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Abstract. The following expository notes are intended as part
of the Proceedings of the Graduate Student Bootcamp of the 2015
Algebraic Geometry Summer Research Institute, held at the Uni-
versity of Utah and sponsored by the American Mathematical So-
ciety in collaboration with the Clay Mathematics Institute. They
should serve as an introduction, for graduate students in algebraic
geometry or related areas, to some of the fundamental ideas, meth-
ods, and open questions in the field of Gromov–Witten theory.

Though its methods are decidedly modern, the problems addressed
by Gromov–Witten theory have historical roots dating back hundreds,
if not thousands, of years. These are questions of enumerative geome-
try, of which prototypical examples include:

• Given five points in P2, how many conics pass through all five?
• Given four lines in P3, how many lines pass through all four?
• How many rational curves are there on the quintic threefold

V := {x50 + x51 + x52 + x53 + x54 = 0} ⊂ P4

of a fixed degree d?

The answer to the first of these questions was known to the ancient
Greeks: there is exactly one conic through five (sufficiently general)
points in the plane. In keeping with the style of classical Greek mathe-
matics, one can arrive at this solution by simply computing an explicit
equation for the conic.

Such explicit computation, while satisfying when successful, tends to
be cumbersome as a method of enumeration. A different perspective on
enumerative geometry has been in vogue since the eighteenth century:
general enumerative questions should be answered in families, often
by reducing to a particularly simple degenerate case. This method
culminated in the techniques of Schubert calculus. As formulated by
Hermann Schubert in his 1879 manuscript [26], enumerative geometry
should obey the “principle of conservation of number”, an insensitivity
to variations of the input data. If one wishes to know the number of
lines through four fixed lines `1, `2, `3, `4 in P3, for example, then the
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answer should not depend on the particular choice of the `i, so long as
they are chosen in such a way that the answer is finite. In particular,
one may assume that `1 and `2 intersect in a point P and that `3 and
`4 intersect in a point Q. Then there are manifestly two lines passing
through all four: one joining P to Q, and another where the plane
spanned by `1 and `2 intersects the plane spanned by `3 and `4.

Schubert calculus gave rise to a powerful perspective on enumerative
geometry, but its methods were not always mathematically justified.
Why should the principle of conservation of number hold, and in what
situations might it fail to produce an answer? These issues were impor-
tant enough to appear on Hilbert’s celebrated list of unsolved problems
in mathematics, on which the fifteenth problem demands that Schubert
calculus be placed on rigorous footing.

The modern era of enumerative geometry— and the solution to
Hilbert’s fifteenth problem— began with the twin developments of in-
tersection theory and moduli spaces. As we will discuss in the next
section, moduli spaces provide a way to geometrically encode families
of geometric objects (such as all lines in P3), so conditions on the ob-
jects cut out subspaces of the moduli space. Counting objects satisfying
a list of conditions thus amounts to counting intersection points of a
collection of subspaces, and the principle of conservation of number is
translated into the more familiar fact that intersection numbers, when
properly defined, are deformation invariant.

With the advent of intersection and moduli theory, the problems of
enumerative geometry could finally be stated in a robust and rigor-
ous way. Still, the actual computation of numerical solutions to those
problems remained, in many cases, an unwieldy (if at least well-defined)
task. Another breakthrough was needed in order to open the floodgates
to such computations, and in this case, the inspiration came from a
rather unexpected source: theoretical physics.

Physicists became interested in enumerative geometry because of its
connection to string theory, which posits that the fundamental building
blocks of the universe are tiny loops. As these loops— or “strings”—
travel through spacetime, their motion traces out surfaces, and these
real surfaces can be endowed with a complex structure to view them as
one-dimensional complex manifolds, or algebraic curves. The probabil-
ity that a physical system will transform from one state into another
is dictated by a count of curves in the spacetime manifold satisfying
prescribed conditions.

Physical models are expected to have a rich structure and often a
degree of symmetry, if indeed they are accurately describing the world
in which we live. This structure, when exploited from a mathematical
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perspective, predicts surprising relationships between different curve
counts, as well as between curve counts and seemingly unrelated mathe-
matical quantities. The field of Gromov–Witten theory grew up around
mathematicians’ attempts to explain rigorously why such predictions
should hold. This task, while formidable and ongoing, has led to the
discovery of striking new patterns in enumerative geometric problems,
secrets that only emerge when collections of such problems are consid-
ered as a whole and packaged together in just the right way.

1. Basic definitions

Throughout what follows, we work over C. By a smooth curve,
we mean a proper, nonsingular algebraic curve, or in other words,
a Riemann surface. Our curves will also be allowed nodal singu-
larities, in which case we define their genus as the arithmetic genus
g(C) := h1(C,OC). It is useful, though not strictly necessary, if the
reader has some familiarity with the moduli space Mg,n of curves.

1.1. The moduli space of stable maps. Fix a smooth projective
variety X, a curve class β ∈ H2(X;Z), and non-negative integers g
and n. As a set, the moduli spaceMg,n(X, β) consists of isomorphism
classes of tuples (C;x1, . . . , xn; f), in which:

(i) C is a (possibly nodal) curve of genus g;
(ii) x1, . . . , xn ∈ C are distinct nonsingular points;

(iii) f : C → X is a morphism of “degree” β— that is, β = f∗[C];
(iv) the data (C;x1, . . . , xn; f) has finitely many automorphisms.

Here, a morphism from (C;x1, . . . , xn; f) to (C ′;x′1, . . . , x
′
n; f ′) is a mor-

phism s : C → C ′ such that s(xi) = x′i and f ◦ s = f ′.
A tuple (C;x1, . . . , xn; f) satisfying (i) – (iv) is referred to as a stable

map. The xi are called marked points of C, and points that are either
marked points or nodes are called special points. The condition of ad-
mitting finitely many automorphisms (the “stability” in the definition
of a stable map) is equivalent to requiring that, for any irreducible
component C0 of C contracted to a point by f , one has

(1) 2g(C0)− 2 + n(C0) > 0,

where n(C0) is the number of special points on C0.
As a moduli space, Mg,n(X, β) has much more structure than that

of a set. By definition, a moduli space should be equipped with a
geometry that encodes how objects can deform; for example, a path in
the moduli space should trace out a one-parameter family of objects.
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In order to make the definition ofMg,n(X, β) precise, then, we need
a notion of a family of maps into X. If B is any scheme, a family of
stable maps parameterized by B is a diagram

C f //

π
��

X

B,

σn

BB

σ1 ...

BB

in which π is a flat morphism whose fibers are nodal curves of genus g,
the σi are disjoint sections of π, and each fiber(

π−1(b);σ1(b), . . . , σn(b); f |π−1(b)

)
over b ∈ B is a degree-β stable map. The notion of morphism can be
readily generalized to families: it consists of a morphism s : C → C ′
such that s ◦ σi = σ′i and f ◦ s = f ′. Furthermore, a family over B can
be pulled back along a morphism B′ → B to yield a family over B′.

Now, to say that Mg,n(X, β) is a moduli space for stable maps into
X is to say that, for any base scheme B, there is a bijection

{families of stable maps over B (up to isomorphism)}
l(2)

{morphisms B →Mg,n(X, β)}.

To put it more explicitly,Mg,n(X, β) admits a universal family, a fam-
ily where the base scheme is the moduli space itself. The bijection (2)
associates to a morphism B →Mg,n(X, β) the pullback of the universal
family to B.

In particular, a stable map is simply a family over B = Spec(C),
so a special case of (2) is the set-theoretic bijection between points of
Mg,n(X, β) and stable maps. But (2) implies much more: it dictates
the algebro-geometric structure of the moduli space, assuming that
such a space can indeed be constructed.

This brings us to a crucial caveat. A scheme Mg,n(X, β) for which
(2) produces a bijection does not, in fact, exist. The root of the problem
lies in the existence of automorphisms of stable maps, which allow one
to construct families over which every fiber is isomorphic, but which
are nonetheless nontrivial as families. As it turns out, this problem
is not entirely devastating, but it requires one to give Mg,n(X, β) the
structure of an orbifold, a more general notion than that of a scheme.
Orbifold morphisms B →Mg,n(X, β) are correspondingly more general
(even when B is a scheme), and under this notion of morphism, a
bijection (2) into an orbifold Mg,n(X, β) indeed exists.
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1.2. Primary Gromov–Witten invariants. A Gromov–Witten in-
variant, at its most basic level, should be an artifact of enumerative
geometry. More specifically, if Y1, . . . , Yn is a collection of subvarieties
of X, then a Gromov–Witten invariant should be a count of the number
of curves of genus g and degree β passing through all of the Yi.

In order to make this precise, one defines evaluation maps

evi :Mg,n(X, β)→ X

for each i ∈ {1, . . . , n}, sending (C;x1, . . . , xn; f) to f(xi). A first pass
at interpreting the count of genus-g, degree-β curves through all of the
Yi might be as the number of points of intersection

ev−11 (Y1) ∩ · · · ∩ ev−1n (Yn).

A more refined version of this count, capturing its insensitivity to de-
formations of the subvarieties, is given by evaluating

(3) ev∗1[Y1] ∪ · · · ∪ ev∗n[Yn],

on the fundamental class of the moduli space, where [Yi] denotes the
cohomology class defined by Yi and we assume that the sum of the
codimensions of the Yi equals the dimension of the moduli space.

There is a problem with this definition, though. The moduli space
of stable maps can be singular, and it can have different components
of different dimensions. Thus, it is not clear what we mean by the
“fundamental class” of the moduli space, nor even by the requirement
that the codimensions of the Yi sum to the dimension of Mg,n(X, β).

The second of these confusions can be resolved through deformation
theory: while Mg,n(X, β) may not have a well-defined dimension, it
does have an “expected” or “virtual” dimension, calculated by study-
ing the space of infinitesimal deformations of a stable map (the tangent
space to the moduli space) as well as the obstructions to extending in-
finitesimal deformations to honest ones. Explicitly, the virtual dimen-
sion is

(4) vdim := (dimX − 3)(1− g) +

∫
β

c1(TX) + n.

Intuitively, one should understand the virtual dimension by imagining
thatMg,n(X, β) is the zero locus of a section s of a rank-r vector bundle
E on some nonsingular ambient space Y . If s does not intersect the
zero section of E transversally, then the dimension of Z(s) could be
larger than expected, but generically, one expects its dimension to be
dim(Y )− r; this is the “virtual” dimension of Z(s).

Equipped with a replacement for the notion of dimension, it is a diffi-
cult fact [2, 18] that there also exists a replacement for the fundamental
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class, an element

[Mg,n(X, β)]vir ∈ Hvdim(Mg,n(X, β))

known as the virtual fundamental class, which agrees with the funda-
mental class in the case where Mg,n(X, β) is smooth of the expected
dimension. Again, the idea can be explained intuitively by supposing
thatMg,n(X, β) is the zero locus of a section of a vector bundle, which
may not meet the zero section transversally. For example, consider the
least transverse situation possible, when s is identically zero. Then
[Z(s)] = [Y ] lies in too-high dimension, but there is a natural way to
achieve a homology class in the virtual dimension: take [Y ] ∩ e(E).
This amounts to perturbing s ≡ 0 to a transverse section and then
taking its zero locus— although, in practice, such a perturbation may
not be possible.

We can now give a precise definition of Gromov–Witten invariants.

Definition 1.1. Let γ1, . . . , γn ∈ H∗(X). Then the associated (pri-
mary) Gromov–Witten invariant is

(5) 〈γ1 · · · γn〉g,n,β :=

∫
[Mg,n(X,β)]vir

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn).

In case the γi are Poincaré dual to subvarieties Yi and the mod-
uli space is smooth of expected dimension, this recovers the intuitive
enumeration captured by evaluating (3) on the fundamental class. Un-
fortunately, the enumerative meaning of the more general quantity (5)
is not nearly so clear.

We should warn the reader, further, that (5) is generally an integral
over an orbifold, and hence must be suitably interpreted. Orbifolds,
roughly speaking, are locally modelled on quotients V/G of a variety V
by the action of a finite group G, and integration is defined by pulling
back to V and dividing by the order of G. In the case of Mg,n(X, β),
these local groups capture the automorphisms of the stable maps; in
particular, this explains the necessity of imposing that such maps have
finitely many automorphisms.

1.3. Descendant Gromov–Witten invariants. A generalization of
the above-defined Gromov–Witten invariants is useful in order to ob-
tain a more complete picture of the geometry of the moduli space of
stable maps.

For each i ∈ {1, . . . , n}, we define a cotangent line bundle Li on
Mg,n(X, β) to have fiber1 over a point (C;x1, . . . , xn; f) given by the

1To be more precise, Li = σ∗
i ωπ, where π is the projection map in the universal

family, σi is the ith section, and ωπ is the sheaf of relative differentials.
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cotangent line T ∗xi(C). The psi classes for i ∈ {1, . . . , n} are

ψi := c1(Li) ∈ H2(Mg,n(X, β)).

Definition 1.2. Let γ1, . . . , γn ∈ H∗(X), and let a1, . . . , an be non-
negative integers. Then the associated descendant Gromov–Witten in-
variant is

〈ψa1γ1 · · ·ψanγn〉g,n,β :=

∫
[Mg,n(X,β)]vir

ψa11 ev∗1(γ1) ∪ · · · ∪ ψann ev∗n(γn).

The reason that it is geometrically meaningful to include psi classes
in Gromov–Witten invariants is related to a rich recursive structure
among the moduli spaces of stable maps.

For any decomposition g = g1 + g2, n = n1 + n2, and β = β1 + β2,
there is a divisor D ⊂ Mg,n(X, β) whose general element is a curve
with two irreducible components, one of genus g1 containing the first
n1 marked points, on which deg(f) = β1, and the other of genus g2
containing the last n2 marked points, on which deg(f) = β2. In fact,

(6) D ∼=Mg1,n1+1(X, β1)×XMg2,n2+1(X, β2),

where the fiber product ensures that the last marked point on each
component (which is a branch of the node in D) maps to the same
point in X. More generally, there are higher-codimension strata in
Mg,n(X, β) parameterizing curves with several components, on which
the genus, marked points, and degree are distributed in some specified
way. These subvarieties are referred to as boundary strata.

Integrals over the boundary strata arise naturally in the computation
of Gromov–Witten invariants. For example, the localization formula
(which we will discuss in Section 2.5) reduces the Gromov–Witten in-
variants of toric targets X to integrals over certain very special strata.
Due to the existence of expressions like (6) for these strata in terms of
simpler moduli spaces of stable maps, this has the effect of producing
recursions among Gromov–Witten invariants.

The importance of the psi classes is that they encode the normal
bundles to the boundary strata. For example, if D is as in (6), then

(7) ND/Mg,n(X,β)
= L∨n1+1 � L∨n2+1,

where � indicates that the two bundles are pulled back under the
projections to the two factors of (6). Intuitively, the reason for this is
that an element of D is a nodal curve, and normal directions to D inside
the moduli space (that is, deformations moving away from D) are given
by smoothing the node. In local coordinates, the nodal curve can be
expressed as xy = 0, with x and y giving the two tangent directions
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at the node. A node-smoothing deformation can be parameterized as
xy = t, so t gives a local section of the normal bundle ND/Mg,n(X,β)

.
That is, the normal space is the tensor product of the two tangent
spaces at the node, and (7) follows.

1.4. Other curve-counting theories. Before we delve into the meth-
ods by which Gromov–Witten invariants are computed, it is worthwhile
to revisit the enumerative questions that were our original motivation.
After all, we wanted to count things like conics through fixed points
in P2, but what Gromov–Witten theory would have us enumerate is
parameterized conics— that is, degree-two maps from a curve into P2.
What is more, even if we had hoped to count maps from nonsingular
curves, we were forced to allow certain nodal degenerations in order to
obtain a compact moduli space, one for which integration and intersec-
tion theory are well-behaved. Stable maps are not the only reasonable
way to encode curves in a space, nor are they the only solution to the
problem of compactification.

Donaldson–Thomas theory, for example, views a curve in a variety
X not as a map C → X but as an ideal of algebraic functions, the
defining equations of the curve. While these two perspectives on curves
are equivalent when C → X is an embedding of a nonsingular C,
the degenerate objects allowed in the two compactifications are very
different. The moduli space of stable maps permits the embedding to
degenerate— it can become a multiple cover, or it can contract entire
components of the source curve to a point in X— while the moduli
space used in Donaldson-Thomas theory, the Hilbert scheme, keeps
the map an embedding but allows the curve to degenerate, developing
nontrivial scheme structure, bad singularities, or isolated points.

There are some drawbacks to Donaldson–Thomas theory; most no-
tably, the Hilbert scheme does not admit a virtual fundamental class
unless X is a threefold, so only in this case can invariants be defined.
When Donaldson–Thomas (or “DT”) invariants are defined, though,
they have one intriguing advantage over Gromov–Witten invariants:
they are necessarily integers. This is due to the fact that the Hilbert
scheme is, in fact, a scheme, as opposed to the moduli space of sta-
ble maps, which is only an orbifold. The integrality of DT invariants
makes them more suited to honestly enumerative— and, in certain
cases, entirely combinatorial2— interpretations.

2In particular, when X is toric, the localization procedure discussed in Section
2.5 reduces the computation of DT invariants to counts of subschemes supported
at the torus-fixed points of X, which can be described by certain three-dimensional
partitions.
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The GW/DT conjecture of Maulik, Nekrasov, Okounkov, and Pand-
haripande [19, 20] states that the generating functions of Gromov–
Witten and Donaldson–Thomas theory should be related, in the cases
where both are defined, by an explicit and strikingly simple change of
variables, thus lending credence to the claim that both are “counting”
the same sorts of objects. The conjecture has been proven for toric
threefolds by Maulik–Oblomkov–Okounkov–Pandharipande [21], and
for a large class of non-toric targets by Pandharipande–Pixton [23].

A rather different path to teasing out integers from the geometry
of curves is provided by Gopakumar–Vafa invariants, sometimes called
BPS states. These were defined physically in terms of a moduli space of
“D-branes” (roughly, stable sheaves) of class β in a threefold X. This
physical foundation presents the BPS states as integers, but it has not
yet been established in precise mathematical terms.

Gopakumar and Vafa also predicted, though, that the BPS states
should have a precise relationship to Gromov–Witten invariants. Thus,
one can use their conjecture to define the Gopakumar–Vafa invari-
ants from a mathematical perspective. From that point-of-view, the
Gopakumar–Vafa invariants appear to be a sort of normalization of the
Gromov–Witten invariants, accounting for the excess contribution to
any count of degree-β maps that arises from k-fold covers of a degree-β′

map with kβ′ = β. We will discuss this further in Section 3.1.
From this definition, the integrality of the Gopakumar–Vafa invari-

ants becomes a mathematical conjecture. It has been proven for toric
Calabi–Yau threefolds by Konishi [14], and weaker genus-zero results
have also been obtained for certain non-toric targets by Kontsevich–
Schwarz–Vologodsky [16], but the general statement remains open.

2. Computing Gromov–Witten invariants

In this section, we discuss some of the available methods for com-
puting Gromov–Witten invariants. Our treatment will necessarily be
incomplete, but there are many other references from which the in-
terested reader can learn more. These include the excellent introduc-
tion [13] to the genus-zero Gromov–Witten theory of projective spaces,
the detailed yet highly readable account [29] of the all-genus Gromov–
Witten theory of a point, and the wide-ranging tour de force [12].

2.1. Basic properties of primary invariants. Several fundamental
properties of primary Gromov–Witten invariants follow from a fairly
simple observation: there is a forgetful map

τ :Mg,n+1(X, β)→Mg,n(X, β)
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whenever both of these moduli spaces are nonempty. Essentially, one
should view τ as the map

(C;x1, . . . , xn+1; f) 7→ (C;x1, . . . , xn; f).

However, when the last marked point is forgotten, components of C
may no longer satisfy the condition (1) of stability. Thus, we require
a stabilization procedure, which collapses any unstable components to
a point. One can then confirm that, under this procedure, τ indeed
defines a morphism of moduli spaces.

2.1.1. Fundamental class property. Let 1 ∈ H0(X) denote the unit in
cohomology (the Poincaré dual of the fundamental class). Then

〈γ1 · · · γn · 1〉g,n+1,β = 0

unless (g, n, β) = (0, 2, 0).
This follows from the fact that∫
[Mg,n+1(X,β)]vir

ev∗1(γ1) · · · ev∗n(γn) =

∫
τ∗[Mg,n+1(X,β)]vir

ev∗1(γ1) · · · ev∗n(γn),

which is an application of the projection formula. From here, we use
that

(8) τ∗[Mg,n+1(X, β)]vir = 0.

If these spaces were smooth and the virtual fundamental classes were
the ordinary ones, then (8) would be immediate from the dimension
computation (4), since the pushforward would live in homological de-
gree larger than the dimension ofMg,n(X, β). More generally, a study
of the deformation theory is required.3

2.1.2. Divisor equation. For a divisor class [D] ∈ H2(X), we have

〈γ1 · · · γn · [D]〉g,n+1,β =

(∫
β

[D]

)
· 〈γ1 · · · γn〉g,n,β

unless (g, n, β) = (0, 2, 0).
As above, let us see why this is the case if the virtual fundamental

classes are the ordinary ones, relying on deformation theory to show

3The essential point is that the deformation theory is “pulled back” under τ .
As a simple example to gain some insight, suppose that there is a vector bundle E
for which [Mg,n(X,β)]vir = [Mg,n(X,β)]∩ e(E). Then E encodes the deformation

theory, and one has [Mg,n+1(X,β)]vir = [Mg,n+1(X,β)]∩ e(τ∗E). From here, it is
straightforward to see that (8) holds.
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that the same is true in the virtual situation. The equation is again an
application of the projection formula, together with the fact that

τ∗
(
ev∗n+1[D] ∩ [Mg,n+1(X, β)]

)
= τ∗[ev−1n+1(D)] =

∫
β

[D].

The second equality follows from the observation that τ |ev−1
n+1(D) is

generically finite of degree equal to
∫
β
[D]; indeed, once an n-pointed

stable map f : C → X has been chosen, its image generically intersects
D in

∫
β
[D] points, and the (n+1)st marked point can be placed at any

of these.

2.1.3. Degree-zero invariants. The above two equations exclude the
case (g, n + 1, β) = (0, 3, 0), since there is no forgetful map in this
situation: stable maps with (g, n, β) = (0, 2, 0) do not exist. Still, we
can compute the Gromov–Witten invariants directly. We have:

〈γ1 γ2 γ3〉0,3,0 =

∫
X

γ1 ∪ γ2 ∪ γ3.

This follows from the fact that

M0,3(X, 0) ∼= X,

since there is a unique isomorphism C ∼= P1 sending the three marked
points to 0, 1, and ∞, so all that must be chosen to specify a point
in M0,3(X, 0) is the image point of the constant map f : C → X.
Furthermore, the virtual class actually is the ordinary fundamental
class in this case, so no deformation-theoretic argument is required.

2.2. WDVV equations and splitting. In genus zero, a different sort
of forgetful map also implies useful relations: if n ≥ 4, we have

φ :M0,n(X, β)→M0,4,

given by
(C;x1, . . . , xn; f) 7→ (C;x1, . . . , x4)

(modulo the same discussion of stabilization mentioned for the mor-
phism τ). Here, M0,4 = M0,4(point, 0) is the moduli space of genus-
zero, four-pointed curves without a map to a target.

Genus-zero, four-pointed curves can be understood very concretely.
First of all, when the curve C is smooth, there is a unique isomorphism
C ∼= P1 sending x1, x2, and x3 to 0, 1, and ∞ ∈ P1, as remarked above.
This isomorphism sends x4 to some point q ∈ P1 \ {0, 1,∞} (the cross
ratio of x1, x2, x3), and q uniquely specifies the isomorphism class of
(C;x1, . . . , x4) in M0,4. Thus, the locus of smooth curves in M0,4 is
isomorphic to P1 \ {0, 1,∞}. From here, it is not a long leap to see
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x1
x2 x3

x4 x1
x3 x2

x4 x1
x4 x2

x3

Figure 1. Real cartoons of the three singular curves in M0,4.

that the compactification isM0,4
∼= P1. Indeed, there are three possible

reducible 4-pointed curves, depicted in Figure 2.2, and these give the
three boundary points.4

Each of these three points is a boundary divisor in M0,4, which we
denote by D(1, 2|3, 4), D(1, 3|2, 4), and D(1, 4|2, 3), respectively. Any
point in P1 gives the same divisor, though, up to linear equivalence, so
we have

(9) D(1, 2|3, 4) ≡ D(1, 3|2, 4) ≡ D(1, 4|2, 3)

in H2(M0,4). Pulling back the linear equivalences (9) under the mor-
phism φ, we find a linear equivalence of three boundary divisors in
M0,n(X, β). These equivalences are referred to— after Witten, Dijk-
graaf, Verlinde, and Verlinde— as the WDVV equations.

The reason the WDVV equations are useful is that integrals over
boundary divisors can be expressed as Gromov–Witten invariants. The
proof of this involves lifting the isomorphism (6) to the level of virtual
fundamental cycles and interpreting the fiber product explicitly. We
find that, if D ⊂ M0,n(X, β) is a boundary divisor corresponding to
the decomposition n = n1 + n2 and β = β1 + β2 of the marked points
and degree, then∫

D

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn) =∑
i

〈γ1 · · · γn1 · φi〉0,n1+1,β1 · 〈φi · γn1+1 · · · γn〉0,n2+1,β2 .(10)

Here, the sum runs over a basis {φ1, . . . , φk} for H∗(X), and φi denotes
the dual of φi under the Poincaré pairing, meaning that

∫
X
φiφ

j = δji .

2.3. A sample computation. Using only the properties outlined in
this section, we can already perform many computations. As an exam-
ple, we can reproduce the answer to the second question posed at the

4Of course, we have really only succeeded in describing M0,4 as a set; a true
proof that it is isomorphic to P1 as a scheme would require consideration of the
universal curve and the bijection (2) on families.
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very beginning of the chapter. Namely, when X = P3, we will compute

〈H2 H2 H2 H2〉0,4,1 = 2,

where H ∈ H2(P3) is the hyperplane class and hence H2 is the class of
a line. Here, we identify H2(P3) ∼= Z, so the index β = 1 denotes the
class of a line in homology.

The trick is to consider a moduli space with one more marked point,
M0,5(P3, 1), and use the WDVV equations to achieve a relation be-
tween integrals over boundary divisors there. Specifically, the linear
equivalence D(1, 2|3, 4) ≡ D(1, 3|2, 4) pulls back under the forget-
ful map φ to the following linear equivalence of boundary divisors in
M0,5(P3, 1):

1
2

5
3

4

1 0
+

1
2

5
3

4

0 1
+

1
2

3
4

5

1 0
+

1
2

3
4

5

0 1

≡

1
3

5
2

4

1 0
+

1
3

5
2

4

0 1
+

1
3

2
4

5

1 0
+

1
3

2
4

5

0 1

Each marked point is labeled with its number, and each irreducible
component with the degree of the restriction of f .

Now, we equate the integrals of

ev∗1(H) ∪ ev∗2(H) ∪ ev∗3(H
2) ∪ ev∗4(H

2) ∪ ev∗5(H
2)

over these two divisors. We apply the splitting property (10) to each of
the four integrals appearing on either side, taking the basis φi = H i for
i ∈ {0, 1, 2, 3}. In each of these eight integrals, only one choice of i will
yield a possibly nonzero invariant, since the sums of the codimensions of
the classes must equal vdim(M0,n(P3, d)) = 4d+n. Thus, for example,
the integral over the second term on the left-hand side of (2.3) yields

〈H H H2 H0〉0,4,0〈H3 H2 H2〉0,3,1.
In some cases, such as the first term on the left-hand side, the invariants
immediately vanish, since no φi can make the codimensions sum to the
virtual dimension. We find:

〈H H H2 H0〉0,4,0〈H3 H2 H2〉0,3,1 + 〈H H H〉0,3,0〈H2 H2 H2 H2〉0,4,1
=〈H H2 H2 H3〉0,4,1〈H0 H H2〉0,3,0 + 〈H H2 H0〉0,3,0〈H3 H2 H H2〉0,4,1.
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Applying the three basic properties from Section 2.1 (together with
the invariance of Gromov–Witten invariants under permutation of the
inputs), this becomes

〈H2 H2 H2 H2〉0,4,1 = 2〈H2 H2 H3〉0,3,1.

A similar argument, this time applied to integrals of

ev∗1(H) ∪ ev∗2(H) ∪ ev∗3(H
2) ∪ ev∗4(H

3)

over linearly equivalent boundary divisors in M0,4(P3, 1), shows that

〈H2 H2 H3〉0,3,1 = 〈H3 H3〉0,2,1.

It should be intuitively clear that 〈H3 H3〉0,2,1 = 1, since H3 is the
Poincaré dual of a point in P3, and hence this invariant should be
interpreted enumeratively as the number of lines through two fixed
points. In fact, with a bit more care— checking that the virtual fun-
damental class is an ordinary fundamental class, for example— one
can verify that this näıve interpretation actually coincides with the
Gromov–Witten invariant, thus completing the calculation.

2.4. Basic properties of descendant invariants. We have focused
thus far on the computation of primary Gromov–Witten invariants, but
adding descendants only enriches the structure.

The basic properties of descendants still follow easily from the exis-
tence of the forgetful map τ : Mg,n+1(X, β) →Mg,n(X, β). However,
there is a new complication: the psi classes do not pull back under τ .
Rather, one has

(11) τ ∗ψi = ψi +Di,

where Di is the boundary divisor corresponding to curves with one
genus-zero, degree-zero component carrying the marked points i and
n + 1, and another genus-g, degree-β component carrying all of the
other marked points. The proof of (11) is not difficult; the essential
point is that the curves in Di become unstable under τ and hence are
collapsed, but these are the only curves on which ψi and τ ∗ψi differ.

Using this comparison result (and very little else about the geometry
of the moduli spaces), one can prove the string equation,

〈ψa1γ1 · · ·ψanγn · 1〉g,n+1,β =
n∑
i=1

〈ψa1γ1 · · ·ψai−1γi · · ·ψanγn〉g,n,β,

and the dilaton equation,

〈ψa1γ1 · · ·ψanγn · ψ1〉g,n+1,β = (2g − 2 + n)〈ψa1γ1 · · ·ψanγn〉g,n,β,
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where 1 denotes the unit in H0(X). Furthermore, at least in genus zero,
there are more complicated equations called the topological recursion
relations allowing one to reduce powers of the psi classes in general:

〈ψa1γ1 · · ·ψanγn · ψk+1φα · ψlφγ · ψmφδ〉0,n+3,β =∑
[n]=ItJ
β=β1+β2

µ

〈∏
i∈I

ψaiγi · ψkφα · φµ

〉
0,|I|+2,β1

〈
φµ ·

∏
j∈J

ψajγj · ψlφγ · ψmφδ

〉
0,|J |+3,β2

.

Here, as before, {φµ} denotes a basis for H∗(X), and φµ is dual to φµ
under the Poincaré pairing.

These three equations together determine many of the descendant
invariants from a small subset, as we discuss in Section 2.6.

2.5. Localization. Another method— and a very powerful one— by
which certain Gromov–Witten invariants can be reduced to simpler
ones is the Atiyah–Bott localization formula. A full discussion of lo-
calization would take us too far afield, but we will summarize the idea,
referring the reader to [1] (or, for the specific case of Gromov–Witten
theory, [11] or [12]) for more detailed information.

Let M be a smooth projective variety equipped with an algebraic
action of a torus T = (C∗)r. The equivariant cohomology H∗T(M) is
an enhanced cohomology theory that takes into account not only the
topology of M but also the structure of its T-orbits. When M is a
point with the only possible T-action, the equivariant cohomology is a
polynomial ring:

H∗T(point) ∼= C[λ1, . . . , λr].

More generally, for any M as above, pullback under the map to a point
induces a homomorphism

H∗T(point)→ H∗T(M),

which makes H∗T(M) into a C[λ1, . . . , λr]-module. All of the usual oper-
ations on cohomology (pullback, integration, Chern classes, et cetera)
have equivariant analogues.

According to the Atiyah–Bott localization formula, all of the infor-
mation about the equivariant cohomology of M is contained in the
equivariant cohomology of its T-fixed locus. More precisely, the the-
orem is the following. Let {Fj} be the connected components of the
fixed locus, and let ij : Fj ↪→ M be their inclusions. Then, in the
localized ring

H∗T(M)⊗ C(λ1, . . . , λn),
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the equivariant Euler classes eT(NFj/M) of the normal bundles are in-
vertible, and one has

(12)

∫
M

φ =
∑
j

∫
Fj

i∗jφ

eT(NFj/M)

for any class φ ∈ H∗T(M).
To apply this to the setting of Gromov–Witten theory, one requires

a generalization that allows for integration against virtual fundamen-
tal classes. This virtual localization formula was proved by Graber–
Pandharipande [11]. It involves the notion of a “virtual normal bun-
dle”, but ultimately, its form is exactly the same as (12).

Now, suppose that X is a smooth projective variety with a T-action.
Then the moduli spaceMg,n(X, β) inherits a T-action of its own, given
by post-composing a map f : C → X with the action on X. The fixed
loci Fj ⊂ Mg,n(X, β) can then be calculated. They need not map
entirely into the fixed locus of X (C might map to a T-invariant curve
C ′ ⊂ X in such a way that the T-action on C ′ can be “undone” by an
automorphism of C), but still, being fixed puts very strong constraints
on their topology.

For example, X = Pr−1 admits a diagonal action of T = (C∗)r.
The torus-fixed stable maps are those where all of the marked points
and all of the positive genus occur on irreducible components of C
that are collapsed by f to one of the r fixed points, and where these
contracted components are connected by rational curves mapping to
T-invariant lines in X via a degree-d cover ramified over the two fixed
points. The choice of these ramified covers is discrete: it is specified
by the degree and the two fixed points over which it ramifies. Thus,
integrating over a T-fixed locus inMg,n(Pr−1, β) amounts to integrating
over a product of moduli spaces Mgi,ni

of curves corresponding to the
contracted components of C.

After calculating the Euler classes of the virtual normal bundles,
then, one can apply the localization formula to express any Gromov–
Witten invariant of Pr−1 as a summation, indexed by certain decorated
graphs picking out the topology and discrete data, of the much simpler
Gromov–Witten invariants of a point.

2.6. Re-packaging the redundancy. As this section has revealed,
there is a great deal of redundancy in Gromov–Witten invariants. This
leads to some natural questions: what is the minimal amount of infor-
mation needed to determine all of the Gromov–Witten invariants of a
variety X? And, given this base information, how can the rest of the
invariants be efficiently read off?
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One way to answer these questions is to package Gromov–Witten
invariants into a generating function, and to re-phrase the relations
among invariants as differential equations that the generating function
satisfies. As a first (but still difficult and interesting) example, consider
the generating function for descendant invariants of a point:

F (t0, t1, . . .) =
∑

g≥0,n≥1
2g−2+n>0

∑
a1,...,an

ta1 · · · tan
n!

∫
Mg,n

ψa11 · · ·ψann ,

a formal function in infinitely many variables. The string equation is
equivalent to the differential equation

(13)
∂F

∂t0
=

1

2
t20 +

∞∑
k=0

tk+1
∂F

∂tk
,

as the reader can easily check. In 1991, Witten conjectured [28] that
F furthermore satisfies

(14)
∂2F

∂t0∂t1
=

1

2

(
∂2F

∂t20

)2

+
1

12

∂4F

∂t40
,

the so-called KdV equation. Equations (13) and (14), together with the
leading term F = t30/6 + · · · , are sufficient to uniquely determine the
entire generating function. Witten’s conjecture was proved by Kontse-
vich [15] shortly after its announcement, so psi integrals on Mg,n are
now all effectively known.

Matters get more complicated, of course, when the target becomes
more interesting, but many differential equations have been conjectured
and some have been proven. This leads to the Virasoro conjecture (see
[6, 17, 22], among many others), and more generally, to the fascinating
subject of integrable hierarchies, a topic of much current research.

A very different way to view the redundancy of Gromov–Witten the-
ory was suggested by Givental [8, 10, 4]. The idea is to form an infinite-
dimensional vector space H := H∗(X)((z−1)) and view the genus-zero
invariants of X as functions on the subspace H+ := H∗(X)[z]. Namely,
if {φµ} is a basis for H∗(X), we set

t(z) =
∑
a,µ

tµaz
aφµ.

Then the function

FX
0 (t) =

∑
n,β

1

n!
〈t(ψ) · · · t(ψ)〉0,n,β



18 EMILY CLADER

is a generating function for all genus-zero descendant invariants of X.
Consider the subspace

LX :=

{
−z + t(z) +

∑
n,β,µ,a

1

n!
〈t(ψ) · · · t(ψ) · ψaφµ〉0,n+1,β

φµ

(−z)a+1

}
of H, where t(z) ranges over all elements of H+ and φµ, as always,
denotes the Poincaré dual of φµ. This subspace can be viewed as the
graph of the derivative of FX

0 , after making an identification of H with
the cotangent bundle to H+.

Givental’s insight was that the string equation, dilaton equation, and
topological recursion relations are equivalent to geometric properties
of LX . Specifically, LX is a cone swept out by a finite-dimensional
ruling. The upshot of this statement is that LX , though it lies in
an infinite-dimensional vector space, can be uniquely recovered from
a finite-dimensional slice. One such slice, known as the J-function of
X, is given by restricting to points in LX for which t(z) = tµ0φµ has
no psi classes.5 But there are other slices, some that can be written
very explicitly in closed form; finding such a slice is a very succint way
to encode knowledge of all the genus-zero descendants of X. We will
return to these ideas in Section 3.3.

All of this is unique to genus zero, but there is a deep theory by which
higher genus can be brought into the picture. The idea is to look for
transformations ∆ : H∗(X)((z−1)) → H∗(Y )((z−1)) taking the cone
LX for one variety to the cone LY for another, and to apply a proce-
dure known as “quantization” whose definition originates in theoretical
physics. Givental conjectured [9] that, if X and Y satisfy a “semisim-

plicity” condition and ∆ takes LX to LY , then the quantization ∆̂
should take the generating function for all-genus Gromov–Witten in-
variants of X to all-genus Gromov–Witten invariants of Y .

This conjecture was proved by Givental [8, 9] for equivariant Gromov–
Witten theory, and by Teleman [27] in general. Thus, in the semisim-
ple case, there is a complicated but powerful sense in which genus-zero
Gromov–Witten invariants determine the entire theory.

3. A tour of applications and open questions

We conclude the chapter with a brief— and, again, necessarily very
incomplete— survey of some of the applications of Gromov–Witten
theory to algebro-geometric problems. Of course, in answering one

5Perhaps, after another glance at the equations of Section 2.4, the reader should
not be entirely surprised that this piece of LX determines all descendant invariants.
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question we often open the door to a host of new ones, so this section
will also serve as a tour of a few of the open problems in the field.

3.1. Enumerative geometry. We have seen one example in which
Gromov–Witten theory successfully reproduces the intuitive enumer-
ative geometric calculations made by Schubert over a century ago.
What is more striking, though, is that new insights from physics per-
mit Gromov–Witten theory to answer enumerative questions that were
previously outside of mathematicians’ reach.

As an example, let Nd denote the number of degree-d curves in P2

passing through 3d − 1 prescribed points. More precisely, these are
Gromov–Witten invariants

Nd = 〈H2 · · ·H2〉0,3d−1,d
on P2, where H2 is the cohomology class of a point. Prior to the advent
of Gromov–Witten theory, only the first few values of Nd were known,
and even the computation of N4 = 620 required a nearly Herculean
level of computational effort.

The connection to theoretical physics, on the other hand, suggests
a different path to these numbers. Based on their role in string the-
ory, Gromov–Witten invariants were expected to fit together into a
quantum product. This is a family of product structures on H∗(X),
parameterized by t ∈ H∗(X), where the product ∗t is defined by

(15) φi ∗t φj :=
∑
k

∑
n,β

1

n!
〈t · · · t · φi · φj · φk〉0,n+3,β · φk.

To get a sense of the connection to string theory, consider the case
where t = 0, so only three-point Gromov–Witten invariants appear.
Then H∗(X) should be viewed as the space of possible states of a
physical system, and the three-point invariant as a probability that
states φi and φj will interact to give state φk.

It is not immediately obvious that the product defined by (15) should
be associative; this is a consequence of the WDVV equations. Now take
the special case of X = P2 and work at the basepoint t = tH2 for a
formal parameter t. If one expands the associativity statement

H ∗tH2 (H ∗tH2 H2) = (H ∗tH2 H) ∗tH2 H2,

then a recursion among the numbers Nd falls out.
This recursion, known as Kontsevich’s formula, is the following:

Nd +
∑

dA+dB=d
dA,dB≥1

(
3d− 4

3dA − 1

)
d3AdBNdANdB =

∑
dA+dB=d
dA,dB≥1

(
3d− 4

3dA − 2

)
d2Ad

2
BNdANdB .
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The remarkable consequence of Kontsevich’s formula is that it allows
one to compute any of the numbers Nd easily, based only on the initial
input data of N1 = 1, the number of lines through two points.

One should be careful, here and in general, about deducing enumer-
ative information from Gromov–Witten invariants. If the moduli space
has components of excessive dimension, then integrals against the vir-
tual fundamental class can no longer be interpreted näıvely as counts
of intersection points among subvarieties. Moreover, counting stable
maps is not a priori the same thing as counting curves through subva-
rieties; a map might intersect some subvariety more than once, leading
to over-counting coming from re-labeling the marked points of inter-
section, or it might have automorphisms, causing it to count as only a
fraction of a point in the intersection number. One can check that, in
the case of the Nd, these issues do not arise: the moduli space has the
expected dimension, and generically, stable maps that pass through a
particular point do so only once and without automorphisms.

More generally, though, the problem of extracting curve counts (or
integers at all) from Gromov–Witten invariants is a serious one. For
example, consider the third question with which we started the chapter:
how many rational curves of degree d lie on the quintic threefold V ⊂
P4? Using the adjunction formula, one can check that

vdim(M0,n(V, d)) = n,

and from here, the properties in Section 2.1 easily reduce all genus-
zero Gromov–Witten invariants of V to the computation of the 0-point
invariants

Id := 〈 〉0,0,d.
One might hope that Id is equal to the number of degree-d rational
curves on V , but this is not the case. In particular, composing any
degree-d′ map f : P1 → V with a k-fold cover g : P1 → P1, where kd′ =
d, yields a degree-d map f ◦g : P1 → V . There is a positive-dimensional
family of such covers, which produces components in M0,0(V, d) of
excessive dimension and hence spoils the enumerativity of Id.

One can attempt to fix matters by computing the contribution of
such multiple covers to Id by hand. The answer, under the assumption
that the image curve has normal bundle OP1(−1) ⊕ OP1(−1) (which,
according to the Clemens conjecture, should always be the case), is
surprisingly simple: degree-k covers contribute 1/k3 to Id. Thus, it is
conjectured that the numbers id defined by

Id =
∑
k|d

1

k3
id/k
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are, in fact, integers. (These are the Gopakumar–Vafa invariants dis-
cussed in Section 1.4.)

This is still not the end of the story. For d ≤ 9, the numbers id
have been shown to agree with the number of rational curves of degree
d in V , but for d ≥ 10, it is not even known whether the number of
such curves is finite. Furthermore, even if it is finite, an observation of
Pandharipande reveals that it will be smaller than id in general, since
multiple covers of singular curves of degree five contribute to Id by more
than the generic 1/k3 accounted for in id. Thus, although the numbers
id can be computed (using the techniques of mirror symmetry described
in Section 3.3 below), the translation into enumerative information still
contains a wealth of mysteries.

3.2. The moduli space of curves. The rich structure of Gromov–
Witten theory can also be used as a tool for studying the moduli space
Mg,n of curves, a more classical object of algebro-geometric interest.

For any choice of X and β, there is a map

p :Mg,n(X, β)→Mg,n,

given by forgetting the data of f : C → X and stabilizing the curve as
necessary. Thus, relations between cohomology classes on Mg,n(X, β)
that arise out of Gromov–Witten-theoretic knowledge— the localiza-
tion formula, for example, or the quantization formula for higher-genus
theory in terms of genus zero— can be pushed forward to yield relations
between classes on the moduli space of curves. The same reasoning ap-
plies more generally to other moduli spaces, such as the moduli space of
stable quasi-maps or the moduli space of curves with r-spin structure,
which parameterize n-pointed curves equipped with some additional
datum that can be forgotten to yield a map to Mg,n.

These methods all produce equations satisfied by a particular family
of cohomology classes on Mg,n, the tautological classes R∗(Mg,n) ⊂
H∗(Mg,n). These are defined simultaneously for all g and n as the
minimal family of subrings closed under pushforward by the forgetful
morphism τ and the two types of “gluing” morphisms

Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 ,

Mg−1,n+2 →Mg,n,

which attach together two marked points to form a node. Although
non-tautological classes have been shown (with some effort) to exist
[7], nearly every geometrically-interesting class is tautological.

Gromov–Witten-theoretic methods have been used to deduce rela-
tions in the tautological ring by a number of authors, culminating with
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the proof by Pandharipande, Pixton, and Zvonkine [24] of a set of re-
lations previously conjectured by Pixton [25], using the quantization
formalism on a moduli space of r-spin structures. It is currently conjec-
tured that Pixton’s relations are all of the relations in the tautological
ring; in particular, they have been proven to imply all of the other
relations that had previously been found. This far-reaching conjecture,
though, remains a topic of intense study.

3.3. Mirror symmetry. Perhaps the most fruitful— and also the
most mysterious— connection between the mathematical and physi-
cal sides of Gromov–Witten theory is provided by mirror symmetry.
This is a duality, which, while natural to expect from the perspective
of physics, is mathematically-speaking both startling and still largely
open-ended. We refer the reader to [5], [12], or [3] for a more in-depth
discussion.

The physical motivaion for mirror symmetry comes from objects
known as N=2 superconformal field theories (SCFTs), of which het-
erotic string theories are an example. More specifically, a heterotic
string theory describes physical processes in terms of a worldsheet, the
real surface traced out by a string as it propagates through spacetime,
which is equipped with a conformal structure. The theory is required to
be equivalent under conformal equivalence of the worldsheet, as well as
under two supersymmetries that transform particles known as bosons
into fermions and vice versa. In particular, these properties imply that
the infinitesimal symmetries of the theory (the Lie algebra of the sym-
metry group) form a superconformal algebra.

The solutions to the equations of motion in a heterotic string theory
decompose into a “left-moving” and “right-moving” part, and the su-
persymmetries preserve this decomposition. Thus, the superconformal
algebra of infinitesimal symmetries contains two distinguished subalge-
bras, each isomorphic to u(1), acting by infinitesimal rotation on the
left-moving and right-moving supersymmetries, respectively. One can
choose a generator for each of these copies of u(1), but the choice is
only unique up to sign; it amounts to choosing an ordering of the two
supersymmetries.

The connection with mathematics arises out of a particular way to
construct a heterotic string theory, called the nonlinear sigma model,
from the input data of a Calabi–Yau manifold X of complex dimension
three with a complexified Kähler class ω. That is, X is a compact
complex manifold with trivial canonical bundle, and ω = B + iJ for
classes B, J ∈ H2(X;R), where J is Kähler.
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Crucially, the data of (V, ω) determine not just an N = 2 SCFT but a
choice of ordering for the supersymmetries. Thus, we have a canonical
choice of generator for the u(1) × u(1) subalgebra of the supercon-
formal algebra described above. This generator can be viewed as an
operator on the state space of the physical system, and its eigenspaces
can be computed mathematically: for p, q ≥ 0, the (p, q) eigenspace is
Hq(X,ΛpTX) and the (−p, q) eigenspace is Hq(X,Ωp

X).
Now, suppose that one reverses the order of the two supersymmetries.

This choice does not change the SCFT, but the result no longer arises
out of the data of (X,ω). The heart of the mirror conjecture from a
physical perspective is that there should exist a different pair (X∨, ω∨),
the mirror of (X,ω), for which the associated nonlinear sigma model
is the same SCFT but with the opposite ordering of supersymmetries.

In particular, this implies that the (p, q) eigenspace for (X,ω) will
be exchanged with the (−p, q) eigenspace for (X∨, ω∨):

Hq(X,ΛpTX) ∼= Hq(X∨,Ωp
X∨)

Hq(X,Ωp
X) ∼= Hq(X∨,ΛpTX∨).

This is especially interesting when p = q = 1, in which case H1(X,TX)
can be viewed as the parameter space for infinitesimal deformations of
the complex structure on X and H1(X,ΩX) as the parameter space for
infinitesimal deformations of the Kähler class. Thus, a more refined
version of mirror symmetry suggests that there should be an isomor-
phism between the moduli space of complex structures on X and the
moduli space of complexified Kähler classes ω∨ on X∨, at least locally
around the specific choices (X,ω) and (X∨, ω∨).

An even deeper level of symmetry between the SCFTs associated
to (X,ω) and (X∨, ω∨) comes from consideration of their correlation
functions, which are certain integrals over the space of all possible
worldsheets that describe how particles in the theory interact. Two
particular types of correlation functions are the A-model and B-model
Yukawa couplings, where the labels “A” and “B” depend on the partic-
ular choice of ordering of the supersymmetries. In mathematical terms,
these can be viewed as vector bundles on the complex and Kähler mod-
uli spaces, respectively, each equipped with a connection. The A-model
connection is defined in terms of the genus-zero Gromov–Witten invari-
ants of X. In the B-model, it is the Gauss–Manin connection, an object
that has been well-studied and can be computed very explicitly using
ideas from the theory of differential equations.
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The upshot of mirror symmetry, then, is an equality between the
genus-zero Gromov–Witten invariants of X— packaged into a generat-
ing function or quantum connection— and certain B-model information
about X∨ that can be exactly calculated. As a result, one obtains strik-
ing predictions of Gromov–Witten invariants. We use the word “predic-
tions” here, rather than “calculations”, because much of the preceding
discussion rests on rather shaky mathematical footing. Given a mani-
fold X, how can X∨ be constructed? What, precisely, do we mean by
the A-model and B-model, and can an equivalence exchanging them
be proved mathematically?

Some of these questions have now been rigorously answered. For
example, physicists used mirror symmetry to predict the genus-zero
invariants Id of the quintic threefold V ⊂ P4, yielding an equation re-
lating a generating function for the Id to an explicit hypergeometric
series arising out of the B-model. Givental provided an entirely math-
ematical proof of this statement, by showing that the hypergeometric
series gives a slice of the cone LX described in Section 2.6.

Other ways to interpret the physical data of the A- and B-model
in mathematical language have been proposed, such as Kontsevich’s
homological mirror symmetry relating the derived category of coherent
sheaves on X to a certain derived category defined in terms of La-
grangian submanifolds of X∨, or the Strominger–Yau–Zaslow (SYZ)
conjecture relating fibrations of X and X∨ by special Lagrangian tori.
Understanding the interplay between all of these ideas, and especially
how they might manifest in Gromov–Witten theory beyond genus zero,
is a subject of active current research and an ongoing mystery.
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