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LORY implements the methods described in Marquet. €2012) for the estimation of shape variables
that measuréocal differencesin shape between individual samples and their Procrustesnmi.ocal”
refers herein to infinitesimal differences in shapepped continuously over entire configurationesth
differentials give rise to shape variables thafedifrom other variables such as Procrustes relsidua
Partial Warp scores both in their intent and intetgtion. LORY’s main output consists of shape
variables that can be individually interpretedasal changes in infinitesimalea relative to a reference
configuration (i.e., the sample Procrustes meamjodghout this guide, we refer to these changéscak
deformations.

Overview

When comparing the shape of two landmark configumat the entirety of information about their
differences is contained in the full set of landkewordinates. Whole-shape information is ofterfulse

to estimate summary statistics derived from shagpeesmetrics, such as mean shapes, pairwise distanc
sample variances, or overall sample dimensionsiamy practical applications of shape analysis,
properties of whole configurations are less relétaan those of partitions within them, includirngir
patterns of statistical association. These apjpdicatare rather focused on questions pertaining to
localized (i.e., “focal”) features. To illustratei$ distinction between global and local featuoesisider a
study that asks whether whole shapes are moreatitfamong a group of species than expected
according to some hypothesis. Methods based orestfzgre metrics would not only allow estimating
appropriate statistics to address this questiohwbuld also provide the necessary informationttibdb
visualizations to help investigators determine the spatial digtion of differences and similarities among
sampled species.

A natural follow up to such visualizations wouldtesting for interspecific differences at delibetat
chosen regions within configurations. For instamee could wish to investigate whether speciegdiff
with respect to a set of traits but not another. dive geometric morphometrics literature contaiasiyn
examples where answers to questions like thessoaght by partitioning a configuration in multiple
landmark blocks, and re-applying with each the sarathods used for whole shape configurations. This
seemingly natural solution, however, ignores th flaat shape is a property of configurations; death

of a set of landmark partitions belongs to a défgrshape space, and therefore that subsets ohéaksl

in isolation are not generally comparable to ttanie” landmarks when they are considered as part of



larger configuration. As a general rule, shape mefdions are interpreted as local only in relatiops$o
other features of the same configuration, whickldea a seemingly contradictory requirement ofcdbal
sampling in order to estimate local features. bcpical terms, this means that landmarks outside of
partition affect how the shape of the partitiorgjirestion is estimated and interpreted, i.e., th@slof a
partition is context-dependent.

The context-dependence of estimates of local shagation has an effect not only on how deformation
visualizations are interpreted, but also on thaealctalues of landmark residuals. For example apsh
invariant region located in the proximity of a \abie region would generally undergo a rigid
“displacement” of its landmarks (see Figs. 4 amd Blarquez et al. 2012). Should we choose to cansid
these landmarks as variables without re-superimpdsie partition, we would incorrectly concludettha
the region is variable and internally correlatdthaugh it is only so in relation to a separate.(i.
unsampled) region. On the other hand, re-superimgake partition would lead to a better assessment
its shape, but would lead to a loss of contextufalrmation, as superimposition spreads landmark
variation over all landmarks and thus destroysgatiern of local variation influenced by surrourgdin
regions.

The approach discussed in Marquez et al. (2012)raplmented in LORY does not require partitioning
of configurations to estimate local shape inforomatiand thus avoids most of these problems. As
discussed below, this approach uses landmarksinectlg as data, but gmrameters that inform how
continuous local deformations are spatially distidal in configurations. Under this approach, shapes
becomdunctions that are only discretized as variablesedaluation of such functions at fixed, pre-
determined locations.

Basic rationale
What does it mean for shapes to be representachasdns? Consider the plot in Fig. 1, depicting th
shape of a configuration (with respect to a refeeegonfiguration) using a typical deformation grid.
Upon being asked to interpret these deformatioespauld intuitively list a series of features, sash
local expansions and contractions, both relativesich
other and to the reference configuration of chdBye.
doing this, we attempt to synthesize the complexity
embodied by a direction of variation spanning npugti
dimensions. In general, interpretations of this ace
not easily stated in terms of individual landmarks;
instead, describing shape deformations associatad t
specific region often requires considering the baira
of landmarks beyond this region before deciding
whether a particular change is a contraction, an
Figure 1. Deformation grid depicting implied expansion, a combination or neither of them. The
shape changes between two configurations. information we need to devise a proper interpretati
is thus contained in the entirety of the configiomat

During the process of interpretation, we implicithake assumptions about the shape changes undergone

by regions in between landmarks. This is true peesive of the number or density of landmarks wesha
sampled. A localized expansion, for instance, waelein a reasonable interpretation for a region &hos



bounding landmarks seem to point outwards relatweach other. However, this pattern could also be
consistent with a potentially large number of remdide alternative hypotheses, such a scenario where
only the outermost ridge of this focal region islergoing an expansion.

From these considerations we can derive two impbdanclusions; namely, (1) individual landmarks do
not contaimuantitative information about local shape, and (2) a singked configuration of landmarks
can beconsistent with multiple shape deformation scenarios. Thaefmm order to estimate local shape
differences, we should be able to integrate infdimnaderived from whole landmark configurations by
way of (preferablyknown or knowable functions, as opposed to focusingsotated subsets of
landmarks. Landmark coordinates, as well as theams, variances, and covariances, have no measing a
shape descriptors, and in fact can be misleadsgyimced when arithmetic operations are applied to
entire landmark coordinates with barely any eftectheir distributional moments, but often causing
dramatic effects on the shape to which they belbng.example, a simple sign inversion applied to a
coordinate will only change the sign of its meaaMving its variance and other moments unchanged.
When considered in relation to other landmarks, dv@s, a sign inversion can imply a shift between a
contraction and an expansion, or even betweeniabl@rand an invariant shape (see Fig. 4 of Margtez
al. 2012).

The preceding discussion shows tmeasuring shape, and particularly local shape, may be more
appropriately approached as a decision proceshichwnultiple competing models are compared for
optimal fit to a given sample of landmark configioas. A discussion of exacthow such comparisons
are carried out is outside of the scope of thispapd software, where we focus on the more basic
problem of how to estimate local shape differergieen a model. A general discussion on the
opportunity that a model-based approach presentsdtgical studies of shape variation is preseiirte
Marquez et al. 2012.

It should be noted that a model-based approactt ighaonly way to correctly measure shape. As
discussed above, information about differences éetviwo shapes is fully contained in the whole
configuration of landmarks, and similarly infornmtiabout shape variation is fully described by the
variance-covariance matrix computed from a samp{e/loole) configurations, as well as by any full-
rank basis upon which these configurations areeptef (e.g., Principal Warps). Neither of these
approaches, however, can be used to produce logpéestimates.

Setting aside the model selection issue for now,dquestions that remain are (1) how are landmaskd u
to parameterize these models, and (2) how are mddehctions used to generate variables amenable of
statistical analysis. A single family of methodsasal interpolation, provides an answer to bottheke
guestions.

Interpolation functions

Interpolation is the mathematical process of assgga value to an unobserved feature based on
information provided by observed ones. In the cxdé shape analysis, interpolation refers to the
prediction or estimation of deformations at unsadpbcations based on patterns of deformation
observed at sampled landmarks. Interpolation id reglicitly during ordinary interpretation of shap
deformations, or explicitly when a mathematicaldiion is used to model deformations of regions d&vo
of landmarks. In either case, interpolation assutimaisinformation is transferred smoothly from s&edp
landmarks to inter-landmark spaces, i.e., shaperhetion information igrgodic. A corollary of these



premises is that informatiaguality is largely a function of the number of sampleddess, i.e., the
density of landmark sampling. This notably consagith typical geometric morphometric applications,
where sampling focuses chiefly on landmauklity (e.g., strict homology), as opposed to quantity.
Whereas homology concerns are still important susslandmark-wise comparability across a sample,
an interpolation-focused approach benefits fronemsively using “fuzzy” homologous features, such as
curves, surfaces, and volumes, whether they arpledmas functions or as collections of pseudo- and
semi-landmarks.

Landmark-based interpolatiger se does not produce local shape data. Instead, oitgigpn functions
allow us to describe configuration shagisbally, so that we can choose the sampling saalasteriori.
Working with functions offers a great deal of veilgg compared to working with landmarks, both in
terms of the scale at which hypotheses can bediemtel in the type of measurements that can befosed
these tests: functions, as well as their derivatawed integrals can be directly used as data duatea at
arbitrary locations, providing thus a convenienyw@combine them into traditional (e.g., landmark-
based) morphometrics applications. This is pregiadlat LORY is intended for: to fit interpolation
functions to samples of landmarks and to providatmstimates of shape deformation by evaluating
these functions at sensibly chosen locations.

There are several ways to implement spatial intatiom, the most relevant of which are discussed in
Marquez et al (2012). Most of these approachesbipsplines, kriging, and finite element methods,
become mathematically indistinguishable under gedanditions. In its current version, LORY
implements 2-Dnterpolating splines based on two widely used interpolation functiaranely Thin-
plate Splines (TPS; Bookstein 1992) and ElasticyB8plines (EBS; Davis 1995, 1997). Figs. 2 and 3
contrast outcomes from the two models using twaoalization styles. TPS models landmark
displacements dsending (i.e., irreversible) deformations of rigid objecasd therefore global
deformations are “easier” (less penalized) thaallones. EBS, on the other hand, models landmark
displacements adastic (i.e., reversible, spring-like) deformations oftsubjects, so that localized
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Figure 2. Thin-plate spline deformation plotted using two alternative visualization styles: a. velocity
("quiver") plot, with vectors drawn on a regular grid denoting implied deformation; b. "parrot" plot where
hues represent relative proportional local changes in area (red hues: expansions, blue hues: contractions).
Colors drawn in a base-2 log scale (e.g., 0 = 0% area change, -0.5 = 205 = 41% area decrease, 1 = 2 =100%
area increase).
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Figure 3. Elastic-body splines deformation plotted using two alternative visualization styles: a. velocity
("quiver') plot, with vectors drawn on a regular grid denoting implied deformation; b. "parrot” plot where
hues represent relative proportional local changes in area (red hues: expansions, blue hues: contractions).

deformations are not heavily penalized. AccordinglyS will tend to spread relatively localized
landmark displacements further into unsampled regiban EBS does.

Figures 2 and 3 show two visualization styleplemented in LORY. Fig. 2a and 3a show velocity
(“quiver”) plots where a 2-D spline is interpolatied each node of a regular grid and shown in #mes
style as a typical landmark deformation. In thestspeach node is associated toxgrelement vector,
and just like actual landmarks, their usefulnedeeal shape estimators is rather limited, in tath
vector estimates a displacement at a single pwitttput integrating information provided by its
surroundings. One way in which such integratioadsomplished is via local evaluation of the Jaaobia
matrix of the interpolation function (Woods 2003aiduez et al 2012). These Jacobians contain first-
order partial derivatives of interpolating splinaad thus describe the orientation of a deformation
function at any point within its domain. Whereageator spline represents a point displacement dexbi
actual local shape information, a Jacobian contafiesmation needed to determine whether such
displacement is part of a local contraction or egpan, as well as to estimate the magnitude of the
deformation.

Jacobian matrices are, however, relatively impcattis measurement variables because of their sheer
dimensionality (for 2-D and 3-D data, each JacoBam2x2 and 3x3 matrix, respectively), and this i
often preferable to use their determinants (ordetgrminants) instead. Jacobian determinants ¢ontai
only part of the information in Jacobian matricggecifically, whereas matrices provide a full diiegal
description of deformations at a point, determigamtly tell whetheerea (or volume, in the 3-D case) is
increasing or decreasing in the infinitesimal regsarrounding this point, relative to a reference
configuration. We can therefore ask if the disadage of losing detailed local information outweighs
practicality offered by a single summary varialiteMarquez et al (2012), we argue for using
determinants, given their standalone interpretgtals local expansions/contractions, as long as a
reasonably high density of them is sampled simahasly. The resulting “field” of scalar measurensent
can be visualized as heat maps, such as those shdwa 2b. In thesparrot plots, intensity of red hues
represents magnitude of local expansions, whereasioies represent local contractions (greens are
approximately invariant regions, with respect te teference configuration). Clearly,
expansions/contractions are not synonymous to ‘shapt this may be an advantage as these two



behaviors, when consider over the entire confignmatiefine shape, and at the same time remain
individually interpretable.

Computational details for Jacobians are providéd/oods (2003) and Marquez et al (2012). Like shape,
Jacobian matrices exist in a Riemannian spacehandfore LORY projects them onto a tangent space
centered at the Procrustes mean configuration.@ufppom LORY include Jacobian matrices and base-2
logarithms of their determinants (simply termedctil@ians”). These values can be interpreted as
proportional (with respect to the mean) changdsdal area (see Fig. 2b); e.g., log2-Jacobian = 0
represents no change, log2-Jacobian = 0.5 repeeadotal halving in surface area, and log2-Jacobia

1 represents a local doubling in surface area.odiigh LORY can currently deal only with 2-D datd, al

of these methods have been developed and areyraggiicable to 3-D data as well.

Evaluation of functions

In order to analyze shape functions using tradiianultivariate methods, these functions have to be
evaluated at specific locations to yield Jacobthas can be treated as ordinary shape variablekeln
context of biological morphometrics, the questi®wliere to locate such evaluation points. Normally,
homology across configurations provides the necgssieria to ensure comparability and
meaningfulness of variables, and applications dised herein are no exception to this. Shape spacdes
their metrics are built upon the premise that ti@msations among distinct shapes are topologically
correct, and methods presented herein depend hp@ame assumptions that underlie shape spaces.

Assuming that landmarks in sampled configuratioeshemologous, the question is how to define
evaluation (i.e., inter-landmark) points that camalssumed to be approximately homologous. Because
any such homology criterion must be derived frotu@dandmarks, Delaunay triangulation seems an
optimal candidate to find inter-landmark regionattban be uniquely and unambiguously identifiecion
sample of configurations. Similarly, a variety afipt features can be defined with respect to tlaagtes
found using this algorithm (e.g., incenters, circemters, VVoronoi vertices, centroids, etc.), amde¢h
points can in turn become function evaluation limeet or vertices for further passes of the Delaunay
algorithm, to create an increasingly finer evaluatinesh (see Figure 3 of Marquez et al 2012). The
specific way in which LORY implements these ideasdiscussed below.

Intended applications

Local estimates of shape deformation can be usadyirtontext where landmarks are appropriate. They
are, nonetheless, particularly suited for two gahfamilies of questions, namely those interested i
statistical properties gfarts within configurations, and those dealing with sfieenodels to explain
shape and shape variation. The latter categonypeeaent just starting to take flight in disciglinsuch as
computational morphodynamics, whose focus haseiaiuyned to the study of variation, whereas the
former involves longstanding topics related to atonal properties of individual parts (e.g., clutea
evolution) as well as the statistical associatimoag parts (e.g., heterochrony, morphological
integration, modularity). LORY provides estimaté$oth Jacobian matrices and determinants, while
offering alternative methods to determine evaluasibes.

LORY has a strong visualization component thatlmamised in connection with local shape analyses or
as a standalone feature. Deformations can be i#sdahs vectors, regular and tessellated gridgyasieot
plots, quiver plots, and as animations. This makaRY a useful tool for general interpretation oapk
differences and for exploratory analyses of lobalpe differences, even when interpreting local



deformations is not the primary goal. The followsegtions explain how to use the software and offer
pointers on how to interpret some of its outputs.

Preliminaries

Setup

LORY executable, Lory.exe, is coded and compiledlatilab 7.9 (R2009b), using Matlab Compiler 7.11.
In order to be able to run LORY, the corresponditailab Component Runtime (MCR) libraries must be
installed. Currently, there are versions of LORY 3@- and 64-bit Windows. These should run in the
corresponding Windows versions up to 7. These eessshould be matched to the appropriate (32- and
64-bit) MCR libraries. These libraries are instdliéa the program MCRInstaller.exe, which can be
downloaded from elsewhere in the web. We have rtfaddile available ahttp: //maw-

personal .umich.edu/~emarquez/mor ph. Note that LORY may not work with versions of kiies other

than 7.11.

After libraries are properly installed, LORY cangdmeved and run from anywhere in your computer. If
you have the correct libraries version and are espeing problems running LORY (e.g., you get an
error message regarding a missing DLL file), thea ghould modify your Windows path so that LORY
can find the MCR libraries when run. You shouldabée to find instructions for your specific Windows
version by googling questions suchhagv to add a directory to the Windows PATH environmental
variable. You should then add the foldeMATLAB Conponent Runti ne\v711 to the Windows
path.

Data formats

At the moment LORY accepts two data formats: baaines Rohlf's TPS format, and space- or tab-
delimited “XYCS” matrix format, which contain onew per specimen, and coordinates are arranged in
{x,y}-pairs (i.e.,X, Y1, X2, Y2, ...), With an (optional) additional column contaigicentroid size.

Regarding TPS files, LORY can only read SCALE= tagsl might ignore (or fail upon finding) other
specialized tags, such as CURVES=. Even though L@&¥ot read TPS-formatted curves, files
containing them can be transformed into XY CS-fotethtmatrices using the program SemiThinner, also
available ahttp://mww-personal .umi ch.edu/~emarguez/mor ph.

Landmark data furnished to LORY do not have toupmesmposed, as LORY does a Procrustes
alignment as the first step. LORY also offers atiaspto remove extra landmarks added during
digitization to provide a scale reference (i.eulér” landmarks). LORY will scale the data eithetthis
ruler or to the SCALE= tag in TPS files, givingqmity to the former whenever both are found. Note,
however, that scale is not relevant to any of theyses provided in this release of LORY.

Using LORY

Overview of the Interface

LORY’s interface features are shown in Fig. 3 ughmgsame numbers used in the descriptions and
explanations that follow. Components 1-3 contraadaput, 4-7 define how evaluation points for
interpolations are chosen, 9 offers two interpotafunction options, 10-12 control data outputs,1¥3
control graphical outputs, and 18 indicates a ngEssgea.



In addition to the main interface cansole screen opens along with LORY. This screen hasrtam
open while using LORY, and it will contain, for theost part, error messag#&hen contacting us for
support, please send any error message reported in this screen.
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Figure 3. LORY main interface. See text for legend explanation.

Loading data

The following assumes that you have formatted yidR® or XYCS files according to LORY
requirements. When first opening the program, ydunetice that the_oad data button(1) has been
highlighted to indicate that this is the only aghik function:

u Lory ver. 0.5 - Model-based estimation of local shape ¢

Visualization
[~ Data Jump to: 1
Load Data 1
10 0.9
Ruler0 Ruler1 Ruler Length
0.8

Upon successfully reading your data file, data eotst are graphed in the plot a(&8), and the user is
prompted to choose between two options for datapasessing:

If loaded data contain two extra points for scalinder landmarks), the coordinates corresponding t
these landmarks and the length of the ruler shioelldntered in marked spa¢gsand theRe-scaleto

ruler button(3) should be pressed. If no scale landmarks aredadubut every point in the data set is to
be considered as a landmark, tiskip (3) should be pressed instead.
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Visualizations

LORY’s visualization style pan€lL6) offers six types of (largely equivalent) visuatinas, listed below.
Each can be used to plot individual configuratiaagdandmarks only or as landmarks connected by a
custom wireframe. Examples shown here include ank wireframe, see below for instructions on how
to use this feature.

Plot styles

Just vectors

In this plot, differences between each individuad ¢he Procrustes mean are plotted as vectorseon th
latter. Landmark numbering follows ordering in tiviginal data file, and is included as referenae fo
verification and protocol creation.




Parrot plots

These plots are produced via interpolation of laadndisplacements throughout inter-landmark regions
For the chosen interpolant function (currently, T®*EBS, selectable from pan(@)), the Jacobian is
evaluated at each node of a triangulated grid bpitin parameters set by user, and then interpolated
throughout a variable-resolution pixel grid usindpic interpolation, after which each “pixel” in tiyeid

is assigned a color according to a customizablercohp, set to range between also customizable
boundaries. Customizations are accessible fromislualization men(l17), and are detailed below. Each
color represents a value for the log-2 determinéitite Jacobian, i.e., 0 represents no changecal fboea
between individual and reference, -1 represensa halving of the area, +1 a local doubling, aadn.

fwli= 0 | 1 1 1 1 1
T =y T

_ :

Regular grids

By default, regular grid deformations are plottedtap of parrot plots. These grids are the typical
visualization in geometric morphometric applicaipwhere the chosen interpolation function is
evaluated at each node of the grid. The densitlgefrid is partly customizable. Other visual btites,
such as color, thickness, or coverage are fullyocnogable from the visualization me(idi).
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Tessellated grids
In contrast to regular grids, tessellated gridsdafined by the nodes of triangulated landmarksRYYO

offers a number of customizable options for genamadf these grids, accessible from the Tessefiatio
panel(4-7) and discussed below.

Quiver plots
These plots are equivalent to regular grid plotsept that instead of a grid, actual splines aesate

drawn. Customization options for this plot are shene as for regular grids.
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Movies
This option produces a loop animation of the refeeespecimen deformation. This is the only plokesty

that requires a wireframe, and if none has beeteld# memory, LORY will request one before
showing the movie. Upon selecting a wireframe potdile (see below for details), the following
options windows is displayed:



- ; ;
Movie options SRC P

Frames per second (> 0):
30

Pause in between loops (in frames):
0

Save animation as (leave blank for visualization only):
D:\Documents\MATLAB\spice\localfun\compQ\line33v39 v2_1.gif

Wireframe specification protocol:
wireframe.txt (Verified')

Cancel

Upon clicking OK, the movie will be played back emdomatically saved as a GIF file to the specified
location using these parameters.
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An additional plot style provided by LORY consisfsthe entire Procrustes-superimposed data sethwhi
is always accessible by dragging the specimentsamieslider(14) to its bottom.

Switching between individual configurations

The specimen selection sliddd) can be used to browse across individual speciraarmations.
Alternatively, theJump to box (15) can be used to directly access any arbitrary spati Individual
configurations are numbered in the same orderdheyn the original data set; specimen numbers are
printed atop the plot area for each specimen.



Using wireframes

With the exception of movies, wireframes are omlidor all plots. The can be loaded and toggleain/
from the Visualization men(L7) option “Use wireframe protocol.” A correctly-foritted protocol

contains two columns and as many rows as “wiregheating two points. Each row contains the
landmark number of the two endpoints of a wire, eHandmarks are numbered as in the original data
set, as shown by plots with thest vectors style (16). Therefore, not all landmarks need to be mentioned
in a protocol, but all landmarks in a protocol mostpresent in the data. An example data set and
wireframe protocol files have been included witis ttelease.

Deformation parameters
Accessible from the Visualization me(ilr), selectingModify visualization parameters opens a series of
prompts where users can specify the following gielproperties.

Deformation magnification: signed value applied as a product to individedbdmnations.
Currently allows values between -100 and 100; tige simply revert the direction of the
deformation. Default: 1 (i.e., original scale)

Extent of white space: proportion of white space within graphs beyonel tost extreme point in
all directions (including grids). Default: 1.2 (i.20% of white space).

Extent of grid: proportion of grid that extends beyond the mastegne point along the shortest
direction of a configuration. Default: 1.2 (i.eQ%).

Number of columnsin grid: sets the number of columns in regular grids, evtiie number of
rows is automatically calculated to ensure gridscade square. Default: 30.

Triangulation iterations for interpolation: this parameter controls the resolution of the
triangulated grid used to build parrot plots. Thstfiteration of the Delaunay triangulation uses
all loaded landmarks and semi-landmarks, wheredisi@ahl iterations use the centroids of
triangles found in previous ones to find increakimgsolved triangles. Centroids of triangles
found in the final iteration are used as evaluagioimts for the chosen interpolation function
(currently, TPS or EBS), selected(B). To visualize the grid set by this option, matcé t
number of tessellation passeg%hto this number, set both thresholds to a verynowwber (e.g.,
le-16), and seledtessdllated Grid from the plot style pan€ll6). Note that setting this parameter
to a high value may substantially increase the adatipn time for parrot plots. Default: 1.
Vector magnification: multiplier for vector length. This factor doest=apply to grids or parrot
plots, whereas for vectors it stacks on top of defdion magnification. Default: 1 (i.e., original
scale).

Pcolor plot resolution: resolution of the pixel grid used to evaluateolg@ns during parrot plot
creation. This is the number of pixel along a rdwhe grid (number of rows is automatically
calculated). Leave this field blank to omit showmngarrot plot altogether. Default: 150.
Colorbar maximunmyminimum: these are the upper and lower limits in actuédrmeation units for
the color map scale in parrot plots. If eitherladge limits is left blank, LORY finds optimal (but
asymmetrical) limits. Default: [-0.3,0.3] (i.e. ghiest color intensity is reached at 30% increase
and decrease in local area with respect to refereocfiguration).

Poisson constant: this parameter (labeled as L in LORY's interfaiselised by EBS to fine-tune
the elasticity of the model to deformations. Valaksser to 0 correspond to low-resistance, high-
elasticity models where local deformations are fadpwhereas values closer to 0.5 correspond



to rigid materials, where global deformations aeofed, resulting in deformations that are
similar to those obtained from TPS. Default: 0.33.

Additional plot appearance options
The following width and color options are accessiipbm Visualization men(7), following Modify
plot appearance.

» Grid color and width: applies to both regular and tessellated crids.

» Vectorscolor and width: applies to vectors drawn on landmarks, tesseliatodes, and quiver
plots.

»  Wireframe color and width: applies to static and animated plots.

e Landmark markers color and size: applies only to landmark markers.

» Include arrows. applies to vectors drawn on landmarks, tesseflatbdes, and quiver plots.

Acceptable line width values are positive numbetsereas acceptable colors are listed along with eac
item. Note that literal entries consist of singterkl shortcuts, as indicated in the Windows promp

Finally, color maps/schemes are also changed frenVisualization menu, ite@hoose color scheme for
parrot plots (Default: “Jet”) Notice that some schemes (e.det", “HSV”) are multidirectional, where
the intensity of multiple colors is charted, where#hers (e.g., “Gray”, “Copper”) are one-dimension
with one color/tone intensity being varied at adirhe latter are better suited for monochrome
presentations.

Tessellation

Tessellation parameters are controlled via ité#h$o (7). The purpose of these controls is both to
provide choices of criteria for sampling of featifeom deformations, and to ensure that the same
triangles and nodes are sampled throughout alirsees. The latter condition is particularly crifica
because the Delaunay algorithm is guaranteed tupeounique triangulations only within specimens
(provided no three points fall along a line or parfpoints fall on a circle); LORY uniquely defineach
possible triangle directly or indirectly in termSlandmarks. In LORY, deformation grids derivedrfro
application of a tessellation algorithm are terrfealective” because the decision about which tiliesg
are used as grid nodes for sampling and visuadizathn be made automatically based on parameters
related to local variation.

To build a tessellated deformation grid, LORY usesfollowing pieces of information: (1) a set of
reference nodes, which consist of all (default) or some landmathkat serve as the initial triangulation
nodes; (2) the number of triangulatipasses or rounds, where each pass is based on nodesdefithe
centroids of the triangles found in previous pas&3sa positive threshold value to determine how
different adjacent nodes within a configuration banand (4) a positive threshold value to detegmin
how variable adjacent nodes can be over all cordiguns.

Reference nodes

By default, the entire set of landmarks (and semdimarks) loaded into LORY are used as reference
nodes for triangulation. It is possible to selestraller subset of points as reference, whichpsaally
useful when there are a large number of samplattgdio do this, click ohoad Node Protocol (6) and
select a node selection protocol file. A correftigmatted protocol file contains a single columnhaas



many rows atandmarks (and semi-landmarks), sorted in the same order the loaded data set, with
values equal to 1 and 0 to indicate that a pagrdaindmark should or should not be used as pahieof
reference, respectively. Note that reference nadsanly used as bases for the tessellation algorithm;
actual interpolation functions will be parametedizssing the entire set of loaded points.

Tessellation passes

“Passes” refer to iterative runs of the triangwlatalgorithm using triangles computed in previous
iterations to define reference nodes; LORY usesigfie centroids as nodes. The number of passas for
given data set and node protocol can be choseollbywing Set Node Parameters (5). The following
figures illustrate the outcome of 1, 2, and 3 passethe same data, with no node selection:

O
= ===
RIS O

Py = A - 2 :«&ﬁ%}v‘;ﬂwmk"&v«;&.,
oD QAN 7 AAVAVAY, S, AT D g A
N . N 2 SN ) S B
] \"\4&"&?@'5&\5$ﬂ9 ?5*‘&}&%&&:&4{4&@ s
NP A AT RSN OSSR
ERARY SRR

ey
NN VBN
\&

N AT V) K
“’f}%"‘;’%ﬁ‘%’ SRRy
NPT SO

1 Pass 2 Passes 3 Passes

Note that although all triangles are based on thlggnal landmarks, the landmarks themselves are not
used as nodes. This is intentional, as nodesdraw data, but an attempt to discretize evaluation points
for a continuous function in a way that respecgmtogical relationships between actual data points.
general, it is not advisable to evaluate interpatatunctions at the landmarks, because a deri@ativ
(including Jacobians) are not defined or are ffird=l at landmarks for many functions. LORY, howeve
allows including landmarks among triangulation retg checking thénclude Landmarks (7) option.

Any interpolation function will reproduce the saraue observed at landmarks when evaluated at that
same landmark.

Node selection

For any given data set, node protocol, and numbissellation passes, LORY will compute a unigete s
of nodes that can be completely or partially ineldiéh outputs. To get sampling with reasonable low
redundancy, one could use a small number of pagisakernatively optimally select informative nade
from a highly resolved grid. The latter is the lgsiinciple behind LORY’s implementation of node
selection.

LORY applies two filters using thresholds modifialthroughSet Node Parameters (5), which seek to
minimizewithin-configuration redundancy and to maximibetween-configuration variation,
respectively. The two filters are applied indepetilye so that it is possible to apply them indivadly.
To ignore a filter, its threshold should be sed teery low (but positive) value (e.g., 1e-16). Igng both
filters leads to unselected nodes, such as thgsetdd above, and this is the setting to which LORY
defaults when thEull set (single pass) option(4) is checked.

Both filters are evaluated in terms of local arkange (i.e., log-2 of Jacobian determinants). LORY
applies the sample (i.daetween-configuration) filter first, which simply ignores all local arehange
values below the set threshold. For example, theWing figures illustrate the same 3-pass tesdeha
shown above, after applying a sample filter witteiholds 0.05, 0.1, and 0.2 (removing, respectively



regions with lower than 5%, 10%, and 20% absolbenges in local area), while keeping the within-
configuration threshold at 1e-16:

Threshold = 0.05 Threshold = 0.10 Threshold = 0.20

The second filter (i.ewithin-configuration) comparesdjacent nodes and keeps those whose
proportional area change (i.e., log-2 of the Jaollieterminant) is larger than specified by the
corresponding threshold. The algorithm first sadges in descending order of local deformation, and
then systematically processes them individualljilating adjacent nodes that are too similar. Tdte n
effect is a node distribution that tends to favemions of relatively strong local change, which
presumably possess higher information content.falleving figures result from applying within-
configuration filters of 0.01, 0.05, and 0.1 to Bipass tessellation shown above, while keeping the
sample threshold at 1e-16.
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Threshold = 0.01 Threshold = 0.05 Threshold = 0.10

In addition to controlling thresholds directly, reofilters can be globally modified by altering the
magnitude of the deformation magnification via Yhsualization (17) menu, iterrModify visualization
parameters.

Interpolation functions

LORY implements two model8), thin-plate splines (TPS) and elastic body spli{ie&S), as described
by Dryden and Mardia (1998; see also Bookstein 1, 99#1 Davist al. (1995, 1997), respectively.
Differences between estimates derived from therhadels are particularly acute for configurationghwi
localized deformations, which TPS tends to distélmlobally whereas EBS tends to contain locally. A
discussed above, EBS’ Poisson parameter proviaes gegree of freedom to fine-tune the localness of
deformations predicted by the model. Marquez g28i12) provide further discussion about possible
future directions regarding the implementation ltdraative interpolation functions.



Selective node sampling and output

Node filtering, as described above, is appliedvidially to each configuration in a sample. To Ol
sample of Jacobian matrices and determinants, L&mYires that theame nodes, as defined during
triangulation by their topological relation to reface nodes, are sampled for all specimens incinpls.
LORY currently produces three kinds of output, ngna@ n x k matrix of Jacobian determinar{t),
wheren is sample size arldthe number of Jacobians sampled per configuragidh,x 2k block-matrix
of 2x2 Jacobian matric€$2), and am x 2 matrix of coordinates for nodes correspondingaithe
sampled Jacobiafil).

Unless both thresholds are ignored and the fulbEabdes sampled for all configurations are used a
evaluation nodes, it is likely that distinct sulsset nodes are selected for different configuraidtORY
offers two approaches to deal with these disparitiamely setinion or intersection (9). WhenUnion is
selected, LORY samples and saves every node priesg¥t or more of the sample for all individuals,
whereas wheimntersection is selected, only the subset of nodes presertimdavidual is included in the
output. In general, set union produces more radiadsults than set intersection, since it is nabammon
for the latter to result in an empty set, espegiatien the density of the interpolation grid istigVhen
threshold values are too high for LORY to find &iéint evaluation points for a particular configtiva
during computation of individual Jacobians, thdédi@ing message is displayed in the console:

Not enough eval uation points defined based on current set of paraneters.

This will lead to a further, similar error when nigiset intersections as the rule for sample Jacobia
computations, whereas it will rarely lead to suokearor when using set unions.

A high density of sampled landmarks and semi-larrfdmean also lead to interpolation functions to
become undefined for individual configurations lieguhighly deformed local regions, with respecttte
reference configuration. As an example, consideféiowing TPS deformation grid:
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Note at the upper margin of the shape that theaplidpses or “flips,” which leads to the functitmn
become locally non-derivable in Euclidean spaceh $hat Jacobians and local area changes are
undefined at any evaluation point in that regiolne Bccurrence of this effect is function-dependand
elasticity-based models like EBS are in generalemolerant, although not entirely immune, to tluig s
of pattern.



When LORY finds such disruptions during computatidédacobians, the following message is displayed
in the console:

War ni ng: some of the Jacobian determi nants are negative in configuration #N.
Only real part has been retained, which may produce inaccurate results.

Thiswarning should not be ignored, because incorrectly computed Jacobians can dhohirdduce
misleading errors that may become prominent inissiizdl analyses. There are several ways to dehl wi
this problem, such as manually deleting the offegdindividual configuration or evaluation point or
reducing the magnitude of the deformation. An awtticrand generally less intrusive solution, however
would be reducing the density of landmarks or samitmarks surrounding highly variable landmarks.
Applying this latter solution to the comparison ebgields the following pattern:
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Note that local deformations are virtually unaféetby this change.
Worked example

Problem and data

In the following example, we briefly illustrate serof the uses of Jacobians by exploring patterns of
intraspecific variation and interspecific differesdbetween wing shapes of two closely related
Drosophila species, namelp. melanogaster andD. willistoni. The data for this example consists of 289
individual wing configurations, 148elanogaster and 140nillistoni, all of which correspond to female
specimens. A total of 14 landmarks and 85 semirtaaréls are sampled from each configuration; all
landmarks and 32 semi-landmarks are used as reterertes for triangulation. Node parameters are set
to Full set (single pass), which corresponds to one iteration of the Delguadgorithm without any
selection of evaluation nodes. Figure 4 shows samglan shapes for both species. A portion of tia d
set has been packaged with LORY (with file nanesophi | a_wi ng_exanpl e. dat ), along with a
node protocolr(ef nodes. t xt ), a wireframe protocolf r ef r ane. t xt ), and group labels for each
configuration in the data filespecsexgr p. t xt ). Using these data and protocols, LORY finds 7deso
for evaluation and outputs log2 Jacobian deterntinalues, which are the basis for further analy$és.
following exemplifies analyses of local variatiar fvhich Jacobians could be more suitable than
landmarks. Analyses and visualizations shown belmwbased on LORY outputs, but were not
constructed using LORY.



D. melanogaster D. willistoni Figure 4. Sample mean wing

shape detormations for the
two Drosophila species
analyzed 1n this example,
interpolated using thin-plate
splines (TPS) and elastic
body splines (EBS)
functions.
TPS TPS
% % - o
EBS EBS

Interspecific differences and intraspecific variation

Figure 5 maps mean differences and correspondingeBwoni-corrected ANOVA significance labels
betweemmelanogaster andwillistoni based on TPS and EBS interpolation. For visuadimgiurposes, the
interspecific differences have been interpolatédgusubic splines based on observed differencéseat
74 nodes. As expected, differences are slightlyenpoonounced in TPS data, but significant nodes
obtained from EBS data are not a mere subset oifisignt TPS nodes, reflecting the fact that both
functions differ in more complex ways than the naegree of spread of the strain imposed by local
deformations. Statistical tests were carried oirtgusonventional methods and software on exported
Jacobians (console buttdfl, see Fig. 3), whereas significance visualizativase overlaid on exporeted
reference nodedd).

Figure 5. Map of mterspecitic ditferences
in local wing shape between D.
melanogaster and D. willistoni,
iterpolated throughout the configuration
using cubic interpolation. Differences
based on Jacobian determinants computed
at the indicated locations based on a thin-
plate splines (a) or elastic body splines (b)
function. Stars indicate significant,
crosses non-signiticant differences in
ANOVA, after Bonferroni correction for
multiple comparisons.
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Figure 6 maps intraspecific variances at each fadeoth species and interpolation functions. Diespi
the difference in magnitude of variances producethb two models, variances are spatially auto-
correlated between modelsH 0.94 forwillistoni, r = 0.95 formelanogaster). Plots show both
differences and similarities in the spatial disitibn of local shape variation between the two s®ec
Interspecific spatial correlations are 0.77 with TPS data and= 0.74 with EBS data, but a plot of
these variances (Fig. 7) reveals the latter to beeravenly distributed and therefore potentiallyreno
reliable than those based on TPS, which seem mluemnced by extreme values. This is consistertt wit
the higher sensitivity of TPS to highly localizeeformations.
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Figure 6. Map of intraspecific variances of locéhgvshape foD. melanogaster (a, c), ancD.

willistoni (b, d), based on Jacobian determinants computibe &dicated nodes using thin-plate
splines (a, b) and elastic body splines (c, dypakation functions. Variances have been intergolat
throughout the wing using a cubic interpolant. Mar&ize for evaluation nodes is proportional to the
variance estimated at each point.

We can investigate the association between inteifgpdifferences and intraspecific variances (Y.
Correlations between squared mean interspecifierdiices and intraspecific variancesrare0.61
(TPS), 0.52 (EBS) fomelanogaster, andr = 0.42 (TPS), 0.37 (EBS) favillistoni. The weaker
association imillistoni is accounted for by the relatively low variationthe region surrounding the
posterior crossvein and the region between L2 éhdelins, both of which vary strongly inelanogaster.
Based on these observations, we could exploreiqnegtuch as whether regions that simultaneously
show high intraspecific variance and have co-digdrgcross species are also highly integrated within
species (note that a proper test for such a hypists@ould include a large number of species and
corresponding phylogenetic information). A simplaywo do this is to select subsets of nodes wigh hi
variance and disparity and ask whether they are stbongly correlated mutually than they are t@®oth
nodes. Figure 9 draws up such scenarios for battiepand models used here, as connectivity graphs
with edges linking nodes in the top 75% percenfibesntraspecific variance and interspecific seaar
mean difference.
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Figure 7. Comparison of variances in local wing shape deformation between two Drosophila
species. Variances computed from Jacobian determinants derived from thin-plate splines
(closed circles) and elastic bodv splines (open circles) functions.
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Figure 8. Association between variances and squaszth differences of local wing shape deformat
in D. melanogaster (left) andD. willistoni (right). Deformations computed as Jacobian detearnis
derived from thin-plate splines (closed circles)l atastic body splines (open circles).



Figure9. Connectivity graps depicting ehypotheticascenaricwhere evaluation nodes wihigh
intraspecific variance and squared mean interspatifferences are mutually integrated more
strongly than they are to other nodes. Linked nadesvithin the 75% percentile of variances and
squared mean differences of local wing shap®fanelanogaster (a, c), and. willistoni (b, d),
based on Jacobian determinants computed at tteatedinodes using thin-plate splines (a, b) and
elastic body splines (c, d) interpolation functions

One way to test for statistical correlations actbgswing that takes advantage of the availahilftgcalar
measurements of local deformation is the analysi®ditional independence among traits in the exint
of graph theory. These methods test for conditiomd#pendence between pairs of variables after
partialling out the effect of every other variahlgjng a maximum likelihood approach (see Whittaker
1990, Magwene 2001 for details). A deviance statistcomputed for each link representing an
association between two traits in a model wherpaskible links are included, whose significance is
tested against & distribution with one degree of freedom.

For theDrosophila data sets illustrated here, the full model incbu@€01 links among 74 nodes, and
deviance analyses find 311, 284, 274, and 283f&ignt links for themelanogaster TPS,melanogaster
EBS,willistoni TPS, andwillistoni EBS data sets, respectively. The minimum partaletation
associated to these links is 0.341 st anogaster and 0.351 fowillistoni. Restricting visualizations to
partial correlations of 0.5 and above to facilitatierpretation, we obtain the graphs depictediguie
10. These graphs show some differences among lieteid data sets, but also a predominant common
pattern whereby few links are supported betweersdmtated on distinct compartments across the
anterior-posterior boundary (i.e., anterior and@aar to L3 vein), whereas most of the links tbadss
this boundary are observed at the distal and pralxéxtremes of the wing. Whereas investigating the
biological significance of these results is outsfléhe scope of this guide, we can at least calectbhat
there is little support in these data for the higgsts that co-evolving and variable traits are more
integrated than expected by chance alone.
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Figure 10. Connectivity graphs depictilinks between pairs of nodes with a partial cotretaof 0.5
and above. Partial correlations computed for eadhgfter removing the effect of every other node|
According to a maximum likelihood deviance tedlt]iaks shown remain highly significant after a
Bonferroni correction. Results shown for spe@esnelanogaster (a, c), and. willistoni (b, d), based
on Jacobian determinants computed at the indicaidds using thin-plate splines (a, b) and elastiq
body splines (c, d) interpolation functions.
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