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1. What is an orbifold?

Roughly speaking, an orbifold is a topological space that is locally
homeomorphic to the quotient of an open subset of Euclidean space by
the action of a finite group. Just as the definition of a manifold can
be made precise in terms of charts, one can define an orbifold chart
on a topological space X. Since we will not need this definition, let us
simply illustrate it pictorially rather than setting it out in words:

X
U

φ Ũ ⊂ Rn

y
G

Ũ/G

∼

From here, the notion of orbifold atlas can be specified, with two atlases
being declared equivalent if they admit a common refinement. Then,
in exact analogy to the definition of a manifold, one can define an orb-
ifold as a topological space X (assumed to satisfy some basic niceness
conditions) equipped with an equivalence class of orbifold atlases; see
Definition 1.1.1 of [1].

The main observation we would like to make about this definition is
that an orbifold chart contains more data than simply the topological
quotient Ũ/G. In particular, an orbifold “remembers” where the G-
actions in each of its charts have isotropy.

Example 1.0.1. Let Zn act on C by multiplication by nth roots of
unity. Then there is an orbifold X = [C/Zn] with a single, global chart
φ = id : R2 → C. Though the quotient C/Zn is topologically still C,
the orbifold X contains the further information of the Zn isotropy of
the action at the origin. For this reason, X is typically depicted as a
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complex plane with an “orbifold point” at the origin— that is, a point
carrying the data of the group Zn.

Example 1.0.2. More generally, if M is a smooth manifold and G is
a finite group acting smoothly on M , then one can form an orbifold
[M/G]; this follows from the fact that any point x ∈ M with isotropy
group Gx ⊂ G is contained in a Gx-invariant chart. Orbifolds of this
form are referred to as global quotients.

Example 1.0.3. Let C∗ act on Cn+1 by

λ(z0, . . . , zn) = (λc0z0, . . . , λ
cnzn),

in which the ci are coprime positive integers. Then the quotient

P(c0, . . . , cn) := Cn+1/C∗

can be given the structure of an orbifold, called weighted projective
space. The underlying manifold X is the projective space Pn, and the
coordinate points pi = [0 : · · · : 1 : · · · : 0] have isotropy group Zci ,
while all other points have trivial isotropy. It can be shown (Example
1.53 of [1]) that P(c0, . . . , cn) is not presentable as a global quotient.

All of this can be cast in the language of groupoids— that is, cate-
gories in which every morphism is an isomorphism— and more specifi-
cally, of Lie groupoids, in which the objects and morphisms both form
smooth manifolds and all of the structure morphisms of the category
are smooth. To compare with the previous description of orbifolds,
the objects of the category should be thought of as the points in the
charts Ũ , and arrows between objects as indicating elements of the
local groups G sending one point to another. Certain technical con-
ditions are required in order to ensure that this definition of orbifold
agrees with the previous one; in particular, it should be the case that
each object x has a finite group Gx of self-arrows and that Gx acts on
a neighborhood of x in the manifold of objects. See Definition 1.38 of
[1] and the discussion preceding it for details.

Example 1.0.4. Let [M/G] be a global quotient orbifold. Then there
is a category X in which the objects are M and the morphisms are
M ×G, with one morphism x→ g · x for each (x, g) ∈M ×G.

Though admittedly more abstract, this category-theoretic language
has the advantage of generalizing immediately to the case of ineffective
group actions.1

1There are other reasons why this language is preferable. One reason has to do
with the notion of orbifold morphisms, which are surprisingly subtle to define but
can be made precise in the groupoid context. Another is that, historically, some of
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Example 1.0.5. Let G be a finite group. Then one can form an
orbifold BG := [•/G] by allowing G to act trivially on a point. In
terms of groupoids, this is the category with one object and morphisms
given by G.

Example 1.0.6. In the definition of weighted projective space given in
Example 1.0.3, allowing the integers c0, . . . , cn to have a common factor
d produces an orbifold in which every chart (Ũ , G) has a subgroup
Zd ⊂ G acting ineffectively; in other words, every point has Zd isotropy,
and the coordinate points [0 : · · · : 1 : · · · : 0] have a larger isotropy
group containing Zd. As a groupoid, P(c0, . . . , cn) has objects Cn+1 and
morphisms Cn+1 ×C∗, just as in the groupoid construction of a global
quotient.

2. Orbifold bundles and orbifold de Rham cohomology

All of the geometric objects that one might associate to a manifold
can be extended to orbifolds. Most importantly for us, there is a no-
tion of an orbifold vector bundle (and in particular, of a tangent and
cotangent bundle to an orbifold) and of de Rham cohomology.

The general principle when defining the orbifold analogues of such
concepts is that one should specify the appropriate manifold data on
each chart, and it should be equivariant with respect to the chart’s G-
action. This is easiest to make precise in the case of global quotients:

Definition 2.0.7. Let X = [M/G] be a (not necessarily effective)
global quotient orbifold; see Example 1.0.4. Then an orbifold vector
bundle over X is a vector bundle π : E →M equipped with a G-action
taking the fiber of E over x ∈M to the fiber over gx via a linear map.

Definition 2.0.8. A section of an orbifold vector bundle over [M/G]
is a G-equivariant section of π : E →M .

These notions generalize to arbitrary orbifolds. An orbifold vector
bundle over an orbifold presented by a groupoid X , for example, is a
vector bundle E over the objects of X , with a linear map Ex → Ey for
each arrow g : x→ y of X .

In particular, the tangent bundle to a groupoid can be constructed
by taking the tangent bundle to the objects (in the global quotient case,
this is TM) and allowing arrows to act by the derivative of their action
on objects.

the first spaces whose orbifold structure was put to serious use were moduli spaces
(in which the isotropy groups encode automorphisms of the objects parameterized),
and these arise very naturally as categories.

3



Emily Clader Orbifolds and Orbifold Cohomology

In this way, one arrives at the definition of differential p-forms on an
orbifold; they are sections of the orbifold bundle

∧p T ∗X . As usual, the
case of global quotients is easiest to understand: a differential form on
[M/G] is a G-invariant differential form on M . It is straightforward to
check that the exterior derivative on M (or, for a more general orbifold,
on the objects of X ) preserves G-invariance. Hence, the de Rham
complex and the orbifold de Rham cohomology can be defined.

Integration on a global quotient X = [M/G] is defined by∫
X
ω :=

1

|G|

∫
M

ω,

where ω ∈ Ωp(M) is a G-invariant differential form. More generally,
one can extend the definition of integration to arbitrary orbifolds by
working in charts via a partition of unity.

3. The need for a new cohomology theory

For the remainder of these notes, X will be assumed to be a complex
orbifold; to put it concisely, this means that the defining data of the
groupoid are not just smooth but holomorphic. An “orbifold curve”
will refer to an orbifold of complex dimension one.

The first indication that orbifold de Rham cohomology is insufficient
for a true study of orbifolds comes from the following theorem:

Theorem 3.0.9 (Satake). There is an isomorphism

H∗dR(X ) ∼= H∗(|X |;R),

where |X | is the orbit space of X— that is, the quotient of the objects
of X by the identification x ∼ y if there exists an arrow x → y— and
the right-hand side denotes singular cohomology.

This implies that orbifold de Rham cohomology sees nothing of the
isotropy groups, but only the topological quotients (or “coarse under-
lying spaces”) Ũ/G in each chart.

The appropriate definition of cohomology for orbifolds is, in fact,
inspired by Gromov-Witten theory: one should begin by defining not
ordinary cohomology but quantum cohomology, and then restrict to the
degree-zero part to recover a definition of cohomology for orbifolds.

How, then, should orbifold quantum cohomology be defined? In
pointing toward the correct definition, the first key observation is that
the structure of evaluation morphisms should be somewhat richer in
this setting. The reason for this lies in the definition of a morphism
between orbifolds. While we will not make this definition precise (in-
deed, to do so is somewhat subtle, as the atlas on the source may need
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to be refined; see Section 2.4 of [1]), we remark that as a consequence,
an orbifold morphism X → Y includes the data of homomorphisms on
isotropy groups

λx : Gx → Gz

for each object x of X , in which z is the image (or, to be more precise,
an image) of x. See Section 2.5 of [1] for a more precise version of this
statement.

Suppose, then, that we have defined a moduli space M0,n(X , β) of
maps f from a genus-zero n-pointed complex orbifold curve C to a fixed
complex orbifold X . Then each marked point xi ∈ C carries two pieces
of local data: the image of xi under f , and the homomorphism λxi from
the isotropy group of C at xi to the isotropy group of X at f(xi). In
fact, it is a consequence of the definition of orbifold curves that their
isotropy groups are necessarily cyclic and are equipped with a preferred
generator, so the information of the homomorphism λxi is encoded by
an element of the isotropy group at f(xi).

The upshot of this discussion is that the target of the evaluation
maps should not be X but the following:

Definition 3.0.10. Given an orbifold X , the inertia stack IX of X
is an orbifold groupoid whose objects consist of pairs (x, g), where x is
an object of X and g ∈ Gx is an element of the isotropy group of X at
x. The orbifold structure on IX is given by putting an arrow

(x, g)→ (hx, hgh−1)

for each arrow h of X whose source is x.

The evaluation morphisms map

evi :M0,n(X , β)→ IX
via

(f : C → X ;x1, . . . , xn) 7→ (f(xi), λxi(1xi)),

in which 1xi ∈ Gxi is the canonical generator.
In fact, since we will only be concerned with degree-zero, three-

pointed maps, all of this can be made much more explicit. A degree-
zero morphism C → X factors through C → BGx, where x ∈ X is the
image point. There is a simple classification of orbifold morphisms into
an orbifold of the form BG:

Fact 3.0.11. A morphism Y → BG is equivalent to a principal G-
bundle E → Y .

Of course, we have not defined principal bundles over orbifolds, so
this fact is still rather imprecise. Nevertheless, Definition 2.0.7 should
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give a flavor of the correct definition of principal bundle, and in par-
ticular, should point to the fact that E will restrict to an ordinary
principal G-bundle on the locus of points in Y with trivial isotropy.

Thus, a degree-zero morphism f : C → BGx ⊂ X will yield a princi-
pal Gx-bundle on the three-punctured sphere C \{x1, x2, x3}. A careful
study of the definitions (and of Fact 3.0.11) shows that the element
λxi(1xi) ∈ Gx is nothing but the monodromy of this bundle around the
puncture at xi.

These monodromies are sufficient to capture the data of the principal
bundle. More precisely, a principal Gx-bundle on C \ {x1, x2, x3} is
specified by a homomorphism

π1(C \ {x1, x2, x3})→ Gx.

Hence, it is given by the three monodromies λxi(1xi) around the inde-
pendent loops of C \ {x1, x2, x3}, subject to the condition that

3∏
i=1

λxi(1xi) = 1.

Two such homomorphisms correspond to the same principal Gx-bundle
if they are conjugate under the action of Gx.

This indicates that objects of M0,3(X , 0) should be given by tuples
(x, (g1, g2, g3)) with gi ∈ Gx satisfying g1g2g3 = 1, and that each such
object should have automorphism group Gx from the conjugation ac-
tion. We can put this more carefully in the language of groupoids: the
objects are

Obj
(
M0,3(X , 0)

)
= {(x, (g1, g2, g3)) | gi ∈ Gx, g1g2g3 = 1},

and there are arrows

(x, (g1, g2, g3))→ (hx, (hg1h
−1, hg2h

−1, hg3h
−1))

for each h ∈ Gx.
In these terms, the evaluation maps are simply

evi :M0,3(X , 0)→ IX

(x, (g1, g2, g3)) 7→ (x, gi).

4. Chen-Ruan cohomology

Equipped with a definition of M0,3(X , 0) and its evaluation maps,
the path to degree-zero quantum cohomology should be clear by anal-
ogy to the non-orbifold case. We will require a virtual class onM0,3(X , 0),
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which will yield a definition of three-point invariants:

〈α β γ〉X0,3,0 =

∫
[M0,3(X ,0)]vir

ev∗1(α)ev∗2(β)ev∗3(γ).

We will further require a Poincaré pairing 〈 , 〉, so a product ∗ can be
defined via

〈α ∗ β, γ〉 = 〈α β γ〉X0,3,0.
Note, though, that since the evaluation maps land in IX , the three-
point invariants take α, β, γ ∈ H∗dR(IX ) as insertions. Thus, the
Poincaré pairing should be defined on IX , and the resulting ∗ will
be a product on H∗dR(IX ).

In the end, then, the Chen-Ruan cohomology of X will be defined
as

H∗CR(X ) := H∗dR(IX )

with ring structure given by the above product.

4.1. Poincaré pairing. We begin by defining the Poincaré pairing. To
do so, we will require the decomposition of IX into twisted sectors.
In the case where X = [M/G] is a global quotient, this relies on a fairly
simple observation: we have

I[M/G] =

[(⊔
g∈G

M g

)
/G

]
,

in which an element h ∈ G acts on the disjoint union by sending

M g →Mhgh−1

via multiplication by h. This is “equivalent” to⊔
g∈Conj(G)

[M g/C(g)],

where Conj(G) denotes the set of conjugacy classes and C(g) is the
centralizer of g. The notion of equivalence here means, in particular,
that this new version of I[M/G] has the same orbit space (and hence
the same de Rham cohomology) as well as the same isotropy groups as
our original definition— thus, replacing I[M/G] by the above does not
affect integrals. In what follows, we will write

(1) I[M/G] =
⊔

(g)∈Conj(G)

[M g/C(g)]

and refer to the components of (1) as twisted sectors of [M/G]. No-
tice that the sector corresponding to the conjugacy class of 1 ∈ G is
isomorphic to [M/G] itself; this is called the nontwisted sector.
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It is a slightly nontrivial fact that there is an analogous decomposi-
tion of IX (or, to be precise, an orbifold equivalent to IX in the above
sense) for an arbitrary X :

(2) IX =
⊔

(g)∈T

X(g)

Here, T denotes the set of equivalence classes of pairs (x, g) ∈ IX under
a certain notion of equivalence. This equivalence should be thought of
as conjugacy, but some work is required to make sense of what it means
for (x, g) and (y, h) to be conjugate when x and y lie in different charts.

Example 4.1.1. Let X = P(2, 3), a one-dimensional weighted projec-
tive space that looks like P1 with isotropy group Z2 at ∞ and Z3 at 0.
Then the twisted sector decomposition of the inertia stack is

IX = P(2, 3) t [{(∞, ζ2)}/Z2] t [{(0, ζ3)}/Z3] t [{(0, ζ23 )}/Z3],

where ζ2 = e2πi
1
2 and ζ3 = e2πi

1
3 .

One important feature of this decomposition is that there is an iso-
morphism

I : X(g) → X(g−1)

for any (g) ∈ T ; in the global quotient case, this is simply the statement

that Xg = Xg−1
.

Using this, the Poincaré pairing on IX is defined as the direct sum
of the pairings

〈 , 〉(g) : H∗(X(g))⊗H∗(X(g−1))→ R

〈α, β〉(g) =

∫
X(g)

α ∧ I∗β.

4.2. Virtual class. We will not describe the construction of the virtual
class in any detail. Instead, let us simply make two remarks.

First, M0,3(X , 0) is smooth, and the virtual class can be expressed
as

[M0,3(X , 0)]vir = [M0,3(X , 0)] ∩ e(Ob)

for an obstruction bundle Ob.
Second, there is a decomposition of M0,3(X , 0) into components,

and a formula for the virtual dimension can be given on each of these.
Namely,

M0,3(X , 0) =
⊔

(g1,g2,g3)∈T3

M0,(g1,g2,g3)(X , 0),

where

M0,(g1,g2,g3)(X , 0) = ev−11 (X(g1)) ∩ ev−12 (X(g2)) ∩ ev−13 (X(g3)).
8
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Here, T3 is a set of equivalence classes of elements (x, (g1, g2, g3)Gx) ∈
M0,3(X , 0) analogous to the set T above. For example, when X =
[X/G] is a global quotient, we have

T3 = {(g1, g2, g3) | gi ∈ G g1g2g3 = 1}/ ∼,
where (g1, g2, g3) ∼ (hg1h

−1, hg2h
−1, hg3h

−1).
The virtual dimension formula is

vdim(M0,(g1,g2,g3)(X , 0)) = 2dimC(X)− 2ι(g1) − 2ι(g2) − 2ι(g3).

Here, the definition of ι(g) is as follows:

Definition 4.2.1. Let (x, g) be an object of the inertia stack IX ,
where g ∈ Gx and x is an object of X . Viewing X as a groupoid, let
X0 denote the set of objects. Then Gx acts on the tangent space TxX0

by the derivative of its action on a neighborhood of x, and this action
induces a homomorphism

ρx : Gx → GLn(C).

Since g ∈ Gx has finite order, the matrix ρx(g) is diagonalizable; write
the diagonalized matrix as e

2πi
m1,g
mg

. . .

e
2πi

mn,g
mg

 ,

where n = dimCX0, mg is the order of ρx(g), and 0 ≤ mi,g < mg.
The degree-shifting number (or age shift) of (x, g) is

ι(g) :=
n∑
i=1

mi,g

mg

.

One can check that ι defines a locally constant function IX → Q, and
hence it depends only on the twisted sector in which (x, g) lies.

The reason for the name “degree-shifting number” will be made clear
in the next subsection.

4.3. Grading. We have now completed (modulo an explicit construc-
tion of the virtual cycle) the definition of the vector space and ring
structure on the Chen-Ruan cohomology. However, there is one ingre-
dient that we have not yet addressed: the grading.

The easiest way in which to understand the grading is via the Poincaré
pairing: if X has complex dimension n, then elements of Hd

CR(X )
should pair nontrivially only with elements of H2n−d

CR (X ). It is easy
to check that, under the definition of the Poincaré pairing given above,
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this will not be the case if we allow H∗CR(X ) = H∗dR(IX ) to be graded
in the same way as the cohomology of the inertia stack.

Instead, the grading is shifted on each twisted sector by the corre-
sponding degree-shifting number:

Hd
CR(X ) =

⊕
(g)∈T

Hd−2ι(g)(X(g)).

From here, it is a fairly straightforward exercise to show that, for α, β ∈
H∗CR(X ), the pairing 〈α, β〉 is nonzero only when

deg(α) + deg(β) = 2n.

5. Examples

5.1. Let X = BG. Then the decomposition of X into twisted sectors
is

I(BG) =
⊔

(g)∈Conj(G)

B(C(g)),

so
X(g) = B(C(g)),

where C(g) denotes the centralizer of g and B(C(g)) is the orbifold
[•/C(g)]. As a vector space, H∗CR(BG) = H∗dR(I(BG)) is generated by
the elements 1(g) for (g) ∈ Conj(G), where 1(g) is the constant function
1 on the sector X(g).

The Poincaré pairing is

〈1(g), 1(g−1)〉 =

∫
X(g)

1(g) ∪ I∗1(g−1) =

∫
B(C(g))

1 =
1

|C(g)|
.

The moduli space is

M0,3(BG, 0) = {(g1, g2, g3) | gi ∈ G, g1g2g3 = 1},
with an arrow (g1, g2, g3) → (hg1h

−1, hg2h
−1, hg3h

−1) for h ∈ G. In
particular,

M0,(g1,g2,g3)(BG, 0) =

{
B
(
C(g1) ∩ C(g2)

)
if g1g2g3 = 1

∅ otherwise.

Since the tangent space to the objects of X is 0-dimensional, all of the
degree-shifting numbers, and hence the virtual dimensions of all the
nonempty components of the moduli space, are equal to zero.

Thus,

〈1(g1) 1(g2) 1(g3)〉 =
∑

(h1,h2,h3)∈T3
(gi)=(hi)

1

|C(h1) ∩ C(h2)|
.
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Recall, here, that T3 = {(h1, h2, h3) | h1h2h3 = 1}/G, where G acts by
simultaneous conjugation on all three factors.

Combining this with the Poincaré pairing computed above, we find
that

1(g1) ∪ 1(g2) =
∑

(h1,h2,h3)∈T3
(gi)=(hi)

|C(h1h2)|
|C(h1) ∩ C(h2)|

.

In particular, this shows that H∗CR(BG) is isomorphic as a ring to the
center of the group algebra CG.

5.2. Let X = P(w1, w2) for coprime integers w1 and w2. Recall that
the coarse underlying space of X is P1, and there are orbifold points
p1 = [1 : 0] with isotropy Zw1 and p2 = [0 : 1] with isotropy Zw2 .
Thus, in addition to the nontwisted sector X ⊂ IX , the inertia stack
contains the points (p1, g) for each nontrivial g ∈ Zw1 and (p2, g) for
each nontrivial g ∈ Zw2 .

The decomposition into twisted sectors is:

IX = X t
⊔

g 6=1∈Zw1

BZw1 t
⊔

g 6=1∈Zw2

BZw2 .

The sector indexed by g ∈ Zw1 or g ∈ Zw2 will be denoted Xg.
To compute the degree-shifting numbers, notice that if g = e2πik/w1 ∈

Zw1 for some 1 ≤ k < w1, then g acts on the standard chart Up1
∼= C

around p1 by multiplication, so the derivative of this action is equal to
itself. It follows that ρp1(g) = e2πik/w1 ∈ GL1(C), so

ι(g) =
k

w1

.

A similar computation holds for the sectors indexed by g ∈ Zw2 .
For each 1 ≤ k < w1 and 1 ≤ ` < w2, let

αk ∈ H2k/w1

CR (X ) = H0(Xe2πik/w1 ) = H0(BZw1) = C

and

β` ∈ H2`/w2

CR (X ) = H0(Xe2πi`/w2 ) = H0(BZw2) = C
denote the constant functions 1 on the various twisted sectors.

It is easy to see that α∗β = 0. Indeed, this product is defined by the
three-point invariants 〈α β γ〉. The insertion α forces the first marked
point to map to the twisted sector Xe2πi/w1 , so on coarse underlying
spaces, it goes to p1 ∈ P1. The insertion β, similarly, forces the second
marked point to map to p2 ∈ P1. Since we are considering degree-zero
morphisms, this is impossible.
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One can check, furthermore, that αk1 ∗ αk2 = αk1+k2 whenever k1 +
k2 < w1, and a similarly property holds for powers of β. For degree
reasons, this must be true up to a constant, and the determination
of the constant is a straightforward application of the definitions; the
obstruction bundle has rank zero, so it does not play a role.

Finally, we have αw1−1 ∗ α = βw2−1 ∗ β = H, the hyperplane class
in the nontwisted sector H2

CR(X ) = H2(P1). Once again, degree con-
straints force this to be true up to a constant, and the constant can be
computed by showing

〈αw1−1 α 1〉 =

∫
[M

0,(ζw1−1,ζw1 ,1)
(X ,0)]vir

ev∗1(1) ∪ ev∗2(1) ∪ ev∗3(1) = 1,

where ζ = e2πi/w1 , and similarly for the case of β.
In summary, we have shown that the Chen-Ruan cohomology of

P(w1, w2) for coprime weights wi is generated as a ring by the two

twisted classes α ∈ H2/w1

CR (X ) and β ∈ H2/w2(X ), subject to the rela-
tions

α ∪ β = 0, αw1 = βw2 , αw1+1 = βw2+1 = 0.
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