
Introduction Model Learning outcome Adversarial setting Related work

Local non-Bayesian social learning with stubborn agents

Daniel Vial, Vijay Subramanian

ECE Department, University of Michigan



Introduction Model Learning outcome Adversarial setting Related work

Motivation

Social learning in the presence of malicious agents

Most prominent example: fake news on social networks

[Shearer, Gottfried 2017] [Shearer 2018] [Allcott, Gentzkow 2017]
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Overview

Salient features:

1 Simultaneous consumption/discussion of news

2 Legitimate news partially reveals “truth”

3 Fake news more likely in “echo chambers”

We analyze model incorporating these features:

1 Agents receive signals/share beliefs about true state θ

2 Regular agents: signals = noisy observations of θ

3 Stubborn agents: signals uncorrelated with θ; ignore others’ beliefs

Main questions:

Do stubborn agents prevent regular agents from learning θ?

How can stubborn agents maximize influence?
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Learning model (basic ingredients)

True state θ ∈ (0, 1), (regular) agents A, stubborn agents/bots B

Signals at time t: st(i) ∼ Bernoulli(θ) for i ∈ A, st(i) = 0 for i ∈ B

Beliefs at time t: Beta(αt(i), βt(i)) for i ∈ A ∪ B

If j → i in graph, i observes αt−1(j), βt−1(j) at t; i ∈ B has only self-loop
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Learning model (belief updates)

How should i use signal st(i) + neighbor parameters {αt−1(j), βt−1(j) : j → i}?

We adopt non-Bayesian model similar to [Jadbabaie et al. 2012]

Bayesian update using signal, then average with neighbors in graph:

αt(i) = (1− η)(αt−1(i) + st(i)) +
η

din(i)

∑
j∈A∪B:j→i

αt−1(j)

βt(i) = (1− η)(βt−1(i) + 1− st(i)) +
η

din(i)

∑
j∈A∪B:j→i

βt−1(j)

Quantity of interest:

θt(i) = E [Beta(αt(i), βt(i))] =
αt(i)

αt(i) + βt(i)

(View as summary statistic of i ’s belief/opinion at t)
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Learning horizon

As learning horizon (i.e. number belief updates) grows . . .

. . . agents receive more unbiased observations

. . . influence of bots spreads

Learning horizon plays important, but non-obvious role

Difficult to analyze finite horizon for fixed graph

Will consider sequence {Gn}n∈N of random graphs, where Gn has n agents

Will consider horizon Tn ∈ N for Gn (finite for each finite n)
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Graph model

1 Realize {dout(i), dA
in(i), dB

in (i)}ni=1 satisfying

dout(i) ∈ N, dA
in(i) ∈ N, dB

in (i) ∈ Z+,

n∑
i=1

dout(i) =
n∑

i=1

dA
in(i) a.s.

2 From {dout(i), dA
in(i)}ni=1, construct sub-graph with nodes A = {1, . . . , n}

via directed configuration model [Chen, Olvera-Cravioto 2013]

3 Connect dB
in (i) bots (with only self-loop) to each i ∈ A

Here bot connections {dB
in (i)}ni=1 given; later, will consider optimal connections
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Assumptions

Key random variable: “density” of (regular) agents, measured as

p̃n =
n∑

i=1

dA
in(i)

dA
in(i) + dB

in (i)︸ ︷︷ ︸
Fraction in-neighbors trying to learn

× dout(i)∑n
j=1 dout(j)︸ ︷︷ ︸

Sample w.r.t. out-degree distribution

Assumption 1 (for belief convergence):

limn→∞ P(|p̃n − pn| > δn) = 0 for some {pn}n∈N, {δn}n∈N ⊂ (0, 1) s.t.
limn→∞ δn = 0

limn→∞ Tn =∞

Assumption 2 (for branching process approximation):

Sparse degrees (finite mean/variance) with high probability

Tn = O(log n)

⇒ Guarantees θTn (i) depends on o(n) other agents (“local” learning)
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Main result

Theorem

Given assumptions, we have for i∗ ∼ {1, . . . , n} uniformly,

θTn (i∗)
P−−−→

n→∞


θ, Tn(1− pn) −−−→

n→∞
0

θ(1− e−Kη)/(Kη), Tn(1− pn) −−−→
n→∞

K ∈ (0,∞)

0, Tn(1− pn) −−−→
n→∞

∞
.

Illustration, assuming Tn, pn related as Tn ∝ (1− pn)−C :
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Remarks on main result

Again assuming Tn, pn related as Tn ∝ (1− pn)−C :

1 Phase transition occurs (small change to C ≈ 1⇒ big change belief)

2 For fixed pn, agents initially (at small Tn) learn, later (at large Tn) forget!

3 For fixed Tn ∝ (1− pn)−1, bots experience “diminishing returns”

4 When Tn(1− pn)→ K ∈ (0,∞), limiting belief = θ(1− e−Kη)/(Kη):
As η → 0, agents ignore network, belief → θ
As η → 1, belief → θ(1− e−K )/K (not → 0, “discontinuity”)
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Special case

If pn → p < 1 (i.e. bots non-vanishing), stronger result holds:

Theorem

Suppose pn → p ∈ (0, 1), so that θTn (i∗)→ 0 in P.
Then, under slightly stronger assumptions, and for any ε > 0,

|{i ∈ A : θTn (i) > ε}| = o(n) with high probability as n→∞.

“Slightly stronger assumptions”:

Tn = Ω(log n) (instead of just Tn →∞)

Minimum rates of convergence for “with high probability” statements
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Key ideas of proof (1/2)

Recall parameter updates:

αt(i) = (1− η)(αt−1(i) + st(i)) +
η

din(i)

∑
j∈A∪B:j→i

αt−1(j) (1)

βt(i) = (1− η)(βt−1(i) + 1− st(i)) +
η

din(i)

∑
j∈A∪B:j→i

βt−1(j) (2)

Assume α0(j) = β0(j) = o(Tn) ∀ j and define

P = column-normalized adjacency matrix

ei = unit vector in i-th direction

Then iterating (1)-(2) yields

θTn (i) =
1

Tn

t−1∑
τ=0

st−τ (ηP + (1− η)I )τ ei + o(1)

Interpretation: take Uniform({1, . . . ,Tn})-length lazy random walk from i ,
sample signal of node reached
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Key ideas of proof (2/2)

Previous slide: interpret θTn (i) in terms of lazy random walk (LRW)

Bots are absorbing states on this LRW (owing to self-loops)

To analyze beliefs, analyze absorption probabilities

LRW and breadth-first-search graph construction can be done simultaneously

By Tn = O(log n) and sparsity, LRW explores tree-like sub-graph before horizon

Reduces random process on random graph to much simpler process
(simultaneous construction of tree / computation of absorption probabilities)
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Formulation

Previously assumed {dout(i), dA
in(i), dB

in (i)}ni=1 given

Now suppose {dout(i), dA
in(i)}ni=1 given, adversary chooses {dB

in (i)}ni=1

By main result, adversary (with budget b ∈ N) should solve

min
{dBin (i)}ni=1∈Z

n
+

n∑
i=1

dA
in(i)

dA
in(i) + dB

in (i)

dout(i)∑n
j=1 dout(j)︸ ︷︷ ︸

Key random variable p̃n shown previously

s.t.
n∑

i=1

dB
in (i) ≤ b

Integer program (IP), so we devise approximation scheme
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Approximation scheme

Independently attach each bot to i-th agent with probability proportional to

max

{
dA
in(i)

(√
λ∗

dout(i)

dA
in(i)

− 1

)
, 0

}
(3)

(3) is solution to LP relaxation of IP; λ∗ > 0 is efficiently computable

Intuition: bots want to connect to i-th agent only if dout (i)

dAin(i)
≥ 1

λ∗ , i.e. only

if i is influential (dout(i) large) + susceptible to influence (dA
in(i) small)

Theorem

For any δ > 0, scheme gives (2 + δ)-approximation with high probability, i.e.

lim
n→∞

P
(

objective for approximation scheme

objective for optimal scheme
> 2 + δ

)
= 0.
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Empirical performance

For real social networks, our approximation scheme outperforms heuristics, even
those using network structure

(Networks from [SNAP Datasets: Stanford Large Network Dataset Collection])

Ultimately, new insights into vulnerabilities of social networks
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Most similar models in literature

[Azzimonti, Fernandes 2018]

(Almost) same belief update (minor differences to bot behavior)

Only empirical results (allows for richer model, e.g. time-varying graph)

[Jadbabaie et al. 2012]

Communicate distributions, not parameters, i.e.

µt(i) = ηiiBU(µt−1(i), st(i)) +
∑
j 6=i

ηjiµt−1(j)

where µ terms are distributions,
∑

j ηji = 1, BU = “Bayesian update”

Richer belief update, but stronger assumptions:
1 Fixed, strongly-connected graph
2 Infinite horizon
3 No stubborn agents
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Other relevant works

View our model as perturbation of classical deGroot model [DeGroot 1974]:

θt = θt−1W where θt , θt−1 ∈ Rn and W is column-stochastic

Extensively studied, see surveys [Acemoglu, Ozdaglar 2011; Golub, Sadler 2017]

[Rahimian, Shahrampour, Jadbabaie 2015]: adopt belief of random neighbor,
also relates to random walk (but need strong connectedness + infinite horizon)

[Acemoglu, Ozdaglar, ParandehGheibi 2010]: “forceful” but not fully-stubborn
agents ⇒ no absorbing states ⇒ can use stationarity distribution

Stubborn agents have been considered in consensus setting, but infinite horizon
typically assumed, e.g. [Acemoglu et al. 2011; Ghaderi, Srikant 2014]
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