

Construction of an Ytterbium Laser Cooling and Trapping Apparatus

Y.S. Rumala¹, E.A. Alden², and A.E. Leanhardt^{1,2}

¹Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA ²Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Example of atoms that have been laser cooled and trapped: Alkaline atoms: H, Li, Na, K, Rb, Cs Alkaline earth atoms: Be, Mg, Ca, Sr, Ba, Ra Isoelctronic atoms: Zn, Cd, Hg, Yb

Yb isotopes:

	2			
54000.0				
\$2000.0		2		
\$2003.0				
\$1003.0				
500010		2.9		
10000	2	2.5.4		
5 4800203		5130		
4/0010	2	2.6		
45000.0	81			
44000.0			2	
48000.0				
42000.0			and a second	
41002.0				
275.361000 275.361000 275.362000 275.362000 275.362000 275.362000 275.364000 275.364000 275.364000 275.36500 275.36600				
tequency (1H2)				

- Advantages of using Ytterbium for laser cooling ang trapping
 - Two readily available transitions which can be used for laser cooling and trapping 1S0->1P1 (399nm), and 1S0->3P1 (556nm)
 - Ground state forms a close to perfect two level system due to the absence of a magnetic moment. Hence, it is insensitive to first order Zeeman shifts
 - No need for repumper laser due to absence of ground state hyperfine structure in even isotopes
 - · Spin 0 isotopes are most abundant and can be easily trapped

Laser locking setup

Saturation absorption spectroscopy (SAS) signal for locking laser to Yb transition (purple) Yb is vaporized in a commercially available cathode discharge tube. The pump beam is overlapped with probe beam 1. Probe beam 1 and probe beam 2 are detected from which we get an SAS signal

Relevant Yb energy levels to scale

What are we doing now?

- Making a Yb Magneto-Optical trap on the 1S0->1P1 transition
- Building electronics to control laser cooling and trapping aparatus

Future direction of research

- Make a Bose Einstein Condensate
- Do atom interferometry using Laguerre-Gaussian beams
- Probe gravity at the micron scale by bringing ultracold atoms close to a surface
- Study atom-atom interaction in the context of ultracold collisions in quantum degenerate gasses