An Actor-Critic Contextual Bandit Algorithm for Personalized Interventions using Mobile Devices

Huitian Lei

Joint work with Ambuj Tewari and Susan Murphy
Department of Statistics
University of Michigan

August 9, 2015
Background

- Mobile devices such as smartphones and wearable devices serve a great platform to deliver health interventions.
- Adaptive intervention (AI, or Dynamic treatment regime, treatment policy)
 - A sequence of decision rules/policies that input patients’ characteristics and output recommended interventions.
 - Interventions are (1) personalized, and (2) adapted to patients’ ongoing performances.
- Just in time adaptive intervention (JITAI) are interventions that are delivered in real-time, and are adapted to address the immediate and changing needs of individuals as they go about their daily lives (Nahum-Shani et al 2014)
Motivation and Goals

Motivation:
- Lack of guidance to build high quality JITAI despite its increasing popularity.

Glossary: JITAI = treatment policy

Goals:
- An online learning algorithm that learns the optimal treatment policy.
- Make statistical inference on the optimal policy. Address important scientific question:
 - which patient variable is useful for adapting the intervention?
Problem Formulation: Background on Bandit problems

The stochastic multi-armed bandit problem:
- A gambler (decision maker) needs to choose from multiple arms.
- Each arm is associated with an unknown distribution of rewards.
- His goal is to maximize the expected sum of rewards.
- Carefully tradeoff between acquiring new knowledge (called "exploration") and optimizing his decisions based on existing knowledge (called "exploitation")

Contextual bandits: bandits with covariates, bandits with side information.
Problem Formulation: Contextual Bandit, Notations

- A sequence of decision points: $t = 1, 2, \ldots$
- Context space: S.
- Discrete action space: A.
- At decision point t, the decision maker observes $S_t \in S$ and make action $A_t \in A$, a reward R_t is revealed before the next decision point.
- Contextual bandit assumes that the sequence of contexts $\{S_t\}_{t=1}^{T}$ are i.i.d. with some fixed unknown distribution $d(s)$: A_t affects R_t, not the distribution of S_{t+1}.
- Linear expected reward: $\mathbb{E}(R|S = s, A = a) = f(s, a)^{T}\mu^{*}$. $f(s, a)$ is the reward feature.
The Optimal Policy

A class of parametrized stationary policies: \(\pi_\theta(a|s) \). In particular we focus on logistic policies:

\[
\pi_\theta(a|s) = \frac{\exp\{\theta^T g(s,a)\}}{\sum_{b \in \mathcal{A}} \exp\{\theta^T g(s,b)\}}, \quad \theta \in \Theta.
\]

\(g(s, a) \) is a low dimensional policy feature. The average reward of policy \(\pi_\theta \) is

\[
V(\theta, \mu^*) = \sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} f(s, a)^T \mu^* \pi_\theta(a|s)
\]

1. When \(E(R|S = s, A = a) \) is a constant for all \(a \), maximizing \(V(\theta) \) is an ill-posed problem since solution is not unique.

2. When \(E(R|S = s, A = a) \) is not a constant, it is easy to provide example where the maximizer of \(V(\theta) \) has \(\theta_i \)'s equal to \(\infty \): the policy that maximizes \(V(\theta) \) is deterministic. Deterministic policy leads to habituation and boredom (Epstein et al 2008). Intervention variety is therapeutic.
The stochasticity constraint and the regularized average reward

Mathematize intervention variety for binary action space $\mathcal{A} = \{0, 1\}$,

- A stochasticity constraint: $1 - \beta \leq P(p_0 \leq \pi_\theta(a = 1 | s) \leq 1 - p_0)$.
- A relaxed and smoother stochasticity constraint by applying Markov inequality. $g(s) = g(s, 1) - g(s, 0)$

$$\theta^T \mathbb{E}[g(s)g(s)^T] \theta \leq (\log(\frac{p_0}{1 - p_0}))^2 \beta$$

The regularized average reward

$$J(\theta, \mu^*) = \sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} f(s, a)^T \mu^* \pi_\theta(s, a) - \lambda \theta^T \mathbb{E}[g(s)g(s)^T] \theta$$

The optimal policy parameter

$$\theta^* = \arg\max_\theta J(\theta, \mu^*)$$
An Actor-Critic Algorithm: initialization

Initialization:

- T is the total number of decision points.
- d is dimension of $f(s, a)$. p is the dimension of $g(s, a)$.
- Critic initialization: $B(0) = \zeta I_{d \times d}$, $I_{d \times d}$ is a $d \times d$ identity matrix. $A(0) = 0_d$, $\mu_0 = 0_d$, are $d \times 1$ column vectors.
- Actor initialization: θ_0 to be the theory based policy parameter provided by behavioral scientists.
An Actor-Critic Algorithm: the Actor and the Critic

Algorithm 1: An online actor critic algorithm
Start from $t = 0$.

while $t < T$ **do**

At decision point t, observe context s_t;
Draw an action a_t according to probability distribution $\pi_{\theta_{t-1}}(s_t, a)$;
Observe a reward r_t;
Critic update:
$B(t) = B(t-1) + f(s_t, a_t)f(s_t, a_t)^T$, $A(t) = A(t-1) + f(s_t, a_t)r_t$,
$\mu_t = B(t)^{-1}A(t)$.

Actor update:
$$\theta_t = \arg\max_{\theta} \frac{1}{t} \sum_{\tau=1}^{t} \sum_a f(s_{\tau}, a)^T \mu_t \pi_{\theta}(s_{\tau}, a) - \lambda \theta^T \left[\frac{1}{t} \sum_{\tau=1}^{t} g(s_{\tau}, 1)^T g(s_{\tau}, 1) \right] \theta$$

Go to decision point $t + 1$.

end
Theorem

(Asymptotic properties of the critic) The critic’s estimate μ_t converges to μ^* in probability. The convergence rate is $O(1/\sqrt{t})$, the optimal parametric convergence rate. Furthermore, $\sqrt{t}(\mu_t - \mu^*)$ converges in distribution to multivariate normal with mean 0_d and covariance matrix $[E_{\theta^*}(f(s, a)f(s, a)^T)]^{-1}\sigma^2$, where

$$E_{\theta}(f(s, a)f(s, a)^T) = \sum_s d(s) \sum_a f(s, a)f(s, a)^T \pi_\theta(s, a)$$

. The plug-in estimator of the asymptotic covariance is consistent.
Asymptotic Theory: the Actor

Theorem

(Asymptotic properties of the actor) The actor’s estimate θ_t converges to θ^* in probability. The convergence rate is $O(1/\sqrt{t})$. Furthermore, $\sqrt{t}(\theta_t - \theta^*)$ converges in distribution to multivariate normal with mean 0_p and covariance matrix $(J_{\theta\theta}(\mu^*, \theta^*))^{-1} V^* (J_{\theta\theta}(\mu^*, \theta^*))^{-1}$, where

$$V^* = \sigma^2 J_{\theta\mu}(\mu^*, \theta^*) \mathbb{E}_\theta (f(s, a)f(s, a)^T J_{\mu\theta}(\mu^*, \theta^*)) + \sum_s d(s) j_{\theta}(\mu^*, \theta^*, s) j_{\theta}(\mu^*, \theta^*, s)^T.$$

The plug-in estimator of the asymptotic covariance is consistent.

In the expression of asymptotic covariance matrix,

$$j(\mu, \theta, s) = \sum_a f(s, a)^T \mu \pi_\theta(s, a) - \lambda \theta^T [g(s)g(s)^T] \theta$$

$$J(\mu, \theta) = \sum_{s \in S} d(s) \sum_{a \in A} E(R|s, a) \pi_\theta(s, a) - \lambda \theta^T [g(s)g(s)^T] \theta$$

$J_{\theta\theta}$ and $J_{\theta\mu}$ are the second order partial derivatives of J. j_{θ} is the first order partial derivative of j.

Huitian Lei (University of Michigan)
Why relate to high dimensional statistics?

- Reward prediction \(E(R|S = s, A = a) = f(s, a)^T \mu^* \) problem usually involves high dimensional reward feature \(f(s, a) \).

- Likely to allow \(d \) (reward feature dimension) to grow with sample size.
Thank you

Wald Lecture on: Continual, Online Learning in Sequential Decision Making
Thursday, August 13, 10:30 a.m.
Susan A. Murphy, University of Michigan
Creating Bootstrap Confidence Intervals

- Plug in variance estimator very sensitive to the estimated value μ_T and θ_T. Underestimated variance leads to anti-conservative confidence intervals.

- Creating a bootstrap sample $\{\theta^b_T\}_{b=1}^B$ by bootstrapping the residuals $\{\varepsilon_t = r_t - f(s_t, a_t)^T \mu_T\}_{t=1}^T$

- Percentile-t bootstrap confidence interval.
Creating Bootstrap Confidence Intervals

Algorithm 2: Generating a bootstrap sample θ^b_T

Start from $t = 0$.

while $t < T$ do

 Context is s_t;
 Bootstrap an action a^b_t according to probability distribution $\pi_{\theta_{t-1}}(s_t, a)$;
 Bootstrap the residuals to generate a bootstrapped reward $r^b_t = f(s_t, a^b_t)^T \mu_T + \epsilon^b_t$;
 Critic update:
 $\mu^b_t = (\sum_{\tau=1}^T f(s_\tau, a^b_\tau)f(s_\tau, a^b_\tau)^T)^{-1}(\sum_{\tau=1}^T f(s_\tau, a^b_\tau)r^b_\tau)$;
 Actor update:
 $\theta_t = \arg\max_{\theta} \frac{1}{t} \sum_{\tau=1}^t \sum_{a} f(s_\tau, a)^T \mu^b_t \pi_{\theta}(s_\tau, a) - \lambda \theta^T \left[\frac{1}{t} \sum_{\tau=1}^t g(s_\tau, 1)^T g(s_\tau, 1) \right] \theta$

end

Go to decision point $t + 1$.