Atom Optics and Quantum Optics with a Ytterbium Gas

Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA

Optical Vortices

Applying an azimuthal phase winding, $\mathrm{e}^{-\mathrm{i} \ell \varphi,}$ to a TEM_{00} laser beam generates photons with orbital angular momentum, ℓ.

Interfering co-propagating, counter-rotating optical vortices creates an azimuthally varying intensity profile, i.e. an angular standing wave.

"Angular" Kapitza-Dirac Scattering

A pulsed angular standing wave diffracts atoms into a superposition of angular momentum eigenstates,

- $\Psi=\Psi_{0} \mathrm{e}^{-\mathrm{i} \theta} \mathrm{e}^{+\mathrm{i} \Theta \cos (2 \ell \varphi)}=\Psi_{0} \mathrm{e}^{-\mathrm{i} \theta} \Sigma_{\mathrm{n}}(+\mathrm{i})^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\Theta) \mathrm{e}^{-\mathrm{i} 2 n \ell \varphi}$,
with angular momentum per particle, $2 n \ell \hbar, n=0, \pm 1, \pm 2 \ldots$

Counter-rotating vortices form a matter wave interference pattern that is sensitive to the Sagnac phase shift on a platform rotating at the rate Ω,

- $\Delta \varphi=2 \mathrm{~m} \Omega \cdot \mathrm{~A} / \hbar=2 \mathrm{~T} \Omega \cdot \mathrm{~L} / \hbar$.

For vortices with an angular momentum per particle of $L=q \hbar$, the area enclosed by the vortex wavefunction is $A=q \hbar T / m$ for an evolution time T.

2D simulations of the nonlinear Gross-Pitaevskii equation to derive the time evolution of the weakly interacting BEC wavefunction for angular Kapitza-Dirac scattering.

${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{D}_{2}$ Two Photon Transition

Polarization-entangled photon pairs at 1479 nm and 556 nm are expected to be emitted along the polarization axis of the pump laser.

Retro-reflect 808 nm laser for doppler-free two-photon excitation.

Yb Atomic Beam Fluorescence

The long lifetime (870 ns) of the metastable ${ }^{3} \mathrm{P}_{1}$ state allows Yb atoms excited on the ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{P}_{1}$ transition to propagate several hundred microns at thermal speeds before radiating.

Potentially study atom-surface interactions in the excited state including coupling of atoms, photons, and surface plasmons for metastable atoms propagating through sub (optical) wavelength apertures.

