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Optical Vortices
Applying an azimuthal phase winding, e-iℓφ,
to a TEM00 laser beam generates photons
with orbital angular momentum, ℓħ.

Interfering co-propagating, counter-rotating optical vortices creates an azimuthally
varying intensity profile, i.e. an angular standing wave.
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“Angular” Kapitza-Dirac Scattering
A pulsed angular standing wave diffracts atoms into
a superposition of angular momentum eigenstates,

 ●  Ψ = Ψ0e-iӨe+iӨcos(2ℓφ) = Ψ0e-iӨ ∑n (+i)nJn(Ө)e-i2nℓφ,

with angular momentum per particle, 2nℓħ, n = 0,±1,±2...

Counter-rotating vortices form a matter wave interference
pattern that is sensitive to the Sagnac phase shift on a
platform rotating at the rate Ω,

 ●  ∆φ = 2mΩ∙A/ħ = 2TΩ∙L/ħ.

For vortices with an angular momentum per particle of
L = qħ, the area enclosed by the vortex wavefunction
is A = qħT/m for an evolution time T.

2D simulations of the nonlinear Gross-Pitaevskii equation
to derive the time evolution of the weakly interacting BEC
wavefunction for angular Kapitza-Dirac scattering.
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1S0 → 3D2 Two Photon Transition
Polarization-entangled photon pairs at 1479 nm
and 556 nm are expected to be emitted along the 
polarization axis of the pump laser.

Retro-reflect 808 nm laser for doppler-free
two-photon excitation.
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Yb Atomic Beam Fluorescence
The long lifetime (870 ns) of the metastable 3P1 state
allows Yb atoms excited on the 1S0 → 3P1 transition to
propagate several hundred microns at thermal speeds
before radiating.

Potentially study atom-surface interactions in the
excited state including coupling of atoms, photons,
and surface plasmons for metastable atoms propagating
through sub (optical) wavelength apertures.
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