NOTE: For each homework assignment please follow the “Guidelines for Numerical Analysis HW”. For any problems calling for a MATLAB function or script, you must submit these, with a comment on top including your name, the date, and “MATH 471”. And please clearly label any and all plots (title, x-label, y-label, and legend).

1. **SOURCE CODE:**

Write separate MATLAB functions for solving the initial value problem (IVP):

\[
y'(t) = f(t, y), \quad a \leq t \leq b \\
y(a) = \alpha
\]

using the

(a) Euler method:

\[
[w, t] = \text{Euler}(@f, a, b, \text{alpha}, n)
\]

(b) Backward Euler method (using fzero):

\[
[w, t] = \text{BackEuler}(@f, a, b, \text{alpha}, n, \text{tolX})
\]

In both of the above functions, the inputs \(f, a, b, \text{alpha} (= \alpha) \) are as in the IVP, and \(n \) is the number of steps to be taken, so that the step-size \(h = (b - a) / n \). The outputs \(w, t \) represent the numerical solution of the IVP, with \(t(i) = a + (i - 1) * h, \, i = 1 : n + 1 \) (using MATLAB index conventions here), and \(w \) the approximations of \(y(t) \).

In \text{BackEuler}, \text{tolX} is the tolerance used in the root-finding problem that must be solved at each step. Be sure to set up this root-finding problem correctly! Use MATLAB’s \text{fzero} function to solve it, thus:

\[
w_{\text{next}} = \text{fzero}(g, x0, \text{options}, p1, p2, ...)
\]

with

\[
\text{options} = \text{optimset}('\text{TolX}', \text{tolX})
\]

Here, \(g \) is a function such that \(x = w_{\text{next}} \) is a root of \(g(x, p1, p2, ...) = 0 \), and \(x0 \) is an initial estimate for this root – think about what a good choice of \(x0 \) could be. Note that \(g \) depends on \(f \), so that \(f \) should be an argument of \(g \).

2. Consider the following IVP:

\[
y' = -5y + 5 \cos(ty), \quad 0 \leq t \leq 10 \\
y(0) = 1.
\]

(a) Apply your MATLAB function \text{Euler} to this IVP with step-sizes \(h = 0.4, 0.2, 0.1, \) and 0.05. For each value of \(h \) make a plot of the approximate solution versus time. Use the ‘-o’ plotting option so that grid points are displayed. From the plots, for what values of \(h \) do you obtain a stable approximate solution?

(b) Repeat part (a) using your \text{BackEuler} function, with \text{tolX} = 1e-14.
3. As we know, the Euler method and the Backward Euler methods

\[
\text{Euler: } w_{i+1}^E = w_i + hf(t_i, w_i)
\]

\[
\text{Backward Euler: } w_{i+1}^B = w_i + hf(t_{i+1}, w_{i+1})
\]

are both \(O(h)\) accurate.

One alternative to these two methods is just to average them:

\[
w_{i+1}^{\text{new}} = \frac{1}{2} (w_{i+1}^E + w_{i+1}^B)
\]

\[
= w_i + \frac{h}{2} (f(t_i, w_i) + f(t_{i+1}, w_{i+1}))
\]

The resulting method is often referred to as the \textbf{Trapezoidal method}.

(a) Is the Trapezoidal method \textit{explicit} or \textit{implicit}? Explain.

(b) **Accuracy:** The local truncation error for this method is given by

\[
\tau_{i+1} = \frac{y_{i+1} - y_i}{h} - \frac{1}{2} \left(f(t_i, y_i) + f(t_{i+1}, y_{i+1}) \right).
\]

Show that \(\tau_{i+1} = \mathcal{O}(h^2)\).

(c) **Stability:** Determine the \textit{stability region} of the Trapezoidal method, by considering, as in class, the linear differential equation \(y'(t) = -\lambda y, \lambda > 0\).

4. Consider the following IVP:

\[
y' = y - t^2 + 1, \quad a \leq t \leq b
\]

\[
y(a) = \alpha.
\]

Write down \textbf{Taylor’s method of order 3} applied to the above IVP. Simplify your answer as much as possible. Your solution should be in the form:

\[
w_0 = \alpha
\]

\[
w_{i+1} = \text{(an expression involving only } h, t_i, \text{ and } w_i \text{) \quad for } i = 0, 1, \ldots, n - 1.
\]

\textit{continued}...
5. **SOURCE CODE:**

Write a MATLAB function for solving the IVP:

\[
y'(t) = f(t, y), \quad a \leq t \leq b \\
y(a) = \alpha
\]

using the Fourth-Order Runge-Kutta method:

\[[w, t] = \text{RK4}(\Phi f, a, b, \alpha, n) \]

The inputs and outputs of the this function are as in problem 1.

6. Use your MATLAB function \text{RK4} defined in problem 5 to solve the following two IVPs and show that the results of the method on both problems demonstrate \(O(h^4) \) convergence to the corresponding exact solution.

IVP 1:

\[
y' = y \\
y(0) = 1 \\
t \in [0, 10]
\]

Exact Solution:

\[y(t) = e^t \]

IVP 2:

\[
y' = t/y \\
y(0) = 1 \\
t \in [0, 10]
\]

Exact Solution:

\[y(t) = \sqrt{1 + t^2} \]

(a) Run \text{RK4} with \(n = 50, 100, 200, 400, 800, 1600, 3200 \). Turn in a table for each of the two IVPs that contains 3 columns:

- the various \(h \) values,
- the error at the final time \(t = 10 \),
- the ratio of the previous/current error

(b) After you have constructed these tables, write a brief statement explaining how the results in the tables demonstrate that the Fourth-Order Runge-Kutta method gives \(O(h^4) \) convergence to the exact solution.