Photon Polarization and Photon-Atom Entanglement in Atomic Yb

E.A. Alden ${ }^{1}$, K.R. Moore ${ }^{1}$, and A.E. Leanhardt ${ }^{1.2}$

Photon Polarization Entanglement

The polarization of two photons can be entangled in Bosonic or Fermionic Yb. This is done deterministically in the case where the photons are co- or counter-propagating along the quantization axis for a known initial state population.

$$
\left|\Psi^{+}>=|L R>+| R L>\right.
$$

 total change of zero which means any transition will create a Bell state. $\mathrm{O}_{2}-\pi^{--} \quad$ Fidelity folels sate

Collection Rates

While the structure of Yb is ideal for generating correlated photon pairs, to guarantee the excited state is only populated in the $\mathrm{mJ}=0$ sublevel limits where we can place detectors. For the $\mid \Psi^{+}>$Bell state, only 1% of radiated photon pairs are radiated in an angular region with acceptable fidelity. For the $\mid \Phi^{+}>$Bell state, 14% of photon pairs are radiated in an angular region with acceptable fidelity.
$\left|\Phi^{+}>=|L L>+| R R>\right.$
 $\mathrm{m}=0 \mathrm{os}$ subleve of the ground state a ater two photoon decays. In this case they must have a total change of t-2 and will again create a Bell state.

References

${ }^{1}$ Our experimental setup drives the ${ }^{\mathrm{S}_{0} \rightarrow{ }^{3} \mathrm{D}_{2} \text { transition, which can }}$ be detected through a 1479 nm and a 556 nm photon. The alignment of these photons with respect to the these photons with respect to the entanglement of the photons.

Photon Polarization and Atomic Spin Entanglement

The polarization of two photons can be entangled in Fermionic $\mathrm{Yb} 171, \mathrm{I}=1 / 2$. This is done deterministically in the case where one photon propagates along the quantization axis, and the other propagates perpendicular to the quantization axis.

Four Wave Mixing in Yb Vapor

We propose to generate correlated photon pairs from thermal Yb atoms. Four photon processes must satisfy phase matching conditions. Given this condition we can determine the direction of emitted photons.

Our first step in this process will be to apply copropagating 808 nm and 556 nm beams. This will produce 1479 nm photons in the direction of laser light propagation.

