systems, flyers and neighborhood meetings, and

reducing the amount of impervious surfaces in neighbor-

hoods) downtown and on the east side of the city. The

results (Fig. 4) also suggest that strategies that are focused

primarily on reducing exposures to daily high tempera-

tures, such as opening cooling centers/community pools,

planting trees, and increasing albedo, would be most ef-

fectively implemented on the west side of Detroit.
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APPENDIX

Integrating Multiple Observation Networks into
a Single Network

For this study it was chosen to integrate multiple

networks into one observing network. Although it was

not the focus of this study, future studies might also

construct such networks. In the following text, first the

networks and data used are described and then com-

parability between the networks and uncertainty in

using the network are explained.

a. NWS network

The standard observations used were observed at

the local airports by the NWS’s Automated Weather

Observing Station (AWOS) and Automated Surface

Observing Station (ASOS) networks (Mannarano 1998).

Temperature measurements are observed at a 1.5-m

height. These are the standard operational products used

by the weather service and are subject to calibration

standards (Mannarano 1998). Five airports, located pri-

marily on the outskirts of the city, were used in the net-

work (Fig. 1). The hourly temperature, cloud cover, and

wind speed [taken at 10 m above ground level (AGL)]

data during the observational period were acquired from

the NCDC.

b. The MDEQ network

The MDEQ operates an air-pollution-monitoring

network as mandated by the U.S. Environmental Pro-

tection Agency for monitoring compliance with Na-

tional Ambient Air Quality Standards under the Clean

Air Act (Department of Natural Resources and Envi-

ronment 2010). This network provided hourly means of

air temperatures at 5 m AGL (i.e., still within the urban

canopy layer) and wind characteristics measured at 10 m

AGL. Six of their monitoring locations were suitable for

this study, and the aforementioned data were acquired

through contact with the MDEQ staff.

c. The temporarily established network

For the custom study network, 21 ‘‘U23-002 HOBO

Pro V2 External Temperature/RH’’ dataloggers from

the Onset Computer Corporation (Pocasset, Massachu-

setts) were used, herein referred to as HOBOs. Logger

specifications can be examined online (http://www.

microdaq.com/occ/u23/external_temp_rh_data_logger.

php#specs). Previous studies have demonstrated that

these monitors are capable of detailed studies of the

spatial structure of temperature fields (Whiteman et al.

2000). The HOBO monitors consist of temperature

and relative humidity sensors inside naturally aspirated

radiation shields and are fastened to thin wooden stakes,

along with a datalogger, at a height of 1.5 m AGL. Detroit-

area residents were approached for permission to place

loggers outside their homes, which ranged in location

from the city limits to the old downtown district; near

and far from the two lakes (Erie and St. Clair) and the

Detroit River; in densely populated suburbs to the out-

skirts of more distant suburban communities; and on

a sizeable island (Fig. 1). To the east of the Detroit River

lies the city of Windsor, Ontario, Canada; it was assumed

that Windsor’s close proximity did not affect Detroit’s

temperature pattern because it is typically downwind of

Detroit and is separated from Detroit by a river that is up

to 4 km in width. The HOBOs were placed primarily in

backyards of participants, sampling at a 10-min frequency,

and sited to minimize microclimate impacts (e.g., over

grassy groundcover, ample sky view, and away from

heat sources). In addition, it was assumed that the

turbulent mixing produced by flow around barriers was

adequate to blend the observed atmospheric temper-

atures so as to allow measurement of local-scale aver-

age temperatures.

d. Evaluating comparability of the networks

A primary advantage of the HOBO network was

the ability to calibrate its measurements with those of

existing networks. In general, the method for a given

calibration period was 1) to locate a HOBO monitor in

as close proximity as possible to at least one monitor

from an existing network, 2) to quantify the relationship,

or bias, between the co-observed daily temperature ex-

tremes, 3) if necessary, to apply bias corrections or

simple modeling to make observations as similar as

possible, and then 4) to requantify the mean difference

between HOBO and existing network observations over

the calibration experiment, referred to as the uncertainty

(Table A1) in using the existing network with the

HOBO network.

First the accuracy of the HOBO monitors relative to

one another was empirically determined. Postdeploy-

ment tests were chosen because they would capture any

drift in accuracy of the monitors during the field study.

All monitors were placed in a temperature-controlled

room during testing. With 3097 measurements per monitor,

a mean instantaneous range of 0.448C was calculated.

This is referred to as the ‘‘inherent-relative uncertainty’’

of the HOBO network (Table A1).

Then the differences between the HOBO network

and the standard NWS observations from the airports

were sought. Although it was impossible to gain per-

mission to collocate monitors on airport property, a

monitor was located 2.7 km away from one of the air-

port monitoring locations (KDTW), and the differences
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were observed for 2 weeks. This large distance and small

sample size is a limitation to the network calibration. As

a consequence, the siting and sampling algorithm

differences were accounted for separately. This

HOBO siting was typical of the other HOBO monitor

sitings as opposed to the very open airport monitor

sitings. Using the nearby HOBO monitor observa-

tions, which sampled at a higher frequency (2 min)

than the typical HOBO monitor, the KDTW obser-

vations (i.e., mean value within 5 min prior to the

hour) were replicated, and the mean bias for the daily

minimum and maximum temperatures was calculated

at 10.148C and 10.498C, respectively. Once the HOBO

observations were adjusted for this bias, both daily high

and low mean differences were calculated at less than

the 0.58C prescribed uncertainty of the ASOS/AWOS

instrumentation; therefore 0.08C was adopted as the

‘‘HOBO siting uncertainty’’ (Table A1). When using

the NWS AWOS/ASOS observations in the network,

however, it was assumed that they have a 0.58C ‘‘in-

strumentation uncertainty’’ (Table A1).

The temporal sampling varies across the networks.

For this study the daily lows were taken as the minimum

temperature recorded between 0100 and 0700 EDT, and

the daily highs were taken as the maximum temperature

recorded between 1300 and 1900 EDT. The HOBO

monitors are programmable, but the typical configura-

tion was a 10-min sampling frequency with no additional

averaging. The MDEQ network reports hourly means

every hour, and the airport network reports 5-min

means every hour. To test the impact of the temporal

sampling differences, a HOBO was set to sample on a

1-min sampling frequency over the duration of the study

and was used to replicate the various network products

each day. This was used to estimate the biases and un-

certainties associated with the different temporal sampling

algorithms among the networks.

The HOBO–AWOS/ASOS collocation experiment

was only 2 weeks long, and so it was elected to explicitly

account for the difference in sampling algorithms. This

bias between AWOS/ASOS and HOBO observations

was calculated at 20.488C for the daily high and 10.168C

for the daily lows. The mean difference, after these bias

corrections were applied, was calculated at 0.288C for

the daily highs and 0.118C for the daily lows, and this is

referred to as the ‘‘HOBO sampling algorithm un-

certainty’’ (Table A1). Because the HOBO–MDEQ

collocation experiment occurred over a large sample, we

decided to incorporate the sampling-algorithm difference

between the two networks in the collocation experiment.

Thus it was still necessary to use the HOBO–AWOS/

ASOS sampling-algorithm bias and uncertainty val-

ues, since the airport sampling—and not the HOBO

sampling—was the baseline.

To combine data from the MDEQ network, quanti-

fication was needed of the differences in observations

that were due to the differences in height, instrumentation,

and sampling algorithm between the network’s mea-

surements and HOBO observations. To quantify the

sum impact of these differences, two 1.5-m AGL HOBO

monitors were collocated (approximately 20-m hori-

zontal separations) at two MDEQ monitoring sites for

2 months. On-site MDEQ wind speed and nearest-

airport sky-cover observations were useful in predict-

ing the daily extreme HOBO observations from

MDEQ observations. The relationship discovered was

designed to be non-site-specific by pooling the data

from both collocation sites for the 2-month duration

(128 days in total) and then building the relationships.

The linear multiple-regression equations used for this

prediction are briefly provided (Table A1), and anal-

ysis of fit was performed (results not shown). The mean

differences between MDEQ-predicted and HOBO-

observed extremes were adopted as the ‘‘MDEQ col-

location uncertainty’’ (Table A1) and were calculated

at 0.438 and 0.528C, for the daily lows and highs, re-

spectively. The measurement uncertainty stated in the

MDEQ instrumentation specifications was 0.38C, but

TABLE A1. Determined biases and uncertainties between net-

works (8C). Footnote abbreviations: HOBO_t 5 HOBO temper-

ature extreme observation (8C), MDEQ_t 5 MDEQ temperature

extreme observation (8C), avg_WS 5 MDEQ stations mean ob-

served wind speed (m s21) between 0300 and 0800 EDT or be-

tween 1400 and 1800 EDT, and CC% 5 mean airport observed

cloud-cover percentage between 0400 and 0800 EDT or between

1300 and 1800 EDT.

Network and difference Bias Uncertainty

Daily low

Airport instrumentation — 0.5

HOBO inherent-relative — 0.44

HOBO microclimate — 0.0

HOBO siting 10.14 0.0

HOBO sampling algorithm 10.16 0.11

MDEQ collocation * 0.43

MDEQ sampling algorithm 10.16 0.11

Daily high

Airport instrumentation — 0.5

HOBO inherent-relative — 0.44

HOBO microclimate — 0.32

HOBO siting 10.49 0.0

HOBO sampling algorithm 20.48 0.28

MDEQ collocation ** 0.52

MDEQ sampling algorithm 20.48 0.28

* HOBO_t ’ 24.2 1 1.1 3 MDEQ_t 1 0.13 3 avg_WS 2 2.0 3

(1 2 CC%).

** HOBO_t ’ 5.8 1 0.97 3 MDEQ_t 2 0.16 3 avg_WS 1 1.3 3

(1 2 CC%).
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because this was less than the determined uncertainty it

was assumed to be included in that value. Thus, the

uncertainties were summed that were related to the

collocation and sampling-algorithm differences. Sum-

ming these uncertainties resulted in an uncertainty in

the daily lows of 0.548C and in the daily highs of 0.808C,

when using the MDEQ stations observation with the

larger network.

In addition, even with careful siting standards, in-

consistency among HOBO observations was likely to

exist, simply because they monitored in yards with dif-

ferent microclimates. It was decided not to include un-

certainty arising from microclimate variability across

both the six MDEQ stations and five AWOS/ASOS

stations because we judged that the level of monitoring

standardization and siting strictness was sufficient. To

assess the magnitude of this uncertainty within the HOBO

network, data from two similarly located and sited mon-

itors (separated by ;300 m) were analyzed to determine

the yard-to-yard differences, indicated in Table A1 as the

‘‘HOBO microclimate uncertainty.’’ First the mean dif-

ference between the two monitors was calculated, over

the duration of the study, per extreme, and showed

a daily high value of 0.768C and a daily low value of

0.338C. For daily lows the inherent-relative uncertainty

of the HOBO network was larger than this difference,

and so the microclimate uncertainty was assumed to be

08C. For daily highs the microclimate uncertainty ex-

ceeded the inherent-relative uncertainty by 0.328C,

however, and thus the daily high microclimate un-

certainty was taken as 0.328C. Therefore, for the final

HOBO uncertainty calculation, all four uncertainties

(inherent-relative, microclimate, siting, and sampling-

algorithm difference) were summed, per daily extreme.

This resulted in an assumed uncertainty in the daily

lows of 0.558C and in the daily highs of 1.048C, when

using HOBO values in the network.

Last, daily high measurements from two HOBO sta-

tions were excluded from the study. These stations were

first identified as having possibly compromised sitings—

to be more specific, a cement surface within 3 m of the

monitor. These observations were subsequently com-

pared with nearby observations to assess their quality. The

morning lows showed no signs of siting impacts, consistent

with tests (not shown) indicating undesirable microcli-

mate characteristics to have a significantly lesser impact

on daily low temperatures than on daily high temper-

atures. These stations were the Southgate and West

Detroit No. 2 HOBO monitors (Fig. 1). All other moni-

tors passed scrutiny of potentially compromised siting, so

that the larger multinetwork network utilized a total of 30

and 28 stations for daily lows and highs, respectively.

One station was located in a park that was roughly 1 km

across, but we retained it within the network because we

felt that it was not too large and was not particularly

uncommon to cities.
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