A structural result for Personalized PageRank and its algorithmic consequences

Daniel Vial, Vijay Subramanian

ECE Department, University of Michigan

Motivation

Graphs arise in many domains

Questions that may help us understand graphs:
■ Which nodes are most important/influential, globally and locally?
■ Which nodes are similar/relevant to a given node?

One model to answer these questions: Personalized PageRank (PPR)

PPR definition

Given directed graph $G=(V, E)$, let $v \in V$ and $\alpha \in(0,1)$

PPR definition

Given directed graph $G=(V, E)$, let $v \in V$ and $\alpha \in(0,1)$
Define Markov chain $\left\{X_{t}^{\vee}\right\}_{t \in \mathbb{N}}$ as follows: given X_{t}^{\vee},
■ W.p. $(1-\alpha)$, sample X_{t+1}^{v} from out-neighbors of X_{t}^{v} (random walk)
■ W.p. α, set $X_{t+1}^{v}=v($ jump to $v)$
Stationary distribution $\pi_{v}=\left\{\pi_{v}(w)\right\}_{w \in V}$ called PPR vector
Matrix $\Pi=\left\{\pi_{v}\right\}_{v \in V}$ called PPR matrix

PPR interpretation

$\pi_{v}(w)$ large when w frequently visited on short walks from v
\Rightarrow Interpret $\pi_{\nu}(w)$ as measure of w 's importance/relevance to v

PPR interpretation

$\pi_{v}(w)$ large when w frequently visited on short walks from v
\Rightarrow Interpret $\pi_{v}(w)$ as measure of w 's importance/relevance to v
Example: suggest v follow w on Twitter if $\pi_{v}(w)$ large (Gupta et al. 2013)

- interested in technology, so
- PPR encodes this: $\pi_{v}\left(w_{1}\right) \gg \pi_{v}\left(w_{2}\right)$ when $v=w_{1}=w_{2}=0$

PPR dimensionality

Using Perron-Frobenius theorem, can show $\operatorname{rank}(\Pi)=|V|=: n$

However, PPR exhibits transitive structure

- $\pi_{v_{1}}\left(v_{2}\right), \pi_{v_{2}}\left(v_{3}\right)$ large $\Rightarrow \pi_{v_{1}}\left(v_{3}\right)$ large ("friend of my friend is my friend")

■ Suggests Π has small "effective dimension"

Also, for many real-world graphs $G=(V, E),|E|=O(n)$
■ Suggests G is $O(n)$-dimensional, but Π (derived from G) is n^{2}-dimensional
■ Why this gap? Is it actually present?

Outline of talk:

1 How to quantify effective dimension of Π ?
12 Can we bound this measure of dimensionality?
3 If bound "small", can we leverage it algorithmically?

Quantifying PPR dimensionality

Natural measure of effective dimension of Π :

$$
\begin{equation*}
\Delta(\epsilon)=\min _{\hat{\Pi}} \operatorname{rank}(\hat{\Pi}) \text { s.t. }\|\Pi-\hat{\Pi}\|<\epsilon \tag{1}
\end{equation*}
$$

Intuitively, Π low dimensional if close to low-rank matrix

Can also view (1) as dual of low-rank approximation:

$$
\inf _{\hat{\Pi}}\|\Pi-\hat{\Pi}\| \text { s.t. } \operatorname{rank}(\hat{\Pi}) \leq k
$$

We take $\|\cdot\|=\|\cdot\|_{\infty}$ in (1), where for matrix A with rows a_{1}, \ldots, a_{n},

$$
\|A\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left\|a_{i}\right\|_{1}
$$

(Natural choice, since $\|\cdot\|_{T V}=\|\cdot\|_{1} / 2$ and each row of Π is a distribution)

Modified dimensionality measure

For analytical/algorithmic reasons, we let $K \subset V$ and upper bound $\Delta(\epsilon)$ as

$$
\begin{equation*}
\Delta(K, \epsilon)=|K|+\left|\left\{v \notin K: \min _{\mu_{v}(k)}\left\|\pi_{v}-\sum_{k \in K} \mu_{v}(k) \pi_{k}\right\|_{1}>\epsilon\right\}\right| \tag{2}
\end{equation*}
$$

- Think of K as hub nodes (located "centrally" in graph)

■ Will argue that for most non-hubs, PPR close to linear combo of hub PPR

- Second term in (2) accounts for other non-hubs (typically "far" from hubs)

Graph model

$\Delta(K, \epsilon)$ highly dependent on local graph structure - hard to bound in general
We analyze directed configuration model (DCM) due to "nice" local structure ${ }^{1}$

DCM construction:
1 Realize degree sequence $\left\{d_{\text {out }}(v), d_{\text {in }}(v)\right\}_{v \in V}$
$\sqrt{2}$ Attach $d_{\text {out }}(v)\left(d_{\text {in }}(v)\right.$, resp.) outgoing (incoming, resp.) half-edges to v
3 Randomly pair half-edges to form edges via breadth-first-search

[^0]
Jump probability and dimensionality

Choice of $\alpha=\mathbb{P}($ jump to $v)$ impacts dimensionality:
■ $\alpha \approx 0 \Rightarrow \pi_{v} \approx$ random walk stationary distribution $\Rightarrow \Delta(K, \epsilon) \approx 1$

- $\alpha \approx 1 \Rightarrow \pi_{v} \approx$ point mass on $v \Rightarrow \Delta(K, \epsilon) \approx n$

How to make this precise?
Namely, for a sequence $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of DCMs, how should $\alpha=\alpha_{n}$ scale with n ?

Jump probability and mixing times

Suppose $\alpha_{n} \log n \rightarrow 0$, e.g. $\alpha_{n}=1 /(\log n)^{2}$
Since $\alpha_{n}=\mathbb{P}($ jump to $v), \mathbb{E}[$ random walk length $]=\Theta\left((\log n)^{2}\right)$
Bordenave, Caputo, Salez 2018: random walk on DCM mixes in $\Theta(\log n)$ steps
Mixing occurs before jump to v ! Allows us to show $\Delta(K, \epsilon)=1$ with high prob.
Hence, we set $\alpha_{n}=\Theta(1 / \log n)$ (just outside the trivial regime)

Main result

Main result concerns sequence of DCMs $\left\{G_{n}\right\}_{n \in \mathbb{N}}$, where G_{n} has n nodes

From G_{n}, we define $\Delta_{n}\left(K_{n}, \epsilon\right)$ (a random variable, since G_{n} is random)

Our main result says $\Delta_{n}\left(K_{n}, \epsilon\right)=o(n)$ with high probability as $n \rightarrow \infty$:

Theorem

Assume degree sequence satisfies certain assumptions (details to come), and assume $\alpha_{n}=\Theta(1 / \log n)$. Then for any $\epsilon>0$, some $c_{\epsilon} \in(0,1)$, and any $C>0$, all independent of n,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\Delta_{n}\left(K_{n}, \epsilon\right)>C n^{c_{\epsilon}}\right)=0
$$

Proof of main result

Main result follows almost immediately from key lemma:

Lemma

Under assumptions of theorem, we have for $s \sim V$ uniformly and some $\tilde{c}_{\epsilon}>0$,

$$
\mathbb{P}(\min _{\mu_{s}(k)} \underbrace{\left\|\pi_{s}-\sum_{k \in K} \mu_{s}(k) \pi_{k}\right\|_{1}}_{*}>\epsilon)=O\left(n^{-\tilde{\tau}_{\epsilon}}\right) .
$$

Outline for proof of lemma:
1 Show \star depends only on neighborhood of s for certain $\mu_{s}(k)$
$\sqrt{2}$ Approximate neighborhood construction with branching process (using Chen, Litvak, Olvera-Cravioto 2017) to study \star on tree
3 Recursive nature of branching process $\rightarrow \star$ on tree is martingale-like \rightarrow analyze similar to method of bounded differences

Choice of $\mu_{v}(k)$

By considering first step of PPR Markov chain, can show

$$
\pi_{v}(w)=\underbrace{\alpha 1(w=v)}_{\text {first step is jump to } v}+\underbrace{\sum_{k: v \rightarrow k} \frac{(1-\alpha)}{|\{k: v \rightarrow k\}|} \pi_{k}(w)}_{\text {first step follows random walk }}
$$

For any $K \subset V$, Jeh, Widom 2003 proves decomposition of same form:

$$
\pi_{v}(w)=\frac{\alpha 1(w \notin K) \tilde{\pi}_{v}(w)}{\alpha+(1-\alpha) \tilde{\pi}_{v}(K)}+\sum_{k \in K} \frac{\tilde{\pi}_{v}(k)}{\alpha+(1-\alpha) \tilde{\pi}_{v}(K)} \pi_{k}(w)
$$

where $\tilde{\pi}_{v}$ is PPR on graph with outgoing edges from K removed

In proof (and later, in algorithm), we let $\mu_{v}(k)=\frac{\tilde{\pi}_{v}(k)}{\alpha+(1-\alpha) \tilde{\pi}_{v}(K)}$

Assumptions (1/2)

Recall: DCM randomly pairs edges from degree sequence $\left\{d_{\text {out }}(v), d_{\text {in }}(v)\right\}_{v \in v}$

We assume $\left\{d_{\text {out }}(v), d_{\text {in }}(v)\right\}_{v \in V}$ satisfies two properties with high probability
Property 1: $\left\{d_{\text {out }}(v), d_{\text {in }}(v)\right\}_{v \in V}$ is sparse (e.g. $O(n)$ total edges)
\Rightarrow Needed for branching process approximation; possible artifact of analysis
Property 2: $|K|=o(n)$ but K contains non-vanishing fraction of edges, i.e.

$$
\frac{\sum_{k \in K} d_{i n}(k)}{\sum_{v \in V} d_{i n}(v)} \xrightarrow[n \rightarrow \infty]{ } p>0
$$

\Rightarrow We believe this assumption is fundamentally necessary

Assumptions (2/2)

Recall key property:

$$
\begin{equation*}
|K|=o(n), \quad \frac{\sum_{k \in K} d_{i n}(k)}{\sum_{v \in V} d_{i n}(v)} \xrightarrow[n \rightarrow \infty]{ } p>0 \tag{3}
\end{equation*}
$$

Empirically holds if $d_{\text {in }}(v)$ follow power law, common model for e.g. Twitter

Geometric interpretation of theorem

Theorem says for most $v \notin K$ and some $\mu_{v}(k) \geq 0$,

$$
\pi_{v} \approx \sum_{k \in K} \mu_{v}(k) \pi_{k}
$$

When $|V|$ large, we also show $\sum_{k \in K} \mu_{v}(k) \approx 1$, so for most $v \notin K$,

$$
\pi_{v} \approx \text { convex combination of }\left\{\pi_{k}\right\}_{k \in K}
$$

\Rightarrow Most of $\left\{\pi_{v}\right\}_{v \notin K}$ lie near convex hull of $\left\{\pi_{k}\right\}_{k \in K}$, which shrinks relative to $|V|$-dimensional simplex (a few $\left\{\pi_{v}\right\}_{v \notin K}$ can be far away)

Empirical results (1/2)

Compute bound on $\left\|\pi_{v}-\sum_{k \in K} \mu_{v}(k) \pi_{k}\right\|_{1}$, averaged across $v \notin K$

Set $K=$ nodes of highest in-degree, $\alpha_{n}=1 / \log n$

For DCM with power law in-degrees, average error decays as n grows (despite $|K| / n$ decaying too)

For variety of real graphs, average error decays as κ grows when $K=$ n^{κ} nodes of highest in-degree

Empirical results (2/2)

Bound $\Delta(K, \epsilon)$ for two real graphs (social network, partial web crawl)
K and α_{n} chosen as in previous slide
For soc-Pokec, $\Delta(K, \epsilon)=0.09 n$ when $\epsilon=\frac{1-\alpha_{n}}{3}$; similar for web-Google ${ }^{2}$
Thus, while theorem doesn't apply, $\Delta(K, \epsilon)$ small relative to n for reasonable ϵ

[^1]
Baseline algorithm (Jeh, Widom 2003)

Jeh, Widom 2003 proposes (but doesn't analyze!) the following:
1 Choose "hub" nodes, estimate PPR vectors directly
$\boxed{2}$ For other nodes, estimate PPR as linear combo of hub PPR^{3}
Our result \Rightarrow linear combo good estimate for all but $O(n)$ non-hubs if $O(n)$ hubs
Thus, we improve Jeh, Widom 2003, but questions remain:
■ Can we guarantee accuracy all nodes?
■ Can we estimate hub PPR, and non-hub linear combo weights, with provably good performance? (only heuristics in Jeh, Widom 2003)

[^2]
Improving accuracy of baseline scheme

Baseline scheme: for $v \notin K, \pi_{v}$ estimated as

$$
\hat{\pi}_{v}=\sum_{k \in K} \mu_{v}(k) \pi_{k}
$$

where $\mu_{v}(k)$ from linear decomposition shown previously

We show (for a certain function f)

$$
\left\|\pi_{v}-\hat{\pi}_{v}\right\|_{1}<\epsilon \Leftrightarrow \sum_{k \in K} \mu_{v}(k)>f(\epsilon)
$$

Intuitively, small error $\Leftrightarrow v$ is "close" to K in graph

Key point: $\sum_{k \in K} \mu_{v}(k)$ is (approximately) known at runtime!

$$
\Rightarrow \text { If } \sum_{k \in K} \mu_{v}(k)<f(\epsilon) \text {, estimate } \pi_{v} \text { directly }
$$

Estimating PPR and linear combo weights (1/2)

Recall: $\pi_{v}=$ stationary distribution of chain with transition matrix

$$
P_{v}=\underbrace{(1-\alpha) P}_{\text {Random walk }}+\underbrace{\alpha 1_{n} e_{v}^{\top}}_{\text {Jump to } v}
$$

Solving $\pi_{v}=\pi_{v} P_{v}$ yields

$$
\pi_{v}=\alpha e_{v}^{\top}\left(I_{n}-(1-\alpha) P\right)^{-1}
$$

Since π_{v} is v-th row of Π,

$$
\Pi=\alpha\left(I_{n}-(1-\alpha) P\right)^{-1}=\alpha \sum_{i=0}^{\infty}(1-\alpha)^{i} P^{i}
$$

Suggests power iteration: choose i^{*} large and compute

$$
\alpha \sum_{i=0}^{i^{*}}(1-\alpha)^{i} P^{i} \approx \Pi
$$

Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length $\leq i^{*}$

Dynamic programming (DP) variants traverse only "important" paths

Forward DP (Andersen, Chung, Lang 2006):
■ Given v, traverses "important" paths out of v; estimates v-th row of Π
■ Can use to estimate PPR vectors directly

Backward DP (Andersen et al. 2008):

- Given v, traverses "important" paths into v; estimates v-th column of Π

■ Can use (modified version) to estimate linear combo weights

Putting it all together

Our scheme estimates $\pi_{v} \ldots$

- ... by forward DP, if $v \in K$

■ ... by forward DP, if $v \notin K$ and linear combo determined to be inaccurate
$■ \ldots$ as linear combo, if $v \notin K$ and linear combo determined to be accurate
Forward DP provably accurate; thus, all estimates are accurate

Complexity dominated by number runs of forward DP

- By design, forward DP is run $\Delta(K, \epsilon)$ times
- Each run has $O(n \log n)$ complexity (by Andersen, Chung, Lang 2006) ${ }^{4}$

Overall complexity is $O(\Delta(K, \epsilon) n \log n)=o\left(n^{2}\right)$ (when theorem applies)

[^3]
Comparison to existing algorithms

Best existing approach: run forward or backward DP $\forall v$

- I_{1} accuracy guarantee, $O\left(n^{2} \log n\right)$ complexity
- Ignores structure/dependencies across rows of Π !

■ Our scheme accounts for structure, thus reduces complexity

Another noteworthy work: Lofgren, Banerjee, Goel 2016

- Estimates single entry of Π via DP + MCMC, complexity $O(\sqrt{n} \log n)$
- Hence, $O\left(n^{2.5} \log n\right)$ to estimate Π; ignores dependencies across entries

■ Again, accounting for structure allows us to reduce complexity

References I

Andersen, Reid, Fan Chung, Kevin Lang (2006). "Local graph partitioning using PageRank vectors". In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06). IEEE, pp. 475-486.
Andersen, Reid et al. (2008). "Local computation of PageRank contributions". In: Internet Mathematics 5.1-2, pp. 23-45.
Bordenave, Charles, Pietro Caputo, Justin Salez (2018). "Random walk on sparse random digraphs". In: Probability Theory and Related Fields 170.3-4, pp. 933-960.
Chen, Ningyuan, Nelly Litvak, Mariana Olvera-Cravioto (2017). "Generalized PageRank on directed configuration networks". In: Random Structures \& Algorithms 51.2, pp. 237-274.
Chen, Ningyuan, Mariana Olvera-Cravioto (2013). "Directed random graphs with given degree distributions". In: Stochastic Systems 3.1, pp. 147-186.
Gupta, Pankaj et al. (2013). "WTF: The who to follow service at twitter". In: Proceedings of the 22nd international conference on World Wide Web. ACM, pp. 505-514.
Jeh, Glen, Jennifer Widom (2003). "Scaling personalized web search". In: Proceedings of the 12th international conference on World Wide Web. ACM, pp. 271-279.
Lofgren, Peter, Siddhartha Banerjee, Ashish Goel (2016). "Personalized PageRank estimation and search: A bidirectional approach". In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, pp. 163-172.

[^0]: 1 "Nice" = well-approximated by a certain branching process, e.g. Chen, Olvera-Cravioto 2013; Chen, Litvak, Olvera-Cravioto 2017

[^1]: ${ }^{2}$ Can show worst-case error is $1-\alpha_{n}$, so this ϵ reduces worst-case by factor of 3

[^2]: ${ }^{3}$ Using decomposition shown previously

[^3]: ${ }^{4}$ Assuming $|E|=O(n), \alpha=\Theta(1 / \log n)$

