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Reference Guide 

Mint (Modularity and Integration tool for morphometric data) implements most of the 
procedures described in Márquez (2008) to test a priori models of variational modularity in 
multidimensional (mainly morphometric) data. The program accepts both 2-D landmark and 
non-landmark data, though landmark data are needed to get the most out of the visualization 
options in Mint. In addition to implementing goodness of fit tests for a priori models of 
modularity, Mint allows editing models and re-combining their modules to form additional, 
mixed models, thus facilitating the implementation of exploratory analyses of modularity and 
integration based on a heuristic model search. 

The main areas of Mint’s interface (see picture below) are (1) an input panel, (2) a parameter 
setting panel, (3) a TOOLS panel that defines Mint’s main functions (i.e., build models, edit 
existing models, goodness of fit tests of models, and Partial Least Squares analysis of parts vs. 
whole structures), (4) a TASKS panel which allows access to functions specific to each “tool”, 
(5) a list element, which is populated by models, modules, or landmarks/variables depending on 
the context, (6) a plot area, and (7) a text box where Mint prints tutorial hints, status reports, 
and result summaries. 

The overall structure of Mint consists of three basic phases: first, landmark or non-landmark 
data are loaded, which resets all parameters and internal structures to their initial values; 
second, a model or set of models are loaded, built, edited, and/or combined; finally, these 
models are either tested against data, or used to regress individual modules on the entire dataset 
using PLS. Outputs from such analyses are presented as plot and textual descriptions, and result 
matrices can be saved as text files. 



 

 

In the following guide, one of the datasets used in Márquez (2008) is analyzed in detail to show 
the functionality of Mint. It corresponds to a sample of 39 mandibles of the sigmodontine 
species Sigmodontomys alfari, on which 18 landmarks and 51 semi-landmarks have been 
digitized and superimposed. Prior to these analyses, data have been standardized to remove 
allometric variation (for details, see Márquez, 2008). All of the files and datasets mentioned in 
this guide have been included with this release of Mint, unless otherwise indicated. 

Loading data 

Before loading a dataset, the ‘Landmark data’ checkbox should be marked accordingly to 
ensure Mint processes the data correctly. Format for non-landmark data consists simply of a 
rectangular matrix with specimens or individuals as rows and variables as columns. For 2-D 
landmark data, Mint accepts a matrix (“XY”) format, with consecutive pairs of columns 
corresponding to <x,y> coordinate pairs and rows correspond to individuals, an extended matrix 
format (“XYCS”) in which a centroid size column is added as the last column of the set 
(included dataset uses this format), and the TPS format used by tpsDig and other programs in 
the tps series by F. J. Rohlf. Right now, Mint is able to recognize only simple forms of TPS 
files, in which the only present tags are “LM” and “SCALE”. Presence of other tags may cause 
Mint to produce an error message and fail to load a dataset. 

If two ruler points are included in data files for scale reference, their corresponding landmark 
numbers should be entered in the “Ruler” boxes in the input panel. Pressing “Use ruler” 
instructs Mint to scale all specimens so that they all have the same ruler length, after which the 
ruler points are dropped from further analyses. 



After successfully loading a dataset, and prior to loading models, the only “tool” enabled in 
Mint is MODEL BUILDING, which is discussed below. If data consist of landmark coordinates, 
the plot area will show a GLS (Procrustes) superimposition on these data. 

After loading the dataset analyzed for this guide (jaw.dat), the plot area will show the 
following graph: 

 

 

Loading, building, editing, and combining models 

Models are loaded in Mint as protocol files, which can be loaded individually or using a batch 
file. When the BATCH LOAD checkbox is marked, Mint expects a text file with has as many 
lines as models to be loaded, each line containing either the full directory path where the 
corresponding file is located, or just the file name if this is located in the same folder where 
Mint is currently running. An example batch file has been included in this release 
(jaws.model.batch12.txt) which instructs Mint to load the protocol files 

jaws.model.XX.txt, also included. 

Each model protocol file must contain two columns: the first one must contain numeric labels 
for each “module” or “part” being tested, and the second must match these labels to individual 
variables or landmarks. To be recognized as valid, (1) each protocol file must list all 
landmarks/variables (in the second column), and (2) both landmark/variables and modules/parts 
must be numbered sequentially starting at 1. In Mint, Modules can overlap, which means that 
variables/landmarks can simultaneously belong to two or more modules. In its present version, 
however, Mint cannot handle nested modules, i.e. those in which all of the variables of a 
module overlap with some of the variables of another module (see below for details). 

Modules comprised of landmark should contain at least 3 landmarks to qualify as shapes, 
although ignoring this requirement will not prevent Mint from testing a model’s goodness of fit, 
and this may be sometime desirable to group landmarks whose module association cannot be 
determined from data (e.g., there is no variance associated to them). However, part-whole PLS 
analyses involving a module/part with less than three landmarks will not run. 

Twelve models have been included with this release of Mint (files jaws.model.XX.txt), 
corresponding to the 12 alternative hypotheses derived from developmental theory in Márquez 
(2008). 



Standardization of the statistics used in the approach used by Mint requires the inclusion of a 
“null” model representing total absence of integration (where each variable comprises its own 
“module”). This model produces a diagonal-only covariance matrix where all covariances 
among variables/landmarks equal zero. It is not necessary to include a null model among the 
loaded alternatives, but if it is, it must be loaded only once, as the first model in the list, in 
order to be properly recognized by Mint. If, upon loading, Mint does not detect the first of the 
loaded protocols to correspond to a diagonal-only model, it will create one automatically and 
will assign the first position to it. 

Loading the 12 models included with this release (using the batch file for added convenience) 
will result in Mint populating the list element with 13 models. When using landmark data, 
selecting models from the list will instruct Mint to show a representation of such models in the 
plot area. In these representations, landmarks that belong to the same module are mutually 
joined by colored lines, where different modules are distinctly colored. For example, loading 
the included 12 models and selecting the first one in the list (i.e., the “null” model, 
automatically added by Mint) will produce the following plot: 

 

 

in which there are no modules. Likewise, selecting model #9 will produce this plot: 

 

 

which depicts three modules using different colors. Visualizations like these are accessible at all 
times while none of the TOOLS buttons are selected. 

Further model loads will not erase previous ones, but will add them to the list of currently 
loaded models, in the same order as they are being loaded. 

Models can also be built from scratch or edited using the appropriate functions from the TOOLS 
panel.  Thus, selecting MODEL BUILDING creates a “blank model” where no modules are 



defined, and populates the list element with variables or landmarks. The TASKS panel buttons 
are then modified to show the functions: SELECT MODULE, UNDO LAST MODULE, DELETE NEW 

MODULES, APPEND MODEL, and SAVE MODEL. The building process works as follows. 

First, on the list element, select groups of variables or landmarks using the Ctrl and Shift keys 
as usually done for multiple selections in Windows. Alternatively, when using landmark data, 
clicking on the plot area will change the cursor so that a polygon can be drawn around 
landmarks using left-clicks of the mouse. Right- or double-clicking after a polygon has been 
drawn will cause Mint to select the enclosed landmarks in the list. After a selection has been 
made, pressing SELECT MODULE will mark the set as a module in the model and will display it 
in the plot area. 

After at least one module has been selected, clicking on UNDO LAST MODULE will erase the 
previously selected module, which can be done until there are no more modules selected. 
Clicking on DELETE NEW MODULES will erase all modules entered so far. 

Finally, the functions APPEND MODEL and SAVE MODEL instruct Mint to include the model 
among the current list of models or to save it to a text file as a protocol file, respectively. Note 
that saving a model to a file does not automatically add the model to the current list, or vice 
versa. In order to append or save a model, each landmark/variable must belong to at least one 
module, or Mint will produce an error message. 

The MODEL EDITING tool allows modifying one of the currently loaded models. Upon selecting 
this tool, the list element is populated with the currently loaded models, whereas the TASKS 

panel offers five new functions, namely, SELECT MODEL, RESET SELECTION, REPLACE 

MODEL, APPEND MODEL, and SAVE MODEL. At the beginning, only the first of these functions 
is enabled. Upon selecting a model from the list, the same button will turn to the function 
SELECT MODULE and, accordingly, the list will be populated with the modules of the selected 
model (indicated in the status text box at the bottom).  From this point on, it is also possible to 
use the RESET SELECTION function to start over the editing process. 

After selecting a module, the list will now be populated with all of the variables or landmarks in 
the dataset, and those corresponding to the selected module will be pre-selected. It is now 
possible to modify this selection in the list or (when using landmark data) by clicking and 
drawing directly on the plot as described above for model building. When finished, clicking on 
SELECT LANDMARKS will mark the selection as the new module, and will activate the other 
tasks associated to this tool. REPLACE MODEL will delete the model being currently edited and 
replace it with the edited version, which will be then assigned the same label/number for further 
analyses; APPEND MODEL will add it as the last model of the current list, with a new 
label/number, and SAVE MODEL will prompt the user to save the model as an individual 
protocol file. 

Lastly, Mint offers the option to mix the individual modules defined within loaded models to 
form new models for analysis. This is useful under a number of scenarios, such as when 
hypothesizing patterns of modularity resulting from the cumulative effect of spatially localized 
developmental processes throughout ontogeny, or simply to increase the robustness of the 



estimates of goodness of fit statistics (see below). The COMBINE MODELS task is accessible 
from the MODEL TESTING tool, and enabled after two or more models have been selected from 
the list element by clicking on the SELECT MODEL button. When searching for model 
combinations, Mint ignores model #1 (null model), as its inclusion prevents the search from 
converging, as well as nested (hierarchical) modules (see justification below), but does an 
otherwise comprehensive search of all possible module combinations. Therefore, this search 
process can take quite long to finish, depending on the number of models initially selected, 
during which regular status reports are printed in the command window that opens along with 
the main Mint interface. After the search is over, the newly found models are added to the list 
of currently loaded models and become immediately available for further analysis. It is highly 
recommendable to save loaded models at this point, by clicking on SAVE OUTPUTS, and then 
selecting SAVE CURRENT MODELS. Models are then saved as separate protocol files, to which 
Mint automatically appends a numeric label. 

Testing goodness of fit of models 

In goodness of fit (GoF) tests we are interested in assessing whether a pre-defined model or 
hypothesis is good enough to explain variation in a dataset. In practice, we want to test the null 
hypothesis that any discrepancy between data and model is small enough that it could be due to 
chance. In Mint, the interest is on testing the GoF of models depicting tight associations within 
integrated sets of traits—variational modules—and no associations with traits outside of those 
sets. The three essential components of a GoF test are: 

1. An expectation for the data under the assumption that the is model is true; 
2. A GoF statistic that measures the similarity between this expectation and the data; 
3. A distribution for this statistic under the null hypothesis that expected and observed 

patterns differ only by chance. 

Expectations from models 

The rationale used by Mint to generate expectations for the data given the hypotheses under 
scrutiny is described in detail in Márquez (2008). Basically, the aim is to compute the 
covariance matrix that the data would be expected to produce if the model being tested was true 
and variances and covariances were measured without error. In models of modularity, the 
expectation is that phenotypic variables or morphological regions comprising a variational 
module are mutually integrated but statistically independent from other such modules. Because 
this expectation takes into account both within- and between-module associations, it seems 
reasonable to state them in terms of full covariance matrices, so that GoF statistics (see below) 
can assess both levels of integration simultaneously. The alternative, i.e. treating expected 
modules as isolated data partitions, has the disadvantage that tests must focus only on between-
module associations, e.g. by asking whether they are small enough to justify defining the 
corresponding partitions as modules. To obtain the covariance matrices expected under models 
of modularity, Mint thus assumes that the data themselves have a modular structure, by 
partitioning the entire data space into orthogonal subspaces (i.e. modules) and computing a 
covariance matrix based on this modified data structure. 



In practice, partitioning the data space into modular subspaces is carried out by stacking 
together as many replicates of the same dataset as modules there are in a model, so that there is 
a full dataset per module, and then making each element not belonging to a module equal to 
zero in its corresponding dataset copy. For example, if we wish to compute an expectation from 
a model with three modules containing the coordinates for landmarks/variables 1-8:  

[1 2 3] [4 5 6] [7 8] 

where the numbers in brackets represent the landmarks/variables included in each module, we 
first partition the full dataset with n observations and eight variables into three subspaces, by 
forming the extended data matrix 

�� = �� � � � � � � �� � � � 	 
 � �� � � � � � � �
 
in which each element corresponds either to one of the variables (vectors 1-8) or to a vector of 
zeros, each of length n (Márquez, 2008). 

In the general case, the covariance matrix S0 obtained from this matrix equals the observed 
covariance matrix in all elements but those corresponding to covariances between modules, 
which equal zero. When using landmark data, however, a GLS superimposition of X0 is carried 
out prior to computing its covariance matrix, to take into account the covariances normally 
induced by this step (Walker, 2000). 

The process described above is valid for models in which modules do not overlap (i.e. do not 
share variables/landmarks), as they are expected to have covariances equal to zero. When two 
modules overlap, possibly due to two or more different processes affecting the same trait or 
region simultaneously or at different points during ontogeny, such modules cannot be longer 
expected to give rise to orthogonal subspaces. If modules overlap only partially, so that each 
still contains mutually uncorrelated elements, then their subspaces will be oriented obliquely in 
the full data space. In its current implementation, Mint simulates module (partial) overlap by 
distributing the variance of each shared element equally among the overlapping modules, so 
that their variances are unchanged in the full covariance matrix (see Márquez, 2008 for further 
details). Future versions will implement alternative ways for partitioning variation at 
overlapping regions. 

Currently, Mint ignores expectations from modules that overlap completely (i.e., nested or 
hierarchical modules), because in such cases modules define subspaces embedded within larger 
subspaces, so that in the present approach they appear as integrating the same module. Testing 
whether a module is nested within another module may require using a different kind of 
approach, in which covariances are fine-tuned to reflect the differences in integration expected 
between embedded and embedding modules. 



Goodness of fit statistics 

In Mint, GoF tests are carried out by comparing observed and expected covariance matrices, for 
which three choices of GoF statistics are offered:  γ* (=Gamma*, Richtsmeier et al. 2005), 
angles between the subspaces spanned by these covariance matrices (Zelditch et al. 2006), and 
matrix correlations (Dietz 1983). Only one of them (γ*), however, has been fully standardized 
to remove artifacts introduced by differences in the number of fixed parameters in models. As 
discussed in Márquez (2008), this standardization is facilitated by the fact that γ* scales linearly 
with the number of “zero elements” (inter-module associations) in covariance matrices, which 
allows using simple linear regression as the standardization technique. The implication is that 
the robustness of γ* is largely a function of the number of models tested simultaneously. If 
angles between subspaces or matrix correlations are used instead of γ*, additional observations 
should be carried out to make sure that results are not overly influenced by the number of fixed 
parameters in models (e.g., by plotting the statistic value against the number of zero elements in 
models). 

In Mint, γ* standardized values are computing by (1) scaling and (2) regressing γ values on the 
number of zeros of each model, with 

γ = trace {(S – S0)(S – S0)
T } 

(Richtsmeier et al. 2005), where S and S0 are the observed and expected (i.e., derived from X0) 
covariance matrices, respectively. Scaled γ values are obtaining by dividing each model’s γ by 
the maximum γ value, γmax, which is obtained by comparing the data against the null (diagonal-
only) model. Therefore, scaled γ values are bound to the interval [0, 1]. This standardization is 
done to allow comparing results from different samples (i.e., species), and does not change the 
outcome of the regression within a sample. Note that null distributions (see below) are 
computed based on unstandardized values. 

Next, each scaled γ value is regressed on the number of zeros in each model, representing 
expected associations between variables postulated to belong to distinct modules, to remove the 
effect of the number of estimated parameters. The final standardized statistic is defined as the 
residual γ* = γ – f(z), where f(z) represents the linear function relating the values of γ computed 
from all possible models of modularity to their corresponding counts of zero elements, z. Even 
though it would be computationally unfeasible for most studies to include all possible models, 
the fact that scaled γ values are restricted to the interval [0, 1], where 0 corresponds to the 
observed covariance matrix and 1 to the null model of no integration, implies that f(z) must also 
vary within these limits, which are sufficient to define the linear function for any given set of 
variables. Given a large random sample of models, with γ values symmetrically distributed 
about their mean, E(γ) = f(z) and thus E(γ*) = f(z).  Consequently, situations where γ* < 0 
correspond to models that postulate no integration (i.e., average covariances are hypothesized to 
be zero) for covariances whose observed values are indeed low, and conversely cases where γ* 
> 0 correspond to models that postulate no integration for covariances whose observed values 
are actually large. Therefore, best-fitting models are those with the lowest γ* value. This 
approach, used in Parsons et al. (2012) differs slightly from the one used in Márquez (2008), 



where f(z) was estimated via regression using only the models included in a study, as opposed 
to all possible models. 

The angle θ between two subspaces is the minimum angle with which the subspace spanned by 
a sample must be rotated to maximally align it with the subspace spanned by the other sample 
(Zelditch et al. 2006). Mint uses the formulation described in Zelditch et al. (2006: Appendix 
A) to determine the value of θ between expected and observed covariance matrices 
(standardized by its maximum value as described above for γ). This implementation requires an 
a priori definition of the number of axes used to define the subspaces being compared, to ensure 
that bases of the same size (i.e., number of principal components—PCs) are rotated. Because 
dimensionality of expected and observed matrices need not coincide, additional criteria must be 
used to determine the extent of the variation of each matrix that is included when computing the 
θ statistic. Mint offers three options for these criteria: (1) choosing number of PCs based on the 
percentage of the variance of a sample that they account for, (2) directly entering number of 
PCs, and (3) choosing PCs sequentially until the difference in variance accounted for by two 
consecutive PCs is smaller than a pre-determined value. Following, there is a detailed 
description of these choices. 

When choosing the number of PCs that account for X% of the variance as a criterion, Mint 
attempts to include as many PCs as needed so that at least X% of the variance of both matrices 
being compared is included. Because the number of PCs has to remain constant, this means that 
one of the matrices may be represented by more than X% of the variation. However, it also 
means that the percentage of variation included in tests is limited by the size of the smallest 
subspace, i.e. the one with fewer dimensions. Consequently, it is possible to have a test in 
which 100% of the variation in a sample is compared against less than X% of the variation in 
another. Similarly, when the number of PCs is chosen directly, the first X PCs are used for 
computing θ, which means that different proportions of variance may be used for the samples 
being compared. Finally, choosing number of PCs based on the change in the proportion of 
variance accounted for by consecutive PCs could be in many instances a less arbitrary criterion, 
as it assumes that informative dimensions in a sample will be those that capture the best defined 
axes, whereas poorly defined, indistinct axes will most likely correspond to error variation, 
commonly assumed to be isotropic (Anderson, 1963). Selecting this option has the same 
limitations as using percentage of variance, and thus this criterion is likely to be met 
asymmetrically in both samples being compared. 

The third option offered by Mint for a GoF statistic computes matrix correlations between 
expected and observed covariance matrices (rM). As implemented herein, significance testing of 
matrix correlations is not based on Mantel tests, and thus this procedure does not permute 
covariance matrices directly. Significance of rM values is tested using the same Monte Carlo 
procedure used for the other two statistics, and described below. In Mint, matrix correlations 
are carried out excluding the diagonal of the covariance matrices, and thus the minimum 
correlation (between data and the null, diagonal-only model) is always zero. Also, it is worth 
remembering that magnitudes of rM values are interpreted so that higher values (closer to 1) 



indicate similarity between data and model, whereas in the other two statistics (γ* and θ), 
smaller values (closer to 0) are the ones that indicate similarity. 

While all of these statistics are used for a common purpose, it is important to keep in mind that 
they do not measure the same properties of observed and expected covariation patterns. In fact, 
they measure quite different properties. Consequently, it is possible to obtain different and even 
contradictory results from their implementation, thus requiring further inquiry to determine the 
origin of such differences. 

Test distributions 

Whereas GoF statistics measure similarities between observed and expected covariance 
matrices, the null hypothesis that the value of this statistic is no larger than expected by chance 
is tested in Mint by comparing it against a null distribution for this statistic, i.e., a range of 
values for the statistic that can be obtained should the null hypothesis be true. Such test is 
rejected (P < 0.05) for sufficiently large differences between observed and expected covariance 
matrices (i.e., for large γ* or θ values, or low absolute rM values). 

To compute a null distribution, Mint implements a parametric (Monte Carlo) approach, 
described in detail in Márquez (2008), in which N pseudo-random covariance matrices are 
generated from a Wishart distribution parameterized with the expected covariance matrix and 
the size of the sample being tested. A Wishart distribution is the probability distribution of the 
covariance matrix (actually, sums of squares and cross-products matrix) of a multivariate 
normal population, and in the present test simulates the range of possible matrices that could be 
obtained from the sampled populations should the model of modularity be true. To obtain a 
distribution of the GoF statistic of choice, Mint computes the value of the statistic between each 
random matrix and the expected matrix (S0). A P-value for the null hypothesis is then 
calculated by dividing the number of instances in which the GoF statistic computed between a 
matrix from the null distribution and the expected matrix is larger, in the case of γ* and θ, or 
smaller, in the case of rM, than the value for the statistic obtained between expected and 
observed matrices, by the total number of Monte Carlo replicates. Thus, significant P-values (< 
0.05) correspond to cases in which expected and observed matrices are too different to be 
considered as part of the same distribution. 

Jackknife support and model space 

Before demonstrating this approach on the S. alfari data, an additional statistic, “jackknife 
support”, is introduced. As shown below and discussed in Márquez (2008) alternative models 
of modularity are often similar enough that their discernment by Monte Carlo tests may require 
extraordinarily large sample sizes. Therefore, under many circumstances it may be preferable to 
focus comparisons among alternative models not just on which ones are significant, but also 
which ones provide a better fit to the data. For this purpose, Mint ranks the models from best to 
worse fit after running a test of several alternative models. In order to estimate the confidence 
of such ranks, Mint allows randomly resampling the original dataset to determine the proportion 
of random replicates in which model fit rankings are the same as those observed using the 
original dataset. These proportions, jointly termed jackknife support because resampling is 



carried out by dropping a random set of individuals from the sample, provide thus a measure of 
confidence for all observed ranks, although interest will often be focused on the best fitting 
models. 

Mint is instructed to compute jackknife support by requesting re-sampling of one or more 
replicates in the box labeled NO. JACKKNIFE REPS, and by specifying how many individuals to 
randomly drop in each replicate in the box labeled % SAMPLE TO DROP. In addition to 
computing jackknife support, Mint will calculate a confidence interval for the GoF statistic, 
using the level specified in the box labeled % CONFIDENCE. 

The rationale described above for comparing alternative models based on their fit rankings can 
be further extended to interpret the full set of values of GoF statistics for a single dataset as a 
set of distances between the data and each model. The resulting vector of data-model distances 
can in turn be interpreted as a set of coordinates for the dataset within an abstract space defined 
in terms of model similarity, i.e., a “model space”. GoF statistics defining this model space are 
included among Mint’s standard outputs, and can be imported into external software for further 
analysis. In Márquez (2008), for instance, multiple species were compared using angles 
between those data-model distance vectors to assess interspecific similarity with respect to 
underlying patterns of integration and modularity, and resulting patterns were further compared 
against patterns of phylogenetic relatedness. 

A worked example 

After loading the data and model files included with this release (jaw.dat and 

jaws.model.batch12.txt, respectively), Mint should list a total of 13 models, with the 
null hypothesis of absence of modularity corresponding to model #1. To get the full set of 
models produced by searching all possible module combinations used in Márquez (2008), 
models #2 through #13 can be selected and submitted to such search by using the COMBINE 

MODELS tool accessible from the MODEL TESTING tool (see above for details). In this case, 
there are 1307 model combinations. 

Upon selecting the MODEL TESTING tool, two or more models must be selected in the list 
element and marked for analyses by clicking on SELECT MODELS. For this example, analyses 
will be based on the full set of 13 models. Clicking on RUN TEST will instruct Mint to use the 
selected GoF statistic and Monte Carlo N to test all of the selected models against the loaded 
dataset. All of the runs shown here are based on N = 1000 Monte Carlo replicates. In most Mint 
functions, it is possible to check the command (black) screen that opens along with the main 
interface window for progress updates of current analysis and error messages. 

Run #1: models tested using γ* 

After running the analysis, the list element of the interface shows the 13 models sorted from 
smallest to largest γ* value. Best fitting model among the alternatives is thus #4, followed by 
#6, #7, #12, #9, #5, and so on. Worst fitting model is #1 (null model). The graph shown in the 
plot area, corresponding to the best-fitting model (#4): 



 

is a histogram of γ* values over 1000 (N) runs for the model selected on the list. The arrow on 
the x-axis indicates the approximate location of the observed value for the GoF statistic. The 
text on the bottom panel of the interface will provide a quick summary of results, in this case 
reading: 

Currently selected model is #4, whose standard gamma* value with respect to observed data 
equals -0.2952. P-value for the null hypothesis that the data are no more different from this 
model than expected by chance is 0.721 based on a Wishart/Monte Carlo test with 1000 
replicates. The arrow in histogram (above) indicates the position of this model with respect to 
the null distribution for this hypothesis. 

The observed γ* value (-0.2952) is the lowest among the given alternatives, and a 95% 
confidence interval can be obtained by using the jackknife support task (see below). The value 
of γ* differs between the text and the histogram because the former has been standardized to 
facilitate comparisons across samples. The P-value shown for this model (=0.721) indicates that 
the observed γ* value between data and model is smaller than 72.1% of the γ* values simulated 
under the null hypothesis. 

I some occasions, the P-value for a model may equal 1 (i.e., 100% of the simulated values 
exceed the observed γ* value). Although this seems counterintuitive, it should be remembered 
that this procedure does not yield a symmetric distribution and therefore the normal-like 
appearance of these results is most likely consequence of the relatively small sample sizes used 
herein. With large enough sample sizes (i.e., above 200), the distribution should take its proper 
form—that of a right-tailed distribution. 

The button on the right top corner of the graph allows swapping between these results and the 
graphic representation of the selected model. In this case, model #4 is represented as follows: 



 

Selecting a different model will show a different set of results. For example, selecting the 
model ranked second (model #6), displays the following text: 

Currently selected model is #9, whose standard gamma* value with respect to observed data 
equals -0.26724. P-value for the null hypothesis that the data are no more different from this 
model than expected by chance is0.921 based on a Wishart/Monte Carlo test with 1000 
replicates. The arrow in histogram (above) indicates the position of this model with respect to 
the null distribution for this hypothesis. 

In this example, none of the models, except for the null model is rejected (P-value > 0.05) when 
tested using the Monte Carlo approach. 

Run #2: models tested using angles between subspaces 

Running the analysis using the default parameters to compute angles between subspaces (No. of 
PCs is chosen so that at least 90% of the variance is included in comparisons) supports model 
#12 as the best fitting alternative (P = 0.96), followed by models #5, #10, #9, #11, and so on, 
with model #1 as the worst one (P = 0.019). The histogram for the angle statistic for model #12 
looks like this: 

 

in which angle values are given in radians. Similar to previous results, output text reads: 



Currently selected model is #12, whose standard angle (in radians) with respect to observed 
data equals 0.19706. P-value for the null hypothesis that the data are no more different from 
this model than expected by chance is 0.961 based on a Wishart/Monte Carlo test with 1000 
replicates. The arrow in histogram (above) indicates the position of this model with respect to 
the null distribution for this hypothesis. 

Graphically, model #12 is represented as follows: 

 

Run #3: models tested using matrix correlations 

Analyses based on matrix correlations also return model #12 and #1 as best and worst fitting, 
respectively, while differing from previous tests regarding the rankings of other models. 
Histogram for model #12 is: 

 

and the output text reads: 

Currently selected model is #12, whose standard matrix correlation with respect to observed 
data equals 0.88548. P-value for the null hypothesis that the data are no more different from 
this model than expected by chance is 1 based on a Wishart/Monte Carlo test with 1000 
replicates. The arrow in histogram (above) indicates the position of this model with respect to 
the null distribution for this hypothesis. 



It seems worth noting that models #4 and #12 supported by these three methods are not 
mutually exclusive, as all of the putative modules of the former are completely embedded in 
one of the two modules of the latter. One interpretation of this discrepancy could be that 
methods based in observed angles and matrix correlations are more sensitive than the Monte 
Carlo approach to non-zero, but low, covariances among the six modules in model #4. 

Jackknife support 

To activate the JACKKNIFE SUPPORT task, the number of replicates entered in the box labeled 
NO. JACKKNIFE REPS should be at least one. For this example, 1000 replicates were run using 
γ* as the GoF statistic, dropping 10% of the specimens per jackknife replicate, and computing 
95% confidence intervals for the statistic. 

After analyses are finished, a plot of the GoF statistic and its confidence interval is shown for 
all models simultaneously: 

 

 

 

As in previous analyses, a button is supplied with this plot for model visualization when using 
landmark data. The text output for the model occupying the first position is: 

Currently selected model is #4, whose standard gamma* value with respect to observed data 
equals -0.2952 (jackknife 95% CI = [-0.30273, -0.26556], based on 1000 replicates). Among 
the models included in the analysis, model #4 ranks #1. This rank was observed for this model 
in 100% of the jackknife replicates (i.e. jackknife support = 1). 

The reported jackknife support for this model (= 1) indicates that in each of the 1000 jackknife 
replicates for which a γ* value was calculated, model #4 was the best fitting alternative. In fact, 



visual inspection of the plot shown above suggests that the confidence intervals of most models 
overlap, indicating that similar degrees of support are obtained for these models, suggesting that 
further refinement, e.g., via model combinations, is desirable to obtain better resolved patterns. 
For these models, Jackknife support estimates are: 

 

Model # Original rank Jackknife support for orig. rank 

4 1 1.000 

6 2 0.876 

7 3 0.457 

12 4 0.260 

9 5 0.409 

5 6 0.536 

3 7 0.522 

8 8 0.649 

10 9 0.925 

13 10 0.670 

2 11 0.700 

11 12 1.000 

1 13 1.000 

 

These results indicate, for example, that model #8 is the eighth best fitting model in 64.9% of 
the jackknife replicates. In general, stronger support in more models and ranks indicates a more 
robust identification of the position of the dataset with respect to alternative models (i.e., in 
model space). Full set of outputs include, in addition to jackknife support for each original rank, 
the percentage of replicates in which each model occupies each rank (see below for details). 

Saving results 

After successfully running any of the available tests, Mint allows saving results by clicking on 
the SAVE OUTPUTS button. What saving options appear in the list that pops up depends on what 
analyses have been performed. Thus, running Monte Carlo tests adds two saving options (SAVE 

TEST STATISTICS AND P-VALUES, and SAVE X% CONFIDENCE LIMITS OF NULL DISTRIBUTION), 
jackknife support estimation adds four saving options (SAVE JACKKNIFE SUPPORT VALUES, 
SAVE JACKKNIFE SUPPORT VALUES FOR ALL RANKS, SAVE MODEL RANKS FOR ALL JACKKNIFE 

REPS, and SAVE CONFIDENCE INTERVALS FOR TEST STATISTIC), and searching for model 
combinations adds one option (SAVE CURRENT MODELS). 

• SAVE TEST STATISTICS AND P-VALUES produces a matrix with as many rows as models 
were selected for tests and three or four columns. Models as sorted according to order in 
which they were loaded in Mint (or the order they appear in the batch file). Columns #1 



and #2 contain values for the GoF statistic in its raw form and after standardization by 
its maximum possible value, respectively. The last column contains the P-value 
obtained as described above from Monte Carlo tests. Only when analyses are based on 
the γ* GoF statistic this output file contains four columns, the third one corresponding 
to γ* values (i.e., standardized γ corrected by the number of fixed parameters in 
models). 

• SAVE X% CONFIDENCE LIMITS OF NULL DISTRIBUTION, where X equals the percentage 
of confidence specified for jackknife support tests, produces a matrix with three 
columns and as many rows as models were selected for analysis (sorted in the same 
order as they were input). The first column contains the percent confidence for the 
interval, whereas the second and third columns contain the lower and upper confidence 
limits for the raw GoF statistic, computed as the corresponding percentiles from the 
distribution of values obtained from Monte Carlo replicates. 

• SAVE JACKKNIFE SUPPORT VALUES produces a data vector containing the estimates of 
jackknife support for the models selected for analysis (sorted in the sequence they were 
loaded). 

• SAVE JACKKNIFE SUPPORT VALUES FOR ALL RANKS produces an m x m matrix (m = 
No. of models selected for analysis) where rows represent models and columns ranks, 
such that each cell contains the frequency with which each model was observed to 
occupy each rank in jackknife replicates.  

• SAVE MODEL RANKS FOR ALL JACKKNIFE REPS produces a matrix in which columns 
contain the sequence of models sorted by the value of their GoF statistic in each 
jackknife run (i.e., each column contains the results associated to a single jackknife 
replicate). 

•  SAVE CONFIDENCE INTERVALS FOR TEST STATISTIC simply contains two columns with 
the lower and upper confidence intervals, as estimated from the jackknife replicates, for 
the GoF (standardized) statistic. These are the values sent to the plot after the 
resampling procedure is finished. 

• SAVE CURRENT MODELS exports properly formatted individual protocol files for each 
model currently loaded. After selecting this option, a dialog prompts the user to assign a 
file name and folder location for the models being saved. Mint then appends a numeric 
label to the chosen file name to identify the models being saved, which are exported in 
the same order as they were loaded, edited, created, and/or discovered.  

Part-Whole Partial Least Squares 

In part-whole PLS analysis, a subset of variables is regressed onto the full set to which it 
belongs, with the objective to detect features other than the subset’s variables that covary with 
them. In other words, the main aim is to determine whether a putative module is actually 
embedded within a larger module or subspace. Additionally, the technique is useful to visualize 
intra- and inter-modular variation, which can lead to the postulation of alternative module 
boundaries, or even alternative modules. 



Consider, for instance, a structure that is partitioned to define four modules, namely {A}, {B}, 
{C}, and {D}. A PLS regression of, say, partition {A} onto the full, intact structure {A+…+D} 
will normally produce orthogonal paired vectors of {A} and {A+…+D} which account for 
decreasing portions of the covariance between the two sets. The first PLS axis, for instance, will 
account for most of the covariation between the part and the whole, and it is naturally expected 
to show the covariation of {A} as a partition and of {A} as an embedded subspace within 
{A+…+D}, as it would be similar to regressing a variable onto itself. The interest, however, is 
not on this expected association, but instead focuses on what other variables, from partitions 
{B}, {C}, and {D}, also covary with variables in partition {A}. For instance, a PLS axis 
showing covariation of both {A} and {B} when {A} is regressed onto {A+…+D} would 
suggest that maybe {A} and {B} comprise a single module instead of two. Furthermore, this 
regression could also reveal an association between {A} and only some of the variables in other 
partitions, or between part of {A} and parts of other partitions, which could lead to a complete 
reformulation of the boundaries of the putative modules which could be resubmitted to the GoF 
tests to compete with previously defined models, as shown in Márquez (2008). 

A potential caveat of this method is that a part-whole regression will tend to preferentially show 
covariation between a partition within the whole structure and the partition in isolation. 
Therefore, a situation where only part of a putative module is actually an integrated module 
may be hard to detect in this analysis. Using the same example as above, this means that even if 
only part of {A} covaries with variables in other partitions, say {B}, the fact that {A} is 
regressed onto a dataset containing {A} may tend to favorably show covariation of all of {A} 
variables with {B}. Likewise, variables in {A} uncorrelated to {B} may obscure any 
relationship between {A} and {B} in favor of a stronger integration within {A}. While these 
situations should produce a clear signal in PLS axes beyond the first, a strategy that can be used 
to investigate the integrity of putative modules consists on corroborating that associations 
among partitions are observed irrespective of which of these partitions is regressed on the 
whole structure. For example, if the PLS 1 axis shows an association between partition {A} and 
part of partition {B} when regressing {A} onto {A+…+D}, then regressing {B} onto 
{A+…+D} should also show covariation between {A} and {B}, even if this time the 
association is between all of {B} and part of {A}. In many cases, it is reasonable to expect that 
the partial associations are evinced in both regressions, although whether they appear associated 
to PLS 1 or higher-order axes may depend on the strength of the covariation of a partition’s part 
with respect to the overall integration within the entire partition. 

In PLS, a measure of “relevance” of an individual axis is given by singular values λi, which 
measure the amount of variation in a dataset accounted for by the other dataset that is captured 
by the ith PLS axis. The proportion of squared covariance between part and whole accounted for 

by a PLS axis is computed in Mint as ��� ∑���⁄  (Rohlf and Corti, 2000). To test whether a 
singular value is larger than expected by chance, Mint implements a permutation procedure 
(Rohlf and Corti, 2000), in which PLS vectors and singular values are re-computed between the 
part dataset and random permutations of individuals (rows) in the whole dataset. A significant 
PLS axis is thus the one that accounts for a larger proportion of the squared covariance than 
obtained from the random permutations. 



In Mint, selecting the PART-WHOLE PLS tool results in the list element to be populated with all 
currently loaded models, with the exception of model #1 (null model), as a “part” in this case is 
not actually a partition. As mentioned above, when using landmark data, partitions in PLS 
analyses should have at least three landmarks or Mint will produce an error message. The first 
step in a PLS analysis is to select a model, after which the list element and plot will show the 
individual modules postulated by this model and a SELECT PART tool will become available. 
At this point it is also possible to change the model selection by clicking on the appropriate 
tool. Selecting a part will cause Mint to carry out a PLS regression of this part onto the whole 
dataset, while at the same time allowing to change the selected part. The image shown in the 
plot area will show the variation implied by PLS 1, whereas the list element will allow selecting 
any of the available PLS axes. When using non-landmark data, the plot will show PLS vector 
coefficients, whereas when using landmark data the plot will show the deformation implied by 
the selected axis (with or without a TPS grid, as selected using the provided button). Finally, 
clicking on SHOW PART AXES button allows swapping between PART and WHOLE results. 

After using the PERMUTATION TEST task to test for the significance of individual PLS axes, a 
text summary of these and general PLS tests is displayed in the status box for models currently 
selected in the list element. 

Lastly, choosing the SAVE RESULTS task displays a list of available outputs, described as 
follows: 

• SAVE PLS VECTORS OF WHOLE DATASET produces a matrix of coefficients of the 
PLS axes obtained for the whole-structure dataset, sorted from larger to smaller singular 
values. Note that in the case of landmark data, the number of rows equals the 
dimensionality of the shape of the whole structure—twice the number of landmarks 
minus four. The number of PLS axes (columns) equals the dimensionality of the 
smallest dataset (i.e., part data). 

• SAVE PLS SCORES OF WHOLE DATASET produces a matrix of individual scores on 
each PLS axis. 

• SAVE PLS VECTORS OF PART DATASET produces a matrix of PLS axis coefficients for 
the part selected for analysis, similar to the one produced for the whole dataset. 

• SAVE PLS SCORES OF PART DATASET produces a matrix of individual scores of part 
data on PLS axes, similar to the one produced for the whole dataset. 

• SAVE SINGULAR VALUES AND PROPORTIONS OF CAPTURED COVARIANCE produces a 
two- or four-column matrix containing the singular values of each PLS axis (rows) in 
the first column, the proportion of squared covariance accounted for by each PLS axis in 
the second column, and, if permutation tests have been run, P-values for the null 
hypothesis that singular values account for no more covariance than expected by chance 
in the third column and P-values for the null hypothesis that cumulative covariance 
accounted for by successive PLS axes is no larger than expected by chance in the fourth 
column. 

• SAVE PLS ANGLES AND CORRELATIONS produces a two- or three-column matrix 
containing the angles in degrees between each pair of part and whole PLS axes (rows) in 



the first column, the Pearson correlation coefficient between part and whole PLS axes in 
the second column, and, if permutation tests have been run, P-values for the null 
hypothesis that this correlation coefficient is no larger than expected by chance in the 
third column. 

A worked example 

Using the dataset and model files included with this release (jaw.dat and 

jaws.model.batch12.txt, respectively), a part-whole PLS analysis is carried out to 
demonstrate its main functionalities and applications. After clicking on the PART-WHOLE PLS 
tool button, we proceed by selecting a model which will provide the part(s) to regress onto the 
full structure. As done in Márquez (2008), the chosen hypothesis will be model #4, because this 
is the one in which the mandible has been partitioned into its six developmental modules. 

First, let us regress module #1 (anterior portion of the incisor alveolus) as the “part” in the part-
whole regression. The TPS plot Mint produces should look like this: 

 

whereas the text output informs us that: 

Currently selected PLS axis (#1) captures 56.0388% of the squared covariance between PART 
and WHOLE datasets. Correlation between the PLS vectors of these datasets is 0.91508, which 
corresponds to an angle of 23.7829 degrees. Run permutation tests to assess the significance of 
these values.  Currently selected: MODEL #4, MODULE/PART #1. 

As expected, there is ample similarity between the aspect of the whole structure captured by 
PLS 1 and the selected part, a result that is corroborated when looking at the TPS plot for the 
part (by clicking on SHOW PART AXES): 



 

which shows a similar pattern of variation to the one observed for the same landmarks in the 
whole structure. When interpreting these results, we note that not all of the landmarks in 
partition #1 show the same pattern of intra- or inter-partition covariation, which may reveal lack 
of integration within the putative module or, more likely, absence of enough variation in some 
of its semi-landmarks. More interestingly, from the whole-structure plot we note that some of 
the landmarks that do not belong in partition #1 seem to covary along PLS 1. Specifically, the 
upper edge of the molar alveolus, part of the angular process, and the condylar process seem to 
“respond” to the regression in a similar way as the incisor does, thus suggesting an potential 
association among these regions.  

In this comparison, PLS 1 accounts for about 56% of the squared covariance between part and 
whole, indicating that other axes may contain relevant information. Thus, PLS 2, which 
accounts for 17% of the variance, produces the following deformation: 

 

in which, once again, an association between incisor, molar, and condyloid process is 
suggested, along with covariation with other regions, such as the rostral and caudal ends of the 
masseter insertion. Before advancing any further, though, it seems appropriate to test for the 
significance of singular values and correlations among PLS axes by carrying out a permutation 
test. Permutation tests in PLS analyses usually consist on randomizing one of the datasets to 
simulate the absence of association between both datasets (Rohlf and Corti, 2000). In Mint, 
specimens in the whole-structure dataset are randomly permuted to compute (1) the probability 
that the proportion of the squared covariance between part and whole datasets that is accounted 



for by individual PLS axes is no larger than expected by chance, (2) the probability that the 
proportion of this squared covariance that is accounted for cumulatively by consecutive PLS 
axes is no larger than expected by chance, and (3) the probability that the correlation coefficient 
between PLS vectors of part- and whole-structure datasets is no higher than expected by 
chance. 

In the Sigmodontomys dataset, a run of 1000 permutations to test for significance of regressing 
the incisor module onto the whole mandible produces the following text output for PLS axis 1: 

Based on 1000 permutations, the observed percentage of squared covariance accounted for by 
PLS axis 1 (=56.0388%) is no larger than expected by chance with a P = 0.058. Cumulative 
covariance accounted for by PLS axes 1 through 1 equals 56.0388%, with a P = 0.058. The 
observed correlation between PART and WHOLE vectors in PLS axis 1 (=0.91508) is no 
higher than expected by chance with a P =0.001. Currently selected: MODEL #4, 
PART/MODULE #1. 

Thus, even though that, as expected, part and whole are highly correlated on PLS 1, this axis 
accounts only for 56% of the (squared) covariance between the datasets, which does not exceed 
the proportion of covariance accounted for by PLS 1 in about 6% of the randomly permuted 
datasets. Even though non-significant results like this can be often interpreted as indicative of 
absence of a clear association between the datasets being compared, such interpretation is not 
an option in the present case, as the datasets are partly redundant, so we know that they do 
covary. A more appropriate interpretation for this result is that the association between part and 
whole in this case is not one-dimensional, and thus it is not appropriately summarized by the 
56% of the covariance implied by PLS 1. One way to estimate the number of axes necessary to 
account for a significant portion of the covariance between the datasets is by testing the 
hypothesis that the first k PLS axes account for more covariance than expected by chance. In 
this test, a criterion for choosing the number of axes to interpret as those capturing a significant 
portion of the part-whole interaction could be the minimum number of PLS axes for which a 
significant P-value is obtained from permutation tests. In other words, we use the minimum 
dimensionality of a dataset for which a distinctly non-random portion of information is 
discernible. 

Back to the incisor module, we notice that to get a P < 0.05, we must choose the first three PLS 
axes. The text output of the latter reads: 

Based on 1000 permutations, the observed percentage of squared covariance accounted for by 
PLS axis 3 (=10.6797%) is no larger than expected by chance with a P = 0.671. Cumulative 
covariance accounted for by PLS axes 1 through 3 equals 83.4256%, with a P = 0.018. The 
observed correlation between PART and WHOLE vectors in PLS axis 3 (=0.81926) is no 
higher than expected by chance with a P =0.001. Currently selected: MODEL #4, 
PART/MODULE #1. 

which leads us to conclude that the association between incisor and whole-mandible is at least 
three-dimensional. Adding further axes to this space will continue to show significant results, 



but those could be accounted for, parsimoniously, by the significance obtained in the first three 
dimensions. 

As the above text describes, PLS axes 1 through 3 account for 83% of the squared covariance 
between part and whole. For the plot for PLS 3, we get: 

 

which suggests an association between the posterior landmarks in the incisor alveolus, the 
anterior portion of the coronoid process, the ascending portion of the incisor alveolus (also 
insertion site for masseters), molar alveolus, and, to a lesser extent, the angular process. 

Summarizing previous results, PLS analyses have suggested a relationship between the anterior 
portion of the incisor alveolus and: (a) molar alveolus (PLS 1, 2, and 3), (b) condyloid process 
(PLS 1 and 2), (c) ascending portion of incisor alveolus/masseters insertion (PLS 1, 2, and 3), 
(d) anterior margin of coronoid process (PLS 3), and to a lesser extent, (e) angular process (PLS 
1 and 3). Among these, the most consistent associations are (a) and (c), so we will look into 
those more carefully. 

First, we will repeat the PLS analysis using the same model, this time regressing the molar 
alveolus and the ascending portion of the incisor alveolus (putative modules #2 and #4, 
respectively). We do this to verify whether there is an association between the incisor module 
and these modules, because the pattern observed above could have been caused by only part of 
the incisor module being associated to parts of the other modules. 

When regressing the molar alveolus, as defined in model #4, onto the whole structure, we also 
find a three-dimensional solution (P = 0.02), whereby the most salient pattern is the high self-
correlation within the structure. Additionally, plots reveal associations between molar alveolus 
and: (a) condyloid process (PLS 1 and 3), (b) angular process (PLS 1, 2, and 3), and (c) 
coronoid process (PLS 2). Although a rather weak association is noted between molar and 
incisor in PLS 2, the most relevant aspect of this interaction is observed in PLS 3, in which the 
molar alveolus seems to covary largely with two landmarks of the incisor module. Since these 
are also the most variable landmarks of the incisor module, it appears that the association 
observed above is the result of either a poor integration within the incisor module as defined by 
model #4, or the presence of additional factors integrating these structures. Both of these 
scenarios can be turned into Mint hypotheses and tested alongside other models. 



Focusing for this example only on the incisor, we turn to regressing the ascending (ramal) 
portion of the incisor alveolus (module #4 of model #4), also insertion site for masseters, onto 
the whole mandible. In this case, PLS 1 accounts for 45% of the squared covariance between 
whole and part, for a P = 0.01. We can thus focus on this axis for this comparison, as PLS 2, 
even though it accounts for 20% of the covariance, the probability that this value exceeds the 
expectation from chance is P = 0.47. The deformation of the whole mandible implied by PLS 1 
is: 

 

Besides revealing substantial self-covariation, PLS 1 suggests an association between the ramal 
portion of the incisor alveolus and (a) the anterior portion of the alveolus, (b) the anterior 
margin of the coronoid process, (c) the condyloid process, and to a lesser extent, (d) the angular 
process. 

Although a full enumeration of the features suggested by these results lies beyond the scope of 
this guide, we can summarize some of their most consistent features and attempt to build a 
heuristic model based on them. 

First, there is evidence of integration between the anterior and ramal portion of the incisor 
alveolus, although it may not involve all of the landmarks/regions comprising these putative 
modules. To model this, module #4 can be extended to include only the five landmarks and 
semi-landmarks in the mental area of the jaw (see graphic below), while keeping the anterior 
incisor module intact. Second, we find little evidence of strong integration between incisor and 
molar alveoli, so we leave them as independent. Although further regressions would show a 
more complex pattern of integration involving the condyloid, angular, and coronoid process, 
only the aforementioned modification to model #4 is demonstrated here for illustrative 
purposes. 

Using the MODEL EDITING tool to modify module #4 of model #4 to include the incisor 
alveolus landmarks and semi-landmarks mentioned above (i.e., landmarks 16, 17, 64, 65, and 
66), we get the following model (#14 after appending it to ongoing analyses): 



 

(note how the blue, #1, and purple, #4 models overlap). Testing all 14 models using the 
γ*statistic with 1000 Monte Carlo replicates shows that the new model is not significantly 
different from the null expectation. Also, while it improves over most of the previous models, it 
still ranks second behind model #4, with γ* = -0.2888 (compared to -0.2958 for model #4) and 
jackknife support of 0.951for this rank (plus 0.049 for rank #1). 

Iteration of this process thus can be used both to discover modular associations and to revise the 
boundaries of existing modules. In Márquez (2008: Fig. 6), the preferred model includes eight 
modules, at least one of which corresponds to a region with too little variation to be associated 
to any other module. The entire incisor alveolus in this model is not regarded as an integrated 
module, but as contributing to the ramus and molar alveolus and only partially statistically 
independent from other mandible regions. 

Miscellanea 

Saving plots 

Anything shown in Mint’s plot area can be saved as an image document from the PLOT 

CONTROLS menu. Mint offers two general formats for saving images—graphic bitmaps and 
vector graphics. Available bitmaps formats are 24-bit JPEG, 24-bit compressed TIFF, 24-bit 
uncompressed TIFF, and Windows Bitmap. Available vector graphics formats are PDF, EPS 
Level I/Color, EPS Level I/B&W, and Windows Enhanced Metafile.  

TPS plot options 

Thin-plate spline plots of PLS axes of landmark data can be adjusted to enhance visualization 
using four parameters, accessible from the PLOT CONTROLS menu: 

• Deformation magnification: controls the factor by which shape variation is multiplied 
along the axis being shown. Default value is 1, which shows the implied deformation 
between the positive and negative values of the maximum absolute score along the axis 
shown. Allowed range is -5 through +5, with negative values reversing the direction of 
the deformation. A value of zero simply shows the Procrustes mean of the loaded 
dataset. 



• Grid extent: controls the graphical overlap between the grid and the Procrustes mean 
upon which deformations are shown. Setting it to 1 means that the grid fits tightly 
around the mean, whereas larger values mean that the grid occupies a larger plot space 
than the mean does. Default value is 1.1 (i.e., grid occupies approximately 110% of the 
plot space occupied by the Procrustes mean). 

• Grid density: controls the density of cells with which a deformation grid is depicted by 
assigning the number of cells on a side of the grid. Default value is 40 (i.e., 40 cells will 
be drawn along the long edge of the grid). 

• Vector magnification: controls the factor by which deformation vectors are drawn on the 
Procrustes mean. It differs from deformation magnification (above) in that only vector 
length is altered, artificially, whereas the deformation per se is left unchanged. This is 
only useful for visualization purposes, as it does not produce accurate patterns of 
variation. Default value is 0, which corresponds to the original magnification; values 
above and below 1 shrink and magnify vectors, respectively. 
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