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Reference Guide

Mint (Modularity and Integration tool for morphomietdata) implements most of the
procedures described in Marquez (2008) to tesioai pnodels of variational modularity in
multidimensional (mainly morphometric) data. Thegmam accepts both 2-D landmark and
non-landmark data, though landmark data are netdget the most out of the visualization
options in Mint. In addition to implementing goodseof fit tests foa priori models of
modularity, Mint allows editing models and re-comibg their modules to form additional,
mixed models, thus facilitating the implementatadrexploratory analyses of modularity and
integration based on a heuristic model search.

The main areas of Mint's interface (see picture@tbglare (1) an input panel, (2) a parameter
setting panel, (3) @aooLs panel that defines Mint’s main functions (i.e.jldumodels, edit
existing models, goodness of fit tests of modeis, Rartial Least Squares analysis of parts vs.
whole structures), (4) Basks panel which allows access to functions specifieaoh “tool”,

(5) alist elementwhich is populated by models, modules, or landsiaariables depending on
the context, (6) a plot area, and (7) a text bormntMint prints tutorial hints, status reports,
and result summaries.

The overall structure of Mint consists of threeibghases: first, landmark or non-landmark
data are loaded, which resets all parameters aecdhal structures to their initial values;

second, a model or set of models are loaded, ledilied, and/or combined; finally, these
models are either tested against data, or usestess individual modules on the entire dataset
using PLS. Outputs from such analyses are presastptbt and textual descriptions, and result
matrices can be saved as text files.
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In the following guide, one of the datasets usellanquez (2008) is analyzed in detail to show
the functionality of Mint. It corresponds to a sdepf 39 mandibles of the sigmodontine
speciesSigmodontomys alfgron which 18 landmarks and 51 semi-landmarks haes

digitized and superimposed. Prior to these analyt#a have been standardized to remove
allometric variation (for details, see Marquez, @0®\I of the files and datasets mentioned in
this guide have been included with this releasgliot, unless otherwise indicated.

Loading data

Before loading a dataset, the ‘Landmark data’ chexlshould be marked accordingly to
ensure Mint processes the data correctly. Formmatdo-landmark data consists simply of a
rectangular matrix with specimens or individuals@ss and variables as columns. For 2-D
landmark data, Mint accepts a matrix (“XY”) formaitith consecutive pairs of columns
corresponding toxy> coordinate pairs and rows correspond to indivgluan extended matrix
format (“XYCS”) in which a centroid size columnaslded as the last column of the set
(included dataset uses this format), and the TR8dbused by tpsDig and other programs in
the tps series by F. J. Rohlf. Right now, Mintldeato recognize only simple forms of TPS
files, in which the only present tags are “LM” dif®CALE”. Presence of other tags may cause
Mint to produce an error message and fail to loddtaset.

If two ruler points are included in data files fwale reference, their corresponding landmark
numbers should be entered in the “Ruler” boxesénimput panel. Pressing “Use ruler”
instructs Mint to scale all specimens so that #éizave the same ruler length, after which the
ruler points are dropped from further analyses.



After successfully loading a dataset, and pridotaling models, the only “tool” enabled in
Mint is MODEL BUILDING, which is discussed below. If data consist of faatk coordinates,
the plot area will show a GLS (Procrustes) supeositppn on these data.

After loading the dataset analyzed for this gujdaw. dat ), the plot area will show the
following graph:

g LI
% efwl, 7
A 5 =
- s laging
~ o y
) e O
’ — L “
; ‘ ; ‘ ' f"*ﬁ»:.:} / ‘ ‘*
f !"‘L"»':‘t‘

Loading, building, editing, and combining models

Models are loaded in Mint as protocol files, whaan be loaded individually or using a batch
file. When theBATCH LOAD checkbox is marked, Mint expects a text file viis as many
lines as models to be loaded, each line contaigiitngr the full directory path where the
corresponding file is located, or just the file raifthis is located in the same folder where
Mint is currently running. An example batch fileshaeen included in this release

( aws. nodel . bat ch12. t xt ) which instructs Mint to load the protocol files

j aws. nodel . XX. t xt, also included.

Each model protocol file must contain two columthg: first one must contain numeric labels
for each “module” or “part” being tested, and tee@nd must match these labels to individual
variables or landmarks. To be recognized as vélideach protocol file must list all
landmarks/variables (in the second column), and¢®) landmark/variables and modules/parts
must be numbered sequentially starting at 1. IntMitodules can overlap, which means that
variables/landmarks can simultaneously belong todwmore modules. In its present version,
howeverMint cannot handle nested modules, i.e. those in which all of the variables of a
module overlap with some of the variables of anothedule (see below for details).

Modules comprised of landmark should contain asi@&landmarkso qualify as shapes,
although ignoring this requirement will not prevéint from testing a model’s goodness of fit,
and this may be sometime desirable to group lanksnahose module association cannot be
determined from data (e.g., there is no varianse@ated to them). However, part-whole PLS
analyses involving a module/part with less thae¢ldandmarks will not run.

Twelve models have been included with this reledddint (filesj aws. nodel . XX. t xt),
corresponding to the 12 alternative hypotheseveeéifrom developmental theory in Marquez
(2008).



Standardization of the statistics used in the agpgraised by Mint requires the inclusion of a
“null” model representing total absence of inteigra{where each variable comprises its own
“module”). This model produces a diagonal-only a@aace matrix where all covariances
among variables/landmarks equal zero. It is noessary to include a null model among the
loaded alternatives, but if it ig, must be loaded only once, asthe first model in thelist, in
order to be properly recognized by Mint. If, upoading, Mint does not detect the first of the
loaded protocols to correspond to a diagonal-ordgdehit will create one automaticallgnd

will assign the first position to it.

Loading the 12 models included with this releaseng the batch file for added convenience)
will result in Mint populating the list element \WwitLl3 models. When using landmark data,
selecting models from the list will instruct Mird $how a representation of such models in the
plot area. In these representations, landmarkd#ianhg to the same module are mutually
joined by colored lines, where different modules distinctly colored. For example, loading
the included 12 models and selecting the firstiartge list (i.e., the “null” model,

automatically added by Mint) will produce the fallimg plot:
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in which there are no modules. Likewise, selectimaglel #9 will produce this plot:

which depicts three modules using different coldtisualizations like these are accessible at all
times while none of th€ ooL s buttons are selected.

Further model loads will not erase previous onaswill add them to the list of currently
loaded models, in the same order as they are Iclgd.

Models can also be built from scratch or editechgishe appropriate functions from theoLs
panel. Thus, selectilg ODEL BUILDING creates a “blank model” where no modules are



defined, and populates the list element with vdesior landmarks. ThEAsKs panel buttons
are then modified to show the functio®&LECT MODULE, UNDO LAST MODULE, DELETE NEW
MODULES, APPEND MODEL, andSAVE MODEL. The building process works as follows.

First, on the list element, select groups of vdeslor landmarks using the Ctrl and Shift keys
as usually done for multiple selections in Windotkernatively, when using landmark data,
clicking on the plot area will change the cursotlsat a polygon can be drawn around
landmarks using left-clicks of the mouse. Rightdouble-clicking after a polygon has been
drawn will cause Mint to select the enclosed landksan the list. After a selection has been
made, pressin§eLECT MODULE will mark the set as a module in the model and aiglplay it

in the plot area.

After at least one module has been selected, oljchkhUNDO LAST MODULE will erase the
previously selected module, which can be done timgile are no more modules selected.
Clicking onDELETE NEW MODULES Will erase all modules entered so far.

Finally, the functionAPPEND MODEL andSAVE MODEL instruct Mint to include the model
among the current list of models or to save it tex file as a protocol file, respectively. Note
that saving a model to a file does not automaticadid the model to the current list, or vice
versa. In order to append or save a model, eacdmark/variable must belong to at least one
module, or Mint will produce an error message.

The M oDEL EDITING tool allows modifying one of the currently loadaddels. Upon selecting
this tool, the list element is populated with therently loaded models, whereas thesk s

panel offers five new functions, nameB8gLECT MODEL, RESET SELECTION, REPLACE
MODEL, APPEND MODEL, andSAVE MODEL. At the beginning, only the first of these funatso

is enabled. Upon selecting a model from the lret,9ame button will turn to the function
seLECT MODULE and, accordingly, the list will be populated witie modules of the selected
model (indicated in the status text box at thedyojt From this point on, it is also possible to
use theRESET SELECTION function to start over the editing process.

After selecting a module, the list will now be pégiad with all of the variables or landmarks in
the dataset, and those corresponding to the seélewdule will be pre-selected. It is now
possible to modify this selection in the list oih@n using landmark data) by clicking and
drawing directly on the plot as described abovenodel building. When finished, clicking on
SELECT LANDM ARK S will mark the selection as the new module, and adgtivate the other
tasks associated to this toBEPLACE MODEL will delete the model being currently edited and
replace it with the edited version, which will leeh assigned the same label/number for further
analysesAPPEND MODEL will add it as the last model of the current ligith a new

label/number, an@AVE MODEL will prompt the user to save the model as an iddizi

protocol file.

Lastly, Mint offers the option to mix the individuaodulesdefined within loadedhodelsto
form new models for analysis. This is useful urgl@umber of scenarios, such as when
hypothesizing patterns of modularity resulting frtra cumulative effect of spatially localized
developmental processes throughout ontogeny, glgito increase the robustness of the



estimates of goodness of fit statistics (see beldWwe¢ComMBINE MODELS task is accessible
from theM ODEL TESTING tool, and enabled after two or more models haen Iselected from
the list element by clicking on tlf®eLECT MODEL button.When searching for model
combinations, Mint ignores model #1 (null modd), asitsinclusion prevents the search from
converging, as well as nested (hierarchical) modules (sddigadion below), but does an
otherwise comprehensive search of all possible teathmbinations. Therefor#his search
process can take quite long to finish, depending on the number of models initially seddc
during which regular status reports are printethecommand windowhat opens along with
the main Mint interface. After the search is ovke newly found models are added to the list
of currently loaded models and become immediatedyiable for further analysis. It is highly
recommendable to save loaded models at this goyrtlicking onSAvE ouTPUTS, and then
selectingSAVE CURRENT MODELS. Models are then saved as separate protocol tdeghich
Mint automatically appends a numeric label.

Testing goodness of fit of models

In goodness of fit (GoF) tests we are interesteassessing whether a pre-defined model or
hypothesis is good enough to explain variation dagset. In practice, we want to test the null
hypothesis that any discrepancy between data anelngsmall enough that it could be due to
chance. In Mint, the interest is on testing the @bmodels depicting tight associations within
integrated sets of traits—variational modules—ao@ssociations with traits outside of those
sets. The three essential components of a GoRrest

1. An expectation for the data under the assumptianttie is model is true;

2. A GoF statistic that measures the similarity betwtes expectation and the data;

3. A distribution for this statistic under the nullgothesis that expected and observed
patterns differ only by chance.

Expectations from models

The rationale used by Mint to generate expectafionthe data given the hypotheses under
scrutiny is described in detail in Marquez (20@gsically, the aim is to compute the
covariance matrix that the data would be expeaqudduce if the model being tested was true
and variances and covariances were measured wighaut In models of modularity, the
expectation is that phenotypic variables or morpgiglal regions comprising a variational
module are mutually integrated but statisticallyapendent from other such modules. Because
this expectation takes into account both withird Between-module associations, it seems
reasonable to state them in terms of full covaeamatrices, so that GoF statistics (see below)
can assess both levels of integration simultangolible alternative, i.e. treating expected
modules as isolated data partitions, has the désddge that tests must focus only on between-
module associations, e.g. by asking whether thegiamall enough to justify defining the
corresponding partitions as modules. To obtaircthariance matrices expected under models
of modularity, Mint thus assumes that the data gedwes have a modular structure, by
partitioning the entire data space into orthogaudlspaces (i.e. modules) and computing a
covariance matrix based on this modified data sirec



In practice, partitioning the data space into madsubspaces is carried out by stacking
together as many replicates of the same datasebdsles there are in a model, so that there is
a full dataset per module, and then making eacheasi¢ not belonging to a module equal to
zero in its corresponding dataset copy. For exaniphee wish to compute an expectation from
a model with three modules containing the coordisn&br landmarks/variables 1-8:

[123][456][7 8]

where the numbers in brackets represent the landvariables included in each module, we
first partition the full dataset with observations and eight variables into three sulesdy
forming the extended data matrix

0O 0 0 00 0 7 8

in which each element corresponds either to orikeoariables (vectors8) or to a vector of
zeros, each of length(Marquez, 2008).

In the general case, the covariance md&ginbtained from this matrix equals the observed
covariance matrix in all elements but those comwasdng to covariances between modules,
which equal zero. When using landmark data, howev&LS superimposition & is carried
out prior to computing its covariance matrix, teganto account the covariances normally

induced by this step (Walker, 2000).

The process described above is valid for modelghich modules do not overlap (i.e. do not
share variables/landmarks), as they are expecteavi® covariances equal to zero. When two
modules overlap, possibly due to two or more déifeprocesses affecting the same trait or
region simultaneously or at different points durargogeny, such modules cannot be longer
expected to give rise to orthogonal subspacesotuies overlap only partially, so that each
still contains mutually uncorrelated elements, ttiexir subspaces will be oriented obliquely in
the full data space. In its current implementatidimt simulates module (partial) overlap by
distributing the variance of each shared elemenakgamong the overlapping modules, so
that their variances are unchanged in the full danae matrix (see Marquez, 2008 for further
details). Future versions will implement alternativays for partitioning variation at
overlapping regions.

Currently, Mint ignores expectations from modulesttoverlap completely (i.e., nested or
hierarchical modules), because in such cases nodafene subspaces embedded within larger
subspaces, so that in the present approach thegaiapg integrating the same module. Testing
whether a module is nested within another modulg require using a different kind of
approach, in which covariances are fine-tunedflecethe differences in integration expected
between embedded and embedding modules.



Goodness of fit statistics

In Mint, GoF tests are carried out by comparingensd and expected covariance matrices, for
which three choices of GoF statistics are offergd{=Gamma®*, Richtsmeier et al. 2005),
angles between the subspaces spanned by thesenoeanatrices (Zelditch et al. 2006), and
matrix correlations (Dietz 1983). Only one of thér), however, has been fully standardized

to remove artifacts introduced by differences i tlumber of fixed parameters in models. As
discussed in Marquez (2008), this standardizasdadilitated by the fact that scales linearly
with the number of “zero elements” (inter-module@sations) in covariance matrices, which
allows using simple linear regression as the staliziion technique. The implication is that
therobustness of y* islargely a function of the number of modelstested simultaneously. If
angles between subspaces or matrix correlationssae instead gf*, additional observations
should be carried out to make sure that resultaatreverly influenced by the number of fixed
parameters in models (e.g., by plotting the statistlue against the number of zero elements in
models).

In Mint, y* standardized values are computing by (1) scading (2) regressingvalues on the
number of zeros of each model, with

y = trace {§-S)(S-S)" }

(Richtsmeier et al. 2005), wheSeandSo are the observed and expected (i.e., derived Xgm
covariance matrices, respectively. Scale@lues are obtaining by dividing each modelisy

the maximuny value,ymax Which is obtained by comparing the data agamsnull (diagonal-
only) model. Therefore, scalgdsalues are bound to the interval [0, 1]. This dtadization is
done to allow comparing results from different séegfi.e., species), and does not change the
outcome of the regression within a sample. NotertbH distributions (see below) are
computed based on unstandardized values.

Next, each scalegvalue is regressed on the number of zeros in eadel, representing
expected associations between variables postulateelong to distinct modules, to remove the
effect of the number of estimated parameters. e $tandardized statistic is defined as the
residualy* = y —f(2), wheref(2) represents the linear function relating the valoly computed
from all possible models of modularity to their igsponding counts of zero elememt€ven
though it would be computationally unfeasible favahstudies to include all possible models,
the fact that scalegvalues are restricted to the interval [0, 1], veh@rcorresponds to the
observed covariance matrix and 1 to the null mofleb integration, implies thdtz) must also
vary within these limits, which are sufficient tefahe the linear function for any given set of
variables. Given a large random sample of modatb, walues symmetrically distributed
about their meark(y) =f(2) and thu€(y*) = f(z). Consequently, situations whefe< 0
correspond to models that postulate no integrdtien average covariances are hypothesized to
be zero) for covariances whose observed valuem@eed low, and conversely cases whére

> 0 correspond to models that postulate no integrdor covariances whose observed values
are actually large. Therefore, best-fitting modeks those with the lowesgt value. This
approach, used in Parsons et al. (2012) diffeghityi from the one used in Marquez (2008),



wheref(z) was estimated via regression using only the nsoideluded in a study, as opposed
to all possible models.

The angle) between two subspaces is the minimum angle witkclwihe subspace spanned by
a sample must be rotated to maximally align it wité subspace spanned by the other sample
(Zelditch et al. 2006). Mint uses the formulaticesdribed in Zelditch et al. (2006: Appendix

A) to determine the value éfbetween expected and observed covariance matrices
(standardized by its maximum value as describegtefmyy). This implementation requires an
a priori definition of the number of axes used &filtk the subspaces being compared, to ensure
that bases of the same size (i.e., number of p@hciomponents—PCs) are rotated. Because
dimensionality of expected and observed matricesl m@t coincide, additional criteria must be
used to determine the extent of the variation cheaatrix that is included when computing the
0 statistic. Mint offers three options for thesdamia: (1) choosing number of PCs based on the
percentage of the variance of a sample that theyumt for, (2) directly entering number of
PCs, and (3) choosing PCs sequentially until tferéince in variance accounted for by two
consecutive PCs is smaller than a pre-determinke v&ollowing, there is a detailed
description of these choices.

When choosing the number of PCs that account forak#e variance as a criterion, Mint
attempts to include as many PCs as needed sattleststX% of the variance of both matrices
being compared is included. Because the numbe€sfifas to remain constant, this means that
one of the matrices may be represented by moreXb@of the variation. However, it also
means that the percentage of variation includeddts is limited by the size of the smallest
subspace, i.e. the one with fewer dimensions. Qures#ly, it is possible to have a test in
which 100% of the variation in a sample is compagainst less than X% of the variation in
another. Similarly, when the number of PCs is chakieectly, the first X PCs are used for
computingd, which means that different proportions of variangay be used for the samples
being compared. Finally, choosing number of PCedas the change in the proportion of
variance accounted for by consecutive PCs couid b&ny instances a less arbitrary criterion,
as it assumes that informative dimensions in a amitl be those that capture the best defined
axes, whereas poorly defined, indistinct axes miakst likely correspond to error variation,
commonly assumed to be isotropic (Anderson, 1968ecting this option has the same
limitations as using percentage of variance, and this criterion is likely to be met
asymmetrically in both samples being compared.

The third option offered by Mint for a GoF statistomputes matrix correlations between
expected and observed covariance matriggs As implemented herein, significance testing of
matrix correlations is not based on Mantel testd, thus this procedure does not permute
covariance matrices directly. Significancergfvalues is tested using the same Monte Carlo
procedure used for the other two statistics, asdriteed below. In Mint, matrix correlations

are carried ougxcludingthe diagonal of the covariance matrices, and tiesninimum
correlation (between data and the null, diagon&-orodel) is always zero. Also, it is worth
remembering that magnitudesrgf values are interpreted so that higher values éclims1)



indicate similarity between data and model, whenedlse other two statistics*(and ),
smaller values (closer to 0) are the ones thatatdisimilarity.

While all of these statistics are used for a commanpose, it is important to keep in mind that
they do not measure the same properties of obsandéxpected covariation patterns. In fact,
they measure quite different properties. Consedyenis possible to obtain different and even
contradictory results from their implementationyshrequiring further inquiry to determine the

origin of such differences.

Test distributions

Whereas GoF statistics measure similarities betwbsarved and expected covariance
matrices, the null hypothesis that the value of gtatistic is no larger than expected by chance
is tested in Mint by comparing it against a nuitdbution for this statistic, i.e., a range of
values for the statistic that can be obtained shthé null hypothesis be true. Such test is
rejected P < 0.05) for sufficiently large differences betwesyserved and expected covariance
matrices (i.e., for large* or 9 values, or low absolutg, values).

To compute a null distribution, Mint implementsa@metric (Monte Carlo) approach,
described in detail in Marquez (2008), in whiIipseudo-random covariance matrices are
generated from a Wishart distribution parameterized theexpecteaovariance matrix and

the size of the sample being tested. A Wishartitigion is the probability distribution of the
covariance matrix (actually, sums of squares andszproducts matrix) of a multivariate

normal population, and in the present test simsltite range of possible matrices that could be
obtained from the sampled populations should théehof modularity be true. To obtain a
distribution of the GoF statistic of choice, Mirdmaputes the value of the statistic between each
random matrix and the expected mat8)( A P-value for the null hypothesis is then
calculated by dividing the number of instances malv the GoF statistic computed between a
matrix from the null distribution and the expectedtrix is larger, in the case ¢f and ¥, or
smaller, in the case ofy, than the value for the statistic obtained betwsgrected and

observed matrices, by the total number of MontddOaplicates. Thus, significaftvalues (<
0.05) correspond to cases in which expected anelhodd matrices are too different to be
considered as part of the same distribution.

Jackknife support and model space

Before demonstrating this approach on$healfaridata, an additional statistic, “jackknife
support”, is introduced. As shown below and disedsa Marquez (2008) alternative models

of modularity are often similar enough that thegcgérnment by Monte Carlo tests may require
extraordinarily large sample sizes. Therefore, umdeny circumstances it may be preferable to
focus comparisons among alternative models nojusthich ones are significant, but also
which ones provide a better fit to the data. F& flurpose, Mint ranks the models from best to
worse fit after running a test of several altewetnodels. In order to estimate the confidence
of such ranks, Mint allows randomly resampling ¢higinal dataset to determine the proportion
of random replicates in which model fit rankinge #re same as those observed using the
original dataset. These proportions, jointly terrjaszkknife support because resampling is



carried out by dropping a random set of individdedsn the sample, provide thus a measure of
confidence for all observed ranks, although intengk often be focused on the best fitting
models.

Mint is instructed to compute jackknife supportreguesting re-sampling of one or more
replicates in the box label@tb. JACKKNIFE REPS, and by specifying how many individuals to
randomly drop in each replicate in the box labéle@aMPLE TO DROP. In addition to
computing jackknife support, Mint will calculatecanfidence interval for the GoF statistic,
using the level specified in the box labetédCONFIDENCE.

The rationale described above for comparing altermanodels based on their fit rankings can
be further extended to interpret the full set direa of GoF statistics for a single dataset as a
set of distances between the data and each mduekegulting vector of data-model distances
can in turn be interpreted as a set of coordirfatethe dataset within an abstract space defined
in terms of model similarity, i.e., a “model spac&bF statistics defining this model space are
included among Mint’s standard outputs, and camiperted into external software for further
analysis. In Marquez (2008), for instance, multigbecies were compared using angles
between those data-model distance vectors to asgesspecific similarity with respect to
underlying patterns of integration and modularityd resulting patterns were further compared
against patterns of phylogenetic relatedness.

A worked example

After loading the data and model files includednihtis releasg @w. dat and

j aws. nodel . bat ch12. t xt , respectively), Mint should list a total of 13 neds] with the
null hypothesis of absence of modularity correspamtb model #1. To get the full set of
models produced by searching all possible modutebamations used in Marquez (2008),
models #2 through #13 can be selected and submitteach search by using tG@&mMBINE
MODEL Stool accessible from thd ODEL TESTING tool (see above for details). In this case,
there are 1307 model combinations.

Upon selecting th& ODEL TESTING tool, two or more models must be selected inigte |
element and marked for analyses by clickindsaneCcT MODELS. For this example, analyses
will be based on the full set of 13 models. CligkinRuUN TEST will instruct Mint to use the
selected GoF statistic and Monte Caxlto test all of the selected models against thédda
dataset. All of the runs shown here are based ar1000 Monte Carlo replicates. In most Mint
functions, it is possible to check the commanddk)lacreen that opens along with the main
interface window for progress updates of curreiatysis and error messages.

Run #1: models tested usiytg

After running the analysis, the list element of iterface shows the 13 models sorted from
smallest to largest value. Best fitting model among the alternatiiethus #4, followed by
#6, #7, #12, #9, #5, and so on. Worst fitting magéll (null model). The graph shown in the
plot area, corresponding to the best-fitting mqéd):
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is a histogram of* values over 1000N) runs for the model selected on the list. Thevammo
thex-axis indicates the approximate location of theeobsd value for the GoF statistic. The
text on the bottom panel of the interface will gava quick summary of results, in this case
reading:

Currently selected model is #4, whose standard ganvalue with respect to observed data
equals -0.2952. P-value for the null hypothesid tha data are no more different from this
model than expected by chance is 0.721 based aslek/Monte Carlo test with 1000
replicates. The arrow in histogram (above) indicatiee position of this model with respect to
the null distribution for this hypothesis.

The observeg* value (-0.2952) is the lowest among the givepralatives, and a 95%
confidence interval can be obtained by using thkkaife support task (see below). The value
of y* differs between the text and the histogram beedls former has been standardized to
facilitate comparisons across samples. Phalue shown for this model (=0.721) indicates that
the observeg* value between data and model is smaller than%B2fithey* valuessimulated
under the null hypothesis.

| some occasions, the P-value for a model may elj(ia., 100% of the simulated values
exceed the observed value). Although this seems counterintuitiveshiould be remembered
that this procedure does not yield a symmetrigitistion and therefore the normal-like
appearance of these results is most likely conseguef the relatively small sample sizes used
herein. With large enough sample sizes (i.e., alR0@3, the distribution should take its proper
form—that of a right-tailed distribution.

The button on the right top corner of the grapbvadl swapping between these results and the
graphic representation of the selected model.ithdfise, model #4 is represented as follows:



Selecting a different model will show a differest sf results. For example, selecting the
model ranked second (model #6), displays the foliguext:

Currently selected model is #9, whose standard ganvalue with respect to observed data
equals -0.26724. P-value for the null hypothesa the data are no more different from this
model than expected by chance is0.921 based ostzaww/iMonte Carlo test with 1000
replicates. The arrow in histogram (above) indicatiee position of this model with respect to
the null distribution for this hypothesis.

In this example, none of the models, except fomthiémodel is rejected™value > 0.05) when
tested using the Monte Carlo approach.

Run #2: models tested using angles between sulspace

Running the analysis using the default parametecsinpute angles between subspaces (No. of
PCs is chosen so that at least 90% of the vari@rnoeluded in comparisons) supports model
#12 as the best fitting alternativié € 0.96), followed by models #5, #10, #9, #11, aawdn,

with model #1 as the worst one € 0.019). The histogram for the angle statistrcnfiodel #12
looks like this:
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in which angle values are given in radians. Sintibgprevious results, output text reads:



Currently selected model is #12, whose standardeafiig radians) with respect to observed
data equals 0.19706. P-value for the null hypothésat the data are no more different from
this model than expected by chance is 0.961 basedwishart/Monte Carlo test with 1000
replicates. The arrow in histogram (above) indicatiee position of this model with respect to
the null distribution for this hypothesis.

Graphically, model #12 is represented as follows:

Run #3: models tested using matrix correlations

Analyses based on matrix correlations also retuwdeh#12 and #1 as best and worst fitting,
respectively, while differing from previous teségarding the rankings of other models.
Histogram for model #12 is:
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and the output text reads:

Currently selected model is #12, whose standardixedrrelation with respect to observed
data equals 0.88548. P-value for the null hypothésat the data are no more different from
this model than expected by chance is 1 basedwislkart/Monte Carlo test with 1000
replicates. The arrow in histogram (above) indicatiee position of this model with respect to
the null distribution for this hypothesis.



It seems worth noting that models #4 and #12 sup@dry these three methods are not
mutually exclusive, as all of the putative modudéshe former are completely embedded in
one of the two modules of the latter. One integdreh of this discrepancy could be that
methods based in observed angles and matrix cboretzare more sensitive than the Monte
Carlo approach to non-zero, but low, covariancesranthe six modules in model #4.

Jackknife support

To activate thedACKKNIFE SUPPORT task, the number of replicates entered in thelhbgled
NoO. JACKKNIFE REPS should be at least one. For this example, 100icetes were run using
v* as the GoF statistic, dropping 10% of the speaisnger jackknife replicate, and computing
95% confidence intervals for the statistic.

After analyses are finished, a plot of the GoFsiatand its confidence interval is shown for
all models simultaneously:

Observed gamma* value and 95% CI
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Models

As in previous analyses, a button is supplied it plot for model visualization when using
landmark data. The text output for the model ocaupshe first position is:

Currently selected model is #4, whose standard gainvalue with respect to observed data
equals -0.2952 (jackknife 95% CI = [-0.30278,26556], based on 1000 replicates). Among
the models included in the analysis, model #4 ratiksThis rank was observed for this model
in 100% of the jackknife replicates (i.e. jackkrstgport = 1).

The reported jackknife support for this model (sricates that in each of the 1000 jackknife
replicates for which @* value was calculated, model #4 was the besh§ttlternative. In fact,



visual inspection of the plot shown above suggististhe confidence intervals of most models
overlap, indicating that similar degrees of supjpoet obtained for these models, suggesting that
further refinement, e.g., via model combinatiossjesirable to obtain better resolved patterns.
For these models, Jackknife support estimates are:

Model # Original rank  Jackknife support for orig. rank

4 1 1.000
6 2 0.876
7 3 0.457
12 4 0.260
5 0.409
6 0.536
7 0.522
8 0.649
10 9 0.925
13 10 0.670
2 11 0.700
11 12 1.000
1 13 1.000

These results indicate, for example, that modes#Beeighth best fittingnodel in 64.9% of

the jackknife replicates. In general, stronger supim more models and ranks indicates a more
robust identification of the position of the datas&h respect to alternative models (i.e., in
model space). Full set of outputs include, in addito jackknife support for each original rank,
the percentage of replicates in which each modales each rank (see below for details).

Saving results

After successfully running any of the availablegdeMint allows saving results by clicking on
the SAVE oUuTPUTS button. What saving options appear in the list ffugos up depends on what
analyses have been performed. Thus, running Moait® @sts adds two saving optioiSaYE
TEST STATISTICSAND P-VALUES, andSAVE X% CONFIDENCE LIMITSOF NULL DISTRIBUTION),
jackknife support estimation adds four saving a@i¢AVE JACKKNIFE SUPPORT VAL UES,

SAVE JACKKNIFE SUPPORT VALUESFOR ALL RANKS, SAVE MODEL RANKSFOR ALL JACKKNIFE
REPS, andSAVE CONFIDENCE INTERVALSFOR TEST STATISTIC), and searching for model
combinations adds one optiodBA(E CURRENT MODELS).

* SAVE TEST STATISTICSAND P-VALUES produces a matrix with as many rows as models
were selected for tests and three or four columdaglels as sorted according to order in
which they were loaded in Mint (or the order thepear in the batch file). Columns #1



and #2 contain values for the GoF statistic imats form and after standardization by
its maximum possible value, respectively. The ¢adtmn contains thB-value

obtained as described above from Monte Carlo t€stl, when analyses are based on
they* GoF statistic this output file contains four cuoins, the third one corresponding
to y* values (i.e., standardizedcorrected by the number of fixed parameters in
models).

* SAVE X% CONFIDENCE LIMITSOF NULL DISTRIBUTION, where X equals the percentage
of confidence specified for jackknife support tept®duces a matrix with three
columns and as many rows as models were seleatediddysis (sorted in the same
order as they were input). The first column corgaire percent confidence for the
interval, whereas the second and third columnsatoie lower and upper confidence
limits for the raw GoF statistic, computed as tbheesponding percentiles from the
distribution of values obtained from Monte Carlplreates.

* SAVE JACKKNIFE SUPPORT VALUES produces a data vector containing the estimates of
jackknife support for the models selected for asiglysorted in the sequence they were
loaded).

*  SAVE JACKKNIFE SUPPORT VALUESFOR ALL RANKS produces am x m matrix (m=
No. of models selected for analysis) where rowsaggnt models and columns ranks,
such that each cell contains the frequency withkctvieiach model was observed to
occupy each rank in jackknife replicates.

* SAVE MODEL RANKSFOR ALL JACKKNIFE REPS produces a matrix in which columns
contain the sequence of models sorted by the \dltleeir GoF statistic in each
jackknife run (i.e., each column contains the ressagsociated to a single jackknife
replicate).

*  SAVE CONFIDENCE INTERVALSFOR TEST STATISTIC simply contains two columns with
the lower and upper confidence intervals, as estidhirom the jackknife replicates, for
the GoF (standardized) statistic. These are theegadent to the plot after the
resampling procedure is finished.

* SAVE CURRENT MODELS exports properly formatted individual protocokslfor each
model currently loaded. After selecting this optiardialog prompts the user to assign a
file name and folder location for the models besaged. Mint then appends a numeric
label to the chosen file name to identify the medweding saved, which are exported in
the same order as they were loaded, edited, creatdtbr discovered.

Part-Whole Partial Least Squares

In part-whole PLS analysis, a subset of varialdegegressed onto the full set to which it
belongs, with the objective to detect features othan the subset’s variables that covary with
them. In other words, the main aim is to determwhether a putative module is actually
embedded within a larger module or subspace. Aatditly, the technique is useful to visualize
intra- and inter-modular variation, which can léadhe postulation of alternative module
boundaries, or even alternative modules.



Consider, for instance, a structure that is partéd to define four modules, namely {A}, {B},
{C}, and {D}. A PLS regression of, say, partitiol} onto the full, intact structure {A+...+D}
will normally produce orthogonal paired vector§af and {A+...+D} which account for
decreasing portions of the covariance betweentbesets. The first PLS axis, for instance, will
account for most of the covariation between the¢ ad the whole, and it is naturally expected
to show the covariation of {A} as a partition ani{A} as an embedded subspace within
{A+...+D}, as it would be similar to regressing a i\asle onto itself. The interest, however, is
not on this expected association, but instead fxos what other variables, from partitions
{B}, {C}, and {D}, also covary with variables in pdtion {A}. For instance, a PLS axis
showing covariation of both {A} and {B} when {A} isegressed onto {A+...+D} would
suggest that maybe {A} and {B} comprise a singledule instead of two. Furthermore, this
regression could also reveal an association betygeand only some of the variables in other
partitions, or between part of {A} and parts of etlpartitions, which could lead to a complete
reformulation of the boundaries of the putative mled which could be resubmitted to the GoF
tests to compete with previously defined modelshasvn in Marquez (2008).

A potential caveat of this method is that a partlelregression will tend to preferentially show
covariation between a partition within the wholeisture and the partition in isolation.
Therefore, a situation where only part of a pugativodule is actually an integrated module

may be hard to detect in this analysis. Using #reesexample as above, this means that even if
only part of {A} covaries with variables in otheagitions, say {B}, the fact that {A} is

regressed onto a dataset containing {A} may terfd¢orably show covariation @fll of {A}
variables with {B}. Likewise, variables in {A} unaeelated to {B} may obscure any

relationship between {A} and {B} in favor of a simger integration within {A}. While these
situations should produce a clear signal in PLS d&peyond the first, a strategy that can be used
to investigate the integrity of putative modulessists on corroborating that associations
among partitions are observed irrespective of wbidese partitions is regressed on the

whole structure. For example, if the PLS 1 axissghan association between partition {A} and
part of partition {B} when regressing {A} onto {A+.+D}, then regressing {B} onto

{A+...+D} should also show covariation between {A} @{B}, even if this time the

association is between all of {B} and part of {Ah many cases, it is reasonable to expect that
the partial associations are evinced in both regras, although whether they appear associated
to PLS 1 or higher-order axes may depend on tleagith of the covariation of a partition’s part
with respect to the overall integration within #atire partition.

In PLS, a measure of “relevance” of an individuakas given bysingular valueg.;, which
measure the amount of variation in a dataset ateduar by the other dataset that is captured
by thei™ PLS axis. The proportion of squared covariancer®et part and whole accounted for
by a PLS axis is computed in Mint 2%/, 1 (Rohlf and Corti, 2000). To test whether a
singular value is larger than expected by chandet Mhplements a permutation procedure
(Rohlf and Corti, 2000), in which PLS vectors anthslar values are re-computed between the
part dataset and random permutations of individ(ralss) in the whole dataset. A significant
PLS axis is thus the one that accounts for a lggggvortion of the squared covariance than
obtained from the random permutations.



In Mint, selecting thd>ART-WHOLE PLS tool results in the list element to be popmdawith all
currently loaded models, with the exception of made(null model), as a “part” in this case is
not actually a partition. As mentioned above, wheimg landmark data, partitions in PLS
analyses should have at least three landmarksmirwili produce an error message. The first
step in a PLS analysis is to select a model, aftech the list element and plot will show the
individual modules postulated by this model artseeaecT PART tool will become available.
At this point it is also possible to change the eiagklection by clicking on the appropriate
tool. Selecting a part will cause Mint to carry auPLS regression of this part onto the whole
dataset, while at the same time allowing to chahgeselected part. The image shown in the
plot area will show the variation implied by PLSwhereas the list element will allow selecting
any of the available PLS axes. When using non-lamrdata, the plot will show PLS vector
coefficients, whereas when using landmark datgkbiewill show the deformation implied by
the selected axis (with or without a TPS grid, elected using the provided button). Finally,
clicking onSHow PART AXES button allows swapping between PART and WHOLE ltesu

After using thePERMUTATION TEST task to test for the significance of individual®baxes, a
text summary of these and general PLS tests isaghesg in the status box for models currently
selected in the list element.

Lastly, choosing th&avE RESULTS task displays a list of available outputs, desatibs
follows:

* SAVEPLSVECTORSOF WHOLE DATASET produces a matrix of coefficients of the
PLS axes obtained for the whole-structure dataseted from larger to smaller singular
values. Note that in the case of landmark datantimber of rows equals the
dimensionality of the shape of the whole structuteiee the number of landmarks
minus four. The number of PLS axes (columns) egha&slimensionality of the
smallest dataset (i.e., part data).

* SAVE PLSscoRESOF WHOLE DATASET produces a matrix of individual scores on
each PLS axis.

* SAVE PLSVECTORSOF PART DATASET produces a matrix of PLS axis coefficients for
the part selected for analysis, similar to the progluced for the whole dataset.

* SAVE PLSSCORESOF PART DATASET produces a matrix of individual scores of part
data on PLS axes, similar to the one producech®mthole dataset.

* SAVE SINGULAR VALUESAND PROPORTIONS OF CAPTURED COVARIANCE produces a
two- or four-column matrix containing the singuwealues of each PLS axis (rows) in
the first column, the proportion of squared covacg@accounted for by each PLS axis in
the second column, and, if permutation tests haes lbounP-values for the null
hypothesis that singular values account for no neox&riance than expected by chance
in the third column an@&-values for the null hypothesis that cumulative artance
accounted for by successive PLS axes is no langer éxpected by chance in the fourth
column.

* SAVE PLSANGLESAND CORRELATIONS produces a two- or three-column matrix
containing the angles in degrees between eacloppart and whole PLS axes (rows) in



the first column, the Pearson correlation coeffitigetween part and whole PLS axes in
the second column, and, if permutation tests haea lbunP-values for the null

hypothesis that this correlation coefficient islager than expected by chance in the
third column.

A worked example

Using the dataset and model files included witk teleasej(aw. dat and

j aws. nodel . bat ch12. t xt , respectively), a part-whole PLS analysis is earout to
demonstrate its main functionalities and applicaidAfter clicking on th€ART-WHOLEPL S

tool button, we proceed by selecting a model windhprovide the part(s) to regress onto the
full structure. As done in Marquez (2008), the @rohypothesis will be model #4, because this
is the one in which the mandible has been pargtionto its six developmental modules.

First, let us regress module #1 (anterior portibthe incisor alveolus) as the “part” in the part-
whole regression. The TPS plot Mint produces shtngd like this:

whereas the text output informs us that:

Currently selected PLS axis (#1) captures 56.0388%e squared covariance between PART

and WHOLE datasets. Correlation between the PL®x®of these datasets is 0.91508, which

corresponds to an angle of 23.7829 degrees. Rumyttetion tests to assess the significance of
these values. Currently selected: MODEL #4, MODIRART #1.

As expected, there is ample similarity betweenasgect of the whole structure captured by
PLS 1 and the selected part, a result that is boreded when looking at the TPS plot for the
part (by clicking orSHow PART AXES):



which shows a similar pattern of variation to time @bserved for theame landmarks in the
whole structureWhen interpreting these results, we note thaafiaf the landmarks in

partition #1 show the same pattern of intra- oersgartition covariation, which may reveal lack
of integration within the putative module or, mdikeely, absence of enough variation in some
of its semi-landmarks. More interestingly, from thieole-structure plot we note that some of
the landmarks that do not belong in partition #dns¢o covary along PLS 1. Specifically, the
upper edge of the molar alveolus, part of the aarguiocess, and the condylar process seem to
“respond” to the regression in a similar way asittegsor does, thus suggesting an potential
association among these regions.

In this comparison, PLS 1 accounts for about 56%h@fsquared covariance between part and
whole, indicating that other axes may contain rafwnformation. Thus, PLS 2, which
accounts for 17% of the variance, produces theviefig deformation:

in which, once again, an association between incmolar, and condyloid process is
suggested, along with covariation with other regj®uch as the rostral and caudal ends of the
masseter insertion. Before advancing any furtiheygh, it seems appropriate to test for the
significance of singular values and correlation®agPLS axes by carrying out a permutation
test. Permutation tests in PLS analyses usuallgisban randomizing one of the datasets to
simulate the absence of association between bédiseta (Rohlf and Corti, 2000). In Mint,
specimens in the whole-structure dataset are ralydeenmuted to compute (1) the probability
that the proportion of the squared covariance betvpart and whole datasets that is accounted



for by individual PLS axes is no larger than expddty chance, (2) the probability that the
proportion of this squared covariance that is antedifor cumulatively by consecutive PLS
axes is no larger than expected by chance, arnttié3)robability that the correlation coefficient
between PLS vectors of part- and whole-structutasgas is no higher than expected by
chance.

In theSigmodontomydataset, a run of 1000 permutations to test fpriicance of regressing
the incisor module onto the whole mandible produbedollowing text output for PLS axis 1:

Based on 1000 permutations, the observed percentiegguared covariance accounted for by
PLS axis 1 (=56.0388%) is no larger than expectgadtmnce with a P = 0.058. Cumulative
covariance accounted for by PLS axes 1 throughublkscp6.0388%, with a P = 0.058. The
observed correlation between PART and WHOLE veatd?d S axis 1 (=0.91508) is no
higher than expected by chance with a P =0.001r€hily selected: MODEL #4,
PART/MODULE #1.

Thus, even though that, as expected, part and venelbighly correlated on PLS 1, this axis
accounts only for 56% of the (squared) covariarete/éen the datasets, which does not exceed
the proportion of covariance accounted for by PLB dbout 6% of the randomly permuted
datasets. Even though non-significant resultstlike can be often interpreted as indicative of
absence of a clear association between the datssatscompared, such interpretation is not
an option in the present case, as the datasepaehg redundant, so we know that they do
covary. A more appropriate interpretation for tlasult is that the association between part and
whole in this case is not one-dimensional, and thissnot appropriately summarized by the
56% of the covariance implied by PLS 1. One wagdtimate the number of axes necessary to
account for a significant portion of the covariabetween the datasets is by testing the
hypothesis that the fir&tPLS axes account for more covariance than expéstetiance. In

this test, a criterion for choosing the numberxdasato interpret as those capturing a significant
portion of the part-whole interaction could be thmimum number of PLS axes for which a
significantP-value is obtained from permutation tedtsother words, we use the minimum
dimensionality of a dataset for which a distingtlyn-random portion of information is
discernible.

Back to the incisor module, we notice that to get<a0.05, we must choose the first three PLS
axes. The text output of the latter reads:

Based on 1000 permutations, the observed percentfagguared covariance accounted for by
PLS axis 3 (=10.6797%) is no larger than expectgdhmrnce with a P = 0.671. Cumulative
covariance accounted for by PLS axes 1 throughuzsgB3.4256%, with a P = 0.018. The
observed correlation between PART and WHOLE veatd?d S axis 3 (=0.81926) is no
higher than expected by chance with a P =0.001réhily selected: MODEL #4,
PART/MODULE #1.

which leads us to conclude that the associationdsst incisor and whole-mandible is at least
three-dimensional. Adding further axes to this spail continue to show significant results,



but those could be accounted for, parsimoniousiythb significance obtained in the first three
dimensions.

As the above text describes, PLS axes 1 througit@uat for 83% of the squared covariance
between part and whole. For the plot for PLS 3gete

which suggests an association between the postandmarks in the incisor alveolus, the
anterior portion of the coronoid process, the adicgnportion of the incisor alveolus (also
insertion site for masseters), molar alveolus, &md,lesser extent, the angular process.

Summarizing previous results, PLS analyses havgestied a relationship between the anterior
portion of the incisor alveolus and: (a) molar alws (PLS 1, 2, and 3), (b) condyloid process
(PLS 1 and 2), (c) ascending portion of incisoealus/masseters insertion (PLS 1, 2, and 3),
(d) anterior margin of coronoid process (PLS 3} tmna lesser extent, (e) angular process (PLS
1 and 3). Among these, the most consistent asgmtsadre (a) and (c), so we will look into
those more carefully.

First, we will repeat the PLS analysis using thmeanodel, this time regressing the molar
alveolus and the ascending portion of the inciboeaus (putative modules #2 and #4,
respectively). We do this to verify whether thesan association between the incisor module
and these modules, because the pattern observed etnald have been caused by only part of
the incisor module being associated to parts obther modules.

When regressing the molar alveolus, as definedadei#4, onto the whole structure, we also
find a three-dimensional solutioR € 0.02), whereby the most salient pattern is igh kelf-
correlation within the structure. Additionally, péoreveal associations between molar alveolus
and: (a) condyloid process (PLS 1 and 3), (b) arguocess (PLS 1, 2, and 3), and (c)
coronoid process (PLS 2). Although a rather weabk@ation is noted between molar and
incisor in PLS 2, the most relevant aspect of ithtisraction is observed in PLS 3, in which the
molar alveolus seems to covary largely witlo landmarks of the incisor module. Since these
are also the most variable landmarks of the inaisodule, it appears that the association
observed above is the result of either a poor matémn within the incisor module as defined by
model #4, or the presence of additional factorsgrdting these structures. Both of these
scenarios can be turned into Mint hypotheses astddealongside other models.



Focusing for this example only on the incisor, wentto regressing the ascending (ramal)
portion of the incisor alveolus (module #4 of mo#4), also insertion site for masseters, onto
the whole mandible. In this case, PLS 1 accountd386 of the squared covariance between
whole and part, for B = 0.01. We can thus focus on this axis for thisyparison, as PLS 2,
even though it accounts for 20% of the covariatite probability that this value exceeds the
expectation from chance 5= 0.47. The deformation of the whole mandible iegby PLS 1
is:

Besides revealing substantial self-covariation, RLssiggests an association between the ramal
portion of the incisor alveolus and (a) the antepiortion of the alveolus, (b) the anterior

margin of the coronoid process, (c) the condylomtpss, and to a lesser extent, (d) the angular
process.

Although a full enumeration of the features suggg$ty these results lies beyond the scope of
this guide, we can summarize some of their mossistant features and attempt to build a
heuristic model based on them.

First, there is evidence of integration betweenaherior and ramal portion of the incisor
alveolus, although it may not involve all of thadenarks/regions comprising these putative
modules. To model this, module #4 can be extenal@tttude only the five landmarks and
semi-landmarks in the mental area of the jaw (saphgc below), while keeping the anterior
incisor module intact. Second, we find little ewide of strong integration between incisor and
molar alveoli, so we leave them as independenhoiigh further regressions would show a
more complex pattern of integration involving tlendyloid, angular, and coronoid process,
only the aforementioned modification to model #désnonstrated here for illustrative
purposes.

Using theM ODEL EDITING tool to modify module #4 of model #4 to include tihcisor
alveolus landmarks and semi-landmarks mentionedeabee., landmarks 16, 17, 64, 65, and
66), we get the following model (#14 after appegdirto ongoing analyses):



(note how the blue, #1, and purple, #4 models apgriTesting all 14 models using the
y*statistic with 1000 Monte Carlo replicates showattthe new model is not significantly
different from the null expectation. Also, whildiproves over most of the previous models, it
still ranks second behind model #4, with= -0.2888 (compared to -0.2958 for model #4) and
jackknife support of 0.951for this rank (plus 0.GdBrank #1).

Iteration of this process thus can be used bothstmover modular associations and to revise the
boundaries of existing modules. In Marquez (200§: €), the preferred model includes eight
modules, at least one of which corresponds to iamegith too little variation to be associated
to any other module. The entire incisor alveoluthis model is not regarded as an integrated
module, but as contributing to the ramus and mallagolus and only partially statistically
independent from other mandible regions.

Miscellanea

Saving plots

Anything shown in Mint’s plot area can be save@dmasmage document from tfe o1
CONTROLS menu. Mint offers two general formats for savingages—qgraphic bitmaps and
vector graphics. Available bitmaps formats are R4HBEG, 24-bit compressed TIFF, 24-bit
uncompressed TIFF, and Windows Bitmap. Availablemegraphics formats are PDF, EPS
Level I/Color, EPS Level I/B&W, and Windows Enhadddetafile.

TPS plot options

Thin-plate spline plots of PLS axes of landmarladzgn be adjusted to enhance visualization
using four parameters, accessible fromRheT CONTROLS menu:

» Deformation magnificationcontrols the factor by which shape variation igdtiplied
along the axis being shown. Default value is 1,chtghows the implied deformation
between the positive and negative values of themmax absolute score along the axis
shown. Allowed range is -5 through +5, with negathalues reversing the direction of
the deformation. A value of zero simply shows thecRustes mean of the loaded
dataset.



» Grid extent controls the graphical overlap between the gnid #ne Procrustes mean
upon which deformations are shown. Setting it toelans that the grid fits tightly
around the mean, whereas larger values mean thgtithoccupies a larger plot space
than the mean does. Default value is 1.1 (i.ed agcupies approximately 110% of the
plot space occupied by the Procrustes mean).

» Grid density controls the density of cells with which a defatron grid is depicted by
assigning the number of cells on a side of the. @&fault value is 40 (i.e., 40 cells will
be drawn along the long edge of the grid).

* Vector magnificationcontrols the factor by which deformation vectars drawn on the
Procrustes mean. It differs from deformation magatfon (above) in that only vector
length is altered, artificially, whereas the defation per se is left unchanged. This is
only useful for visualization purposes, as it doesproduce accurate patterns of
variation. Default value is 0, which correspond##® original magnification; values
above and below 1 shrink and magnify vectors, retspy.
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