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ABSTRACT

Dynamic decision problems with cooperative and strategic agents and asymmetric
information

by

Deepanshu Vasal

Chair: Achilleas Anastasopoulos

There exist many real world situations involving multiple decision makers with asymmet-

ric information, such as communication systems, social networks, economic markets and

many others. Through this dissertation, we attempt to enhance the conceptual understand-

ing of such systems and provide analytical tools to characterize the optimum or equilibrium

behavior.

Specifically, we study four discrete time, decentralized decision problems in stochastic

dynamical systems with cooperative and strategic agents. The first problem we consider is

a relay channel where nodes’ queue lengths, modeled as conditionally independent Markov

chains, are nodes’ private information, whereas nodes’ actions are publicly observed. This

results in non-classical information pattern. Energy-delay tradeoff is studied for this chan-

nel through stochastic control techniques for cooperative agents. Extending this model for

strategic users, in the second problem we study a general model with N strategic players

having conditionally independent, Markovian types and publicly observed actions. This re-

sults in a dynamic game with asymmetric information. We present a forward/backward se-

quential decomposition algorithm to find a class of perfect Bayesian equilibria of the game.

Using this methodology, in the third problem, we study a general two player dynamic LQG

ix



game with asymmetric information, where players’ types evolve as independent, controlled

linear Gaussian processes and players incur quadratic instantaneous costs. We show that

under certain conditions, players’ strategies that are linear in their private types, together

with Gaussian beliefs, form a perfect Bayesian equilibrium (PBE) of the game. Finally, we

consider two sub problems in decentralized Bayesian learning in dynamic games. In the

first part, we consider an ergodic version of a sequential buyers game where strategic users

sequentially make a decision to buy or not buy a product. In this problem, we design in-

centives to align players’ individual objectives with the team objective. In the second part,

we present a framework to study learning dynamics and especially informational cascades

for decentralized dynamic games. We first generalize our methodology to find PBE to the

case when players do not perfectly observe their types; rather they make independent, noisy

observations. Based on this, we characterize informational cascades for a specific learning

model.
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CHAPTER 1

Introduction

1.1 Background

Dynamic decision problems are ubiquitous in real life situations and are studied in many
academic disciplines such as communication systems, industrial engineering, computer
science, economics, and many many more. Some examples include inventory control, it-
erative decoding, resource allocation, finding minimum spanning tree, traffic management,
shortest path algorithms, computing equilibria for markets, control of queues, sequential
hypothesis testing, and the list is unending. Such problems involve a single or multiple
decision makers (also referred to as players, agents, users or controllers) who make obser-
vations and take actions throughout the duration of the process and also receive rewards
(or incur costs). Each player wants to maximize its total reward, which may or may not
align with other players rewards. If the players’ rewards are aligned i.e. when all players
have the same objective, then we refer to such problems as team problems. If the play-
ers have different objectives, we refer to such problems as game problems. In this thesis,
we study scenarios of decision makers with different information sets in a dynamic setting
and provide tools to analyze such systems, and present structural results for optimum or
equilibrium strategies.

We start by describing a simple, canonical example on inventory control to highlight
some key ideas from stochastic control theory for a problem with classical information
structure i.e. with a single controller and with perfect recall. Suppose there is a gasoline
seller who makes a decision everyday on the quantity of gasoline she buys to maintain a
stock, based on the demand and her stock capacity. Let xt ∈ X be the stock of gasoline she
has at the starting of the day t, ut ∈ U be the amount she buys and wt ∈ W is the random
demand she receives during the day, whose statistics she knows. Then, the next day, her
stock is given by

xt+1 = xt + ut − wt

1



Her everyday reward depends on the amount of gasoline she sells that day, which ismin(xt+

ut, wt), and she wants to maximize her cumulative rewards over the duration of T days. Till
day t, she has made the observations x1, x2, . . . xt, and thus, her decision action on that day,
ut, is some function of this information available, i.e. ut = gt(x1, . . . xt), where gt is her
strategy. Thus, she wants to find the best set of strategies (g1, g2 . . . , gT ) that maximizes
her total reward for T days.

Assuming the action and space of stock, U and X , are finite, then there exist |U||X |t

possible strategies gt, at time t. For any finite duration T , the complexity of the last day
dominates and thus the space of optimization for the problem is of the order of |U||X |T .
Since the space of optimization increases double exponentially in T , it renders the prob-
lem practically intractable for any reasonable time duration. This curse of dimensionality,
as presented in this canonical example, represents a fundamental issue in dynamical op-
timization problems. However, many a times there exists more structure to the problem,
for example a concept of ‘state’ of system, which could be exploited to mitigate this issue.
For example, in the problem described before, if it were known that wt are i.i.d. random
variables, then (Xt, Ut)t can be shown to be a controlled Markov process and results from
classical stochastic control theory provide structural results for the optimal policies. Specif-
ically, these results show that there exist an optimal strategy at time t that depends only on
the current state xt, i.e. ut = g∗t (xt), and thus the optimal strategy g∗t could be found
in the space of |U||X | functions. Moreover, there exists a backward recursive, dynamic
programming methodology to find optimal strategies, which further reduces the space of
optimization at time t to |X ||U|. Thus, for a problem with a finite horizon T , this method-
ology reduces the complexity of the optimization from double exponential in T to linear in
T , which highlights the power and usefulness of this technique.

Such problems, for which the state of the system is perfectly observed, are called
Markov decision problems (MDPs). If the state is not observed perfectly, rather inde-
pendent, noisy observations are made, then such problems are called partially observed
Markov decision problems (POMDPs), which are also MDPs with posterior beliefs as per-
fectly observed state (for a more precise and elaborate description, see a standard text on
stochastic control e.g. [Kumar and Varaiya, 1986]).

These problems consists of

• State update function: xt+1 = f(xt, ut, wt)

• Observation function (for POMDP): yt = h(xt, vt)

• Actions as function of information (MDP or POMDP) : ut = gt(x1, . . . , xt) or ut =

gt(y1, . . . , yt)

2



• Instantaneous reward (or cost): Rt(xt, ut)

• All basic random variables (x1, w1, w2, . . . , v1, v2, . . .) are mutually independent

• Objective: maxg( or ming) Eg{
∑T

t=1Rt(Xt, Ut)}

Dynamic programming is used profusely in many dynamic optimization problems to
find analytical and numerical, optimal or near-optimal solutions. One such case that has
been extensively considered in literature, for its virtue of being analytical and for the ap-
peal for its ease of implementation, is linear quadratic Gaussian (LQG) control. In the
LQG model for perfectly observed states, the state update is linear, the instantaneous cost
is quadratic in state and control, and all basic random variables are i.i.d. Gaussian. The
optimal strategies are linear function of the state with coefficients as Kalman gains. If the
state is not observed perfectly, but through a linear, independent observation kernel, then
it is shown that strategies that are linear function of estimate of the state are optimal, with
same coefficients as in the case of perfectly observable state. This substitution of estimate
of state for the state itself, in the optimal control policies, is also referred to as certainty
equivalence [Kumar and Varaiya, 1986] or separation of estimation and control [Witsen-
hausen, 1971].

The problem described above with a single controller with perfect recall (i.e. with
access to all past observations) is called a stochastic control problem with classical infor-
mation pattern. The problem becomes considerably more difficult for non-classical infor-
mation pattern i.e. when there are multiple controllers with different information sets, or
without perfect recall, or both. For example, it is shown in Witsenhausen’s counterex-
ample [Witsenhausen, 1971] that even for a very simple two-stage LQG system without
perfect recall, linear strategies are not optimal, and moreover, the optimization problem is
non-convex.

In this thesis, we always assume perfect recall and refer to problems with multiple
controllers with different information but same objective, as decentralized team problems.
There are specifically two key line of thoughts in the literature to find structural proper-
ties of the optimal control policies (which we discuss more in chapter 2, where we deal
with a decentralized team problem). The first approach, which is called agent-by-agent
approach [Ho, 1980], works as follows. It is shown that for any fixed strategy of the other
players, player i faces an MDP with an appropriately defined state, and thus can restrict its
search over Markov policies that are function of that state. Since each player can do the
same, using this approach, one can show that there exist optimal policies for the players
that are functions of a considerably smaller set of players’ available information. The sec-
ond approach, which is referred to as common-agent approach [Nayyar et al., 2013], works

3



as follows. It assumes that there is a fictitious common agent who, at each time t, observes
the common information of the players at that time, and take actions that are prescription
functions for the players. Each player uses that prescription function on its private infor-
mation to generate its action. Using this approach, the decentralized problem is shown to
be equivalent to a centralized problem with only one decision maker, the common agent1.
Then it is shown that common agent’s problem is a POMDP, thus there exists a dynamic
programming equation to find its optimal policies. Its optimal policies are Markov in na-
ture and are functions of the posterior belief on the state of the system and players’ private
information conditioned on the common information. The optimal policies of the common
agent can easily be translated to decentralized optimal policies of the players.

When players are strategic and information is perfect and complete, the appropriate no-
tions of equilibria are sub-game perfect equilibrium (SPE) and Markov perfect equilibrium
(MPE) [Osborne and Rubinstein, 1994, Maskin and Tirole, 2001]. These equilibria can
be found through backward induction by computing Nash equilibria for every subgame,
for every history or every state, respectively. When players are strategic and information
is asymmetric (although complete), such games are called dynamic games with asymmet-
ric information and appropriate notions of equilibria include perfect Bayesian equilibrium
(PBE), sequential equilibrium (SE), trembling hand equilibrium (THE). In such games, for
every time t, for every history of the game ht, player i observes only part of it, say hit. For
the part that it does not observe i.e. ht\hit, it puts a belief on it, in order to calculate its future
reward from that time on. Thus the equilibrium notion consists of a strategy and a belief
profile for the players for all private histories. The strategies satisfy sequential rationality
conditions (i.e. no player gains by unilateral deviation in strategies, for every subgame)
using equilibrium beliefs and the beliefs are found using equilibrium strategies and Bayes’
rule (with some other refinements). Thus there is a circular argument for finding equilib-
rium strategy and belief profiles, and there does not exist any dynamic programming like
backward recursive methodology to find such equilibria for such games in general. This
remains a bottleneck in studying many real-life situations that involve strategic agents in
a dynamical system with different information sets, for instance social networks, markets
etc.

1These problems are equivalent for total reward in expectation but not for every realization. This point
becomes crucial and hinders this approach from being utilized directly for decentralized dynamic games, as
discussed in chapter 3 in section 3.4.2.

4



1.2 Problems considered

In this thesis, we consider four problems of stochastic systems with asymmetric informa-
tion pattern. A common thread in these problems is that they involve multiple decision
makers with different information sets with common and private components. There is an
underlying discrete time dynamical system that obeys controlled Markov dynamics. Play-
ers are cooperative or strategic, and incur cost or rewards in each period that are additive
over a time horizon.

In the first problem, described in chapter 2, we study node cooperation in a wireless
network from the multiple access control (MAC) layer perspective. A simple relay chan-
nel with a source, a relay and a destination node is considered, where the source and the
relay nodes have packets arriving as Bernoulli arrival processes. The source can transmit
a packet directly to the destination or transmit through the relay. The tradeoff between
average energy and delay is studied by posing the problem as a stochastic dynamical opti-
mization problem. The following two cases are considered: (a) nodes are cooperative and
information is decentralized; (b) nodes are strategic and information is centralized.

With decentralized information and cooperative nodes, a structural result is proven that
the optimal policy is the solution of a Bellman-type fixed-point equation over a time in-
variant state space. For specific cost functions reflecting transmission energy consumption
and average delay, numerical results are presented showing that a policy found by solving
this fixed-point equation outperforms conventionally used time-division multiple access
(TDMA) and random access (RA) policies.

When nodes are strategic and information is common knowledge, it is shown that co-
operation can be induced by exchange of payments between the nodes, imposed by the
network designer such that the socially optimal Markov policy corresponding to the cen-
tralized solution is the unique subgame perfect equilibrium of the resulting dynamic game.

Taking motivation from the previous model, we then consider in chapter 3, a finite
horizon dynamic game with N selfish players, who observe their types privately and take
actions, which are publicly observed. Players’ types evolve as conditionally independent
Markov processes, conditioned on their current actions. Their actions and types jointly
determine their instantaneous rewards. Since each player has a different information set,
this is a dynamic game with asymmetric information, and in general, there is no known
methodology to find perfect Bayesian equilibria (PBE) for such games. In this chapter,
for a specific class of such games with independent types, we develop a methodology to
obtain a class of PBE using a belief state based on players’ common information. We first
show that any expected reward profile that can be achieved by any general strategy profile

5



can also be achieved by a policy based on players’ private information and this belief state.
With this structural result as our motivation, we develop our main result that provides a
two-step backward-forward recursive algorithm to find a class of PBE of this game that
are based on this belief state. We refer to such equilibria as structured Bayesian perfect

equilibria (SPBE). The backward recursive part of this algorithm defines an equilibrium
generating function. Each period in the backward recursion involves solving a fixed point
equation on the space of probability simplexes for every possible belief on types. Using
this function, equilibrium strategies and beliefs are generated through a forward recursion.

In chapter 4, we then consider a finite horizon dynamic game with two players who
observe their types privately and take actions, which are publicly observed. Players’ types
evolve as independent, controlled linear Gaussian processes and players incur quadratic
instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with
asymmetric information. We show that under certain conditions, players’ strategies that
are linear in their private types, together with Gaussian beliefs form an SPBE of the game.
Furthermore, it is shown that this is a signaling equilibrium due to the fact that future be-
liefs on players’ types are affected by the equilibrium strategies. We provide a backward-
forward algorithm to find SPBEs. Each step of the backward algorithm reduces to solving
an algebraic matrix equation for every possible realization of the state estimate covariance
matrix. The forward algorithm consists of Kalman filter recursions, where state estimate
covariance matrices depend on equilibrium strategies. As a result, unlike the case of classi-
cal stochastic control or LQG games with non-signaling equilibria, the beliefs are strategy
dependent.

In Chapter 5, we study two problems that relate to decentralized Bayesian learning in
dynamical systems with strategic agents. In the first problem, we consider the problem of
how strategic users with asymmetric information can learn an underlying time-varying state
in a sequential buyers game. The exogenously selected strategic users sequentially make a
decision to buy or not to buy a product, which is either good or bad, based on their private
observation and publicly available information about decision of the past users. There
is interesting literature on this problem, on occurrence of informational cascades under
certain conditions where a user would discard its private information and base its decision
on previous users’ actions. This leads to its actions being uninformative for future users,
and learning stops for the team as a whole. Every future player repeats the same action
and users are said to be in a cascade. For a social objective, it is desirable to avoid to bad
cascades. We consider an ergodic version of this problem where users who observe private
signals about the state, sequentially make a decision about buying a product whose value
varies with time via an ergodic process. We formulate the team problem as an instance of
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decentralized stochastic control and characterize its optimal policies. With strategic users,
we design incentives such that users reveal their true private signals, so that the gap between
the strategic and team objective is small, and the overall expected incentive payments are
also small.

In the second part, we study a more general model for decentralized Bayesian learn-
ing in a dynamical system involving strategic agents with asymmetric information, where
players participate (take actions and receive rewards) for the whole duration of the game,
and cases where an internal process selects which subset of players will act at each time
instance. The proposed methodology hinges on a sequential decomposition for finding
perfect Bayesian equilibria (PBE) of a general class of dynamic games with asymmetric
information, where users’ types evolve as conditionally independent Markov process and
users make independent noisy observations of their types. Based on this methodology, we
study a specific scenario of Bayesian learning where we characterize informational cas-
cades for the truly dynamic game considered.

1.2.1 Contributions

In this thesis, we make contributions to the theory of dynamic games with asymmetric
information and provide insights into specific decentralized problems considered.

In chapter 2, we utilize two keys ideas in the literature of decentralized team problems
to provide structural results of the optimum policies in energy-delay tradeoff in a relay
channel. Based on these structural results, we find two, potentially suboptimal policies and
show that they perform better than standard TDMA (time division multiple access) and RA
(random access) policies. Furthermore, for strategic users with complete and perfect infor-
mation, we show existence of incentives to align the team objective with the social goal.
This is one of the very few works that considers the stochastic arrival nature of the packets
in a relay channel, and studies the problem from the stochastic control perspective. In gen-
eral, the structural results presented motivate design or redesign of optimal and suboptimal
policies for cooperative communication in decentralized network systems.

In chapter 3, we consider a class of dynamic games with asymmetric information
with conditionally independent Markovian types. We provide a sequential decomposition
methodology to find a class of PBE of the game, based on common belief state, where there
does not exist such a methodology for such games in general. We illustrate this method-
ology for a public goods example in this chapter and for models considered in chapter 4
and chapter 5. Before this, a common approach to find a PBE was to guess the solution,
if possible, and prove that it satisfies the equilibrium conditions. This, of course ,could be

7



done for simpler systems, and in general, PBE remained an elusive concept mainly for the-
oretical understanding and interest. This methodology provides a fundamental result in the
theory of dynamic games, which opens up the door to study many problems in economic
markets, social networks, auctions and more, and to provide analytical and numerical solu-
tions that were not tractable before. The existence of a solution of the fixed point equation
in the backward recursion remains an open problem. In general, this work inspires new
research directions such as

(a) Proving existence of solution for the fixed point equation for general or a class of
games;

(b) Finding such decomposition for other classes of dynamic games with asymmetric
information;

(c) Finding structural properties of equilibria in specific games;

(d) Extension of the methodology for infinite time horizon games;

(e) Dynamic mechanism design for dynamic games with asymmetric information.

In chapter 4, we study dynamic LQG games with asymmetric information, where we
use the methodology developed in chapter 3 to show that under certain conditions, signal-
ing strategies that are linear in players’ private information, in conjunction with Gaussian
beliefs, form a PBE of the game. This result is an important result in the theory of the
dynamic LQG games and extends the models considered in the literature thus far. We also
provide algorithmic sufficient conditions for a solution to exist for scalar actions. However,
there remains a possibility of finding more general conditions.

In chapter 5, we consider the problem of decentralized Bayesian learning in dynamic
games through two specific models. In the first problem, we highlight the significance of
certain infrequent histories of the game that play a very crucial role for the learning of the
players as a whole. Specifically, we show that by incentivizing players to report their ob-
servations at these histories, and thus contributing to the learning of the team, the resulting
game objective is close to the social objective. And since such histories are infrequent, the
expected payout is small. In the second problem, we consider a more general model than
the one considered in the informational cascades literature for the Bayesian learning with
strategic agents, where players participate in the game for the whole duration. We first ex-
tend the methodology developed in chapter 3 to find PBE for the case where users’ do not
observe their types, but make independent, noisy observations. We propose this as a frame-
work to study informational cascades for a more dynamic set-up than the one studied in the
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literature. Based on this methodology, for a specific learning model, we characterize sets
of common beliefs as “cascades”, such that if these beliefs occur at any point in the game,
then players repeat the cascading actions for the rest of the game. In general this frame-
work presents a vast unexplored landscape to study learning dynamics and informational
cascades. Some important research directions include

(a) Characterization of cascades for specific classes of models;

(b) Studying convergent learning behavior in such games including the probability and
the rate of “falling” into a cascade;

(c) Incentive or mechanism design to avoid bad cascades.

1.3 Notation

We use the following notation throughout this thesis, however, some chapter specific no-
tation is provided in at the end of introductions of the respective chapters. A random
variable is denoted by an upper case letter and its realization by the corresponding lower
case letter. Subscripts denote time indices, such that Xa:b is a short hand for the vector
(Xa, Xa+1, . . . , Xb), if a > b, then Xa:b is empty. Superscripts denote agents’ identities,
such that U i

t , is a quantity relevant to agent i. We use notation −i to represent all play-
ers other than player i i.e. −i = {1, 2, . . . i − 1, i + 1, . . . , N}. We use A−it to mean
(A1

t , A
2
t , . . . , A

i−1
t , Ai+1

t . . . , ANt ) . We remove superscripts or subscripts if we want to rep-
resent the whole vector, for example At represents (A1

t , . . . , A
N
t ). In a similar vein, for

any collection of sets (X i)i∈N , we denote ×i∈NX i by X . We denote the indicator func-
tion of any set A by IA(·). For any finite set S, P(S) represents the space of probability
measures on S and |S| represents its cardinality. We denote by P g (or Eg) the probability
measure generated by (or expectation with respect to) strategy profile g. We denote the set
of real numbers by R. All equalities and inequalities involving random variables are to be
interpreted in the a.s. sense, unless otherwise specified.

The proofs of theorems, lemmas and claims in each chapter, are provided in the appen-
dices at the end of that chapter.
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CHAPTER 2

Stochastic control of relay channel

2.1 Introduction

In a wireless network, energy efficiency is an important criterion due to battery constraints.
Traditionally in a network, nodes communicate directly to the base station. However, the
presence of other nodes in the network can lead to more energy efficient systems through
node cooperation. This is because the presence of other nodes in the network can provide
alternate routes with possibly less transmission energy costs. On the other hand, this also
increases the delay in the system as such cooperation requires successful transmission from
the source to the relay node, and then from the relay node to the destination node. Thus
there is a tradeoff between the energy cost for successfully routing a packet and the cor-
responding delay cost. The study of this tradeoff in the case of cooperative or strategic
users with decentralized information can lead to interesting insights for the design of future
cooperative communication systems.

The relay channel is the simplest model and a building block for user cooperation in
a network. It has been and is currently being studied extensively from the perspective of
information theory (see for instance [van der Meulen, 1971, Cover and El Gamal, 1979,
Chakrabarti et al., 2007] and references therein), where theoretically achievable rates and
practically implementable codes are investigated. Since information theory is an asymp-
totic theory, it does not capture directly the delay requirements that are important for many
communication applications. In addition, information theoretic formulations cannot cap-
ture the dynamical aspect of a relay network that may be crucial when studying the behavior
of higher layers in the network hierarchy. Finally, since in practice wireless devices are op-
erated by humans, selfish behavior needs to be taken into account for cooperation to be
successful.

Recently game theory has been used as a tool to study strategic behavior of nodes partic-
ipating in a communication network (see [Marti et al., 2000, Pietro Michiardi, 2001, Mar-
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bach and Berry, 2002, Qiu and Marbach, 2003, Srinivasan et al., 2003, Ileri et al., 2005,
Meshkati et al., 2007, Yang and Brown, 2007, Huang et al., 2008, Kamhoua et al., 2010]
and references therein). [Yang and Brown, 2007] study a source-relay channel with non-
cooperative nodes in fading and non-fading channel as finite and infinite repeated games,
respectively. [Marti et al., 2000, Pietro Michiardi, 2001] propose schemes for multi-hop
routing based on a reputation system to punish non-cooperative nodes in wireless ad hoc
networks. Evolutionary game theory is used in [Kamhoua et al., 2010] to punish self-
ish nodes that do not cooperate to forward packets. [Marbach and Berry, 2002, Qiu and
Marbach, 2003, Ileri et al., 2005, Huang et al., 2008] adopt pricing mechanisms in wire-
less ad hoc networks to foster cooperation among non-cooperative nodes. Two auction
mechanisms for a relay network are proposed in [Huang et al., 2008] (SNR auction and
power auction) that determine relay selection and relay power allocation in a distributed
fashion. [Ileri et al., 2005] introduces a “bribery” mechanism that fosters cooperation us-
ing a microeconomic framework based on game theory that encourages forwarding among
selfish nodes by reimbursing forwarding. Finally, [Srinivasan et al., 2003] propose a dis-
tributed and scalable acceptance algorithm for nodes to decide whether to accept or reject
a relay request. Their algorithm results in a Nash equilibrium, and it is proven that the
system converges to the rational and optimal operating point.

Most of the works [Marbach and Berry, 2002,Qiu and Marbach, 2003,Srinivasan et al.,
2003, Ileri et al., 2005, Yang and Brown, 2007, Huang et al., 2008, Kamhoua et al., 2010]
assume that sources always have data to send, and thus do not consider random traffic
arrival processes at a node as may be the case in a network. Others [Srinivasan et al., 2003,
Yang and Brown, 2007,Kamhoua et al., 2010] model the communication as repeated games
(for example iterative prisoner’s dilemma where Tit-for-Tat strategy induces cooperative
behavior), whereas [Marbach and Berry, 2002,Qiu and Marbach, 2003,Huang et al., 2008,
Ileri et al., 2005] use prices to incentivize nodes to cooperate. This chapter considers
independent random arrival processes at the source and the relay node which results in
a dynamic system (either a dynamic team for cooperative nodes, or a dynamic game for
strategic users).

In this chapter the MAC layer of the relay channel is studied as a stochastic control
problem of optimally routing packets to the destination. The model assumes a half duplex
relay channel with a source, a relay and a destination node with incoming traffic at both the
source and the relay node. Also it assumes generic cost functions at time t reflecting packet
delay (through the backlog in each agent’s queue) and transmission energy. Among other
possible formulations, stochastic control of a relay channel can be studied as a static or a
dynamic optimization problem, or when information (such as queue backlog) is centralized
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or decentralized, or when users are non-strategic (cooperative) or strategic, or with com-
plete or incomplete information (of utilities and system parameters). This chapter focuses
on complete-information of utilities and system parameters and studies two cases:

(a) dynamic, non-strategic (cooperative) players with decentralized information (Sec-
tion 2.3);

(b) dynamic, strategic players with centralized information (Section 2.4).

In Section 2.3 the relay channel is studied in the case of cooperative users. The case
where information such as the backlog of each user is known to everybody (the centralized
problem) is well known, and can be formulated and solved as a standard Markov Decision
Process (MDP) problem. The case is more interesting when information about agents’
backlogs is not available to everyone. This problem is studied in Section 2.3.2, where it is
formulated as a decentralized dynamic team problem, where users cooperate to minimize
expected energy and average delay of the entire network. The key feature of the model is the
non-classical information structure, that is, the source and the relay nodes do not observe
each other’s queue lengths, but through feedback, learn each other’s previous actions. Since
there is no single controller, rather both source and relay nodes are controllers with linked
stochastic control problems, this set-up does not fit into the standard framework of MDP
theory [Bertsekas, 1976,Kumar and Varaiya, 1986]. Similar decentralized control problems
were studied in [Mahajan and Teneketzis, 2008,Nayyar and Teneketzis, 2008,Nayyar et al.,
2011]. Utilizing an approach similar to [Nayyar et al., 2011] of viewing the decentralized
system from the point of view of a fictitious coordinator, a structural result is proven which
shows that there exists an optimal policy that is the solution of a Bellman-type fixed point
equation where the optimization is done over a fixed state space as opposed to an ever-
increasing state-space in general. The contribution in this part is to show that the optimal
decentralized control strategies are based on the pair of marginal distributions of the queue
lengths that the source and relay agents are storing and updating in real time. Inspired
by the optimal solution found above, suboptimal decentralized strategies are investigated
and their performance is compared (using numerical analysis and simulation) to standard
transmission strategies such as time-division multiple access (TDMA) and other random
access (RA) protocols.

In Section 2.4 this communication setup is studied with the assumption that users are
strategic in nature and the following question is asked: can the socially optimal policy (ob-
tained by a centralized controller) be implemented by strategic users. The relay channel
was also studied for strategic users in [Sagduyu and Ephremides, 2006]. In that paper, au-
thors pose the problem as a static game, cooperation is induced using a reward mechanism,
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and strategies are analyzed in Nash equilibrium. The present work takes into account the
dynamic aspect of the problem and poses it as a sequential game of complete informa-
tion and simultaneous moves [Osborne and Rubinstein, 1994]. The starting point here is
the observation that when users are strategic, there are more than one equilibria that may
not coincide with the socially optimum solution. The contribution in this part is to show
(through an explicit construction) that the network designer can impose payments to be
exchanged between source and relay nodes, such that the resulting dynamic game has the
social optimal policy as the unique subgame perfect equilibrium.

The two parts of the chapter broadly address the issue of stochastic control of the relay
channel, and have a dynamic flavor due to the random incoming traffic model. This in-
duces the solution concept for both cases to be within the sequential framework: dynamic
programming for the former and subgame perfect equilibrium for the latter.

The remainder of this chapter is structured as follows. Section 2.2 presents the model.
In Section 2.3, the team problem is studied when users are cooperative and minimize a
common cost criterion. The centralized and decentralized problems are posed and struc-
tural results are given for the decentralized problem in Section 2.3.2. In Section 2.3.3,
numerical results are presented comparing the performance of a suboptimal decentralized
policy with TDMA and RA. In Section 2.4, the case when users are strategic is discussed.
Section 2.5 presents the conclusion.

2.2 Model

Source

Relay

Destination

p

p

1

2

E13

E12 E23

Figure 2.1: A simple relay channel model with simultaneous incoming traffic to source and
relay.

The model of the system studied in this chapter, as shown in Fig. 2.1, consists of a
source node (node 1), a relay node (node 2) and a destination node (node 3). The time is
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discretized into slots and Bernoulli1 packet arrival processes {P i
t }∞t=1, i = 1, 2 are assumed

at node i, with the probability of arrival of a packet in any slot being pi ∈ [0, 1], i = 1, 2.
This model can be considered as a prototype for a larger network, where each source node
can also act as a relay for other source nodes, thereby potentially minimizing total cost in
the network. This view justifies the above assumption of independent arrival processes.
Both nodes 1 and 2 have queues of size N . The number of packets at time t in the queue
of node i is denoted by xit, i = 1, 2. The source has to send the packets in its queue to the
destination, and it has a choice to either transmit them directly to the destination or transmit
them through the relay or not transmit at all. At time t ∈ {1, 2, . . .}, node i, i = 1, 2 takes
action uit, as a function of all the information gathered till time t. In subsequent sections
we will study different scenarios with different available information to the agents at time
t. The possible actions for node 1 are wait (W ), transmit to node 2 (T12) and transmit to
node 3 (T13); and possible actions for node 2 are wait (W ) and transmit to node 3 (T23),
thus having

u1
t ∈ U1 = {W,T12, T13}, (2.1a)

u2
t ∈ U2 = {W,T23}. (2.1b)

It is assumed that simultaneous transmissions from both node 1 and node 2 lead to unsuc-
cessful reception (collision) at the receiver. It is further assumed that even at the event of a
collision the packet headers can be decoded at node 32. Under these assumptions, the sys-
tem evolution can be described by the following set of equations, where the queue length
of a node at time t is given by the minimum of (a) its queue size N and (b) its queue length
at time t−1 plus 1 if there was an arrival in time slot t, minus 1 if a packet was successfully
transmitted in t− 1 slot

x1
t = min

{
x1
t−1 + p1

t − 1{T12,T13}(u
1
t−1)1{W}(u2

t−1), N
}
, (2.2a)

x2
t = min

{
x2
t−1 + p2

t − 1{T23}(u
2
t−1)1{W}(u1

t−1)

+1{T12}(u
1
t−1)1{W}(u2

t−1), N
}
, (2.2b)

for t ∈ {2, 3, . . .}, where 1A(·) is the indicator function of the set A.
At the end of time slot t, nodes 1 and 2 receive noiseless feedback wt ∈ {0, 1, 2, e1, e2}

from the destination node stating if the destination node successfully received the transmis-
sion from node 1 (wt = 1); if the destination node successfully received the transmission

1In Section 2.3.2 we discuss extensions for the case of first-order Markov arrival processes.
2This is possible with sufficiently strong error correction coding of the headers.
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from node 2 (wt = 2); if the destination node didn’t receive any transmission destined to
it (wt = 0); if there was a collision with two packets destined to it (wt = e1); or, finally,
if there was a collision at node 3 due to a simultaneous transmission from node 1 to 2 and
node 2 to 3 (wt = e2). Thus each node i = 1, 2 at time t can determine ut−1 = (u1

t−1, u
2
t−1)

from the feedback wt and it own action uit. This implies that part of the system informa-
tion (in this case the agents’ actions) is shared between the agents with unit delay, while
information about the queue lengths is not shared (please refer to [Nayyar et al., 2011] for
a general discussion on delay-shared patterns). Throughout this chapter, it is also assumed
that all controllers have perfect recall.

Generic instantaneous cost functions git(xt, ut) are defined for node i = 1, 2 as func-
tions of queue lengths xt = (x1

t , x
2
t ) and actions ut of both the nodes. To quantify the

energy-delay tradeoff the following costs are assumed. The energy cost of transmissions
are defined by functions e1 : U1 → {0, E12, E13}, e2 : U2 → {0, E23} such that energy cost
for transmission from node 1 to node 3, e1(T13) = E13, node 1 to node 2 is e1(T12) = E12,
and that for node 2 to node 3 is e2(T23) = E23. The energy cost for waiting is 0, i.e.
e1(W ) = e2(W ) = 0. The instantaneous delay cost at time t for node i = 1, 2 is assumed
to be equal to the total number of packets waiting in the queue of node i plus cost cd for
each dropped packet. One instance of such cost function that captures both energy and av-
erage delay is git(xt, ut) = xit + ei(uit) + picd1Ai(xt, ut), where A1, A2 represent the events
that the next arrived packet is dropped for node 1 and 2 respectively,

A1 = {x1
t = N, ut ∈ {WW,WT23, T12T23, T13T23}}⋃

{x1
t = N, x2

t = N, ut = T12W},

A2 = {x2
t = N − 1, ut = T12W}⋃

{x2
t = N, ut ∈ {WW,T12W,T12T23, T13W,T13T23}}.

All costs are additive and costs for future slots (or epochs) are discounted by a discount
factor λ, (0 < λ < 1). The tuple (p1, p2, E13, E23, E12, λ,N, cd) summarizes the basic
parameters of the system.

2.3 Cooperative users

In this section the team problem is studied, under the assumption that both nodes act co-
operatively i.e. have the same objective. In particular, in Section 2.3.1 the centralized
problem is defined, where there is a single controller observing all relevant information
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and has perfect recall. The solution of this problem is not studied in this chapter, since it is
well-known and can be found as the solution of a dynamic program, either analytically or
numerically. The result is briefly stated for completeness, and since it serves as the baseline
solution with which all other solutions will be compared. In Section 2.3.2 the decentral-
ized problem is discussed, where there are two controllers with different information sets,
though with perfect recall. In this case, the nodes cannot observe each other’s queues.
Their own queue history is their private information, and feedback history is the common
information. Decentralized problems with non-classical information structure are notori-
ously hard [Witsenhausen, 1968]. One of the contributions of this work is to show that the
optimum strategy can be found as solution of a dynamic program over a large but time-
invariant state space. Finally, numerical results are presented in Section 2.3.3 that compare
the performance of a suboptimal decentralized policy (inspired by the optimal one found
in Section 2.3.2) with TDMA and RA policies.

2.3.1 Centralized control problem

At time t, the common knowledge of nodes 1 and 2 (or centralized controller) is u1:t−1, x1:t.
Thus the control action at time t, ut ∈ U1 × U2, can (in general) be a function of all the
information available till that time

ut = ψ̂t(x1:t, u1:t−1) = ψt(x1:t). (2.3)

A given policy ψ = (ψ1, ψ2, ψ3, . . .) induces a total discounted cost over the horizon T
equal to

Jψ := Eψ
[

T∑
t=1

λt−1
{
g1
t (Xt, Ut) + g2

t (Xt, Ut)
}]

. (2.4)

The centralized problem is defined as follows

Problem 2.1. Find the centralized policy ψ∗ that achieves the optimum cost,

J∗ := min
ψ
Jψ, (2.5)

with Jψ defined in (2.4), system update equation given by (2.2) and control actions ut as in
(2.3).

The solution of this problem is well-known and hinges on the following lemma.
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Lemma 2.1. The process {(Xt, Ut); t = 0, 1, . . .} is a controlled Markov process with
state Xt, control Ut, and instantaneous cost g1

t (Xt, Ut) + g2
t (Xt, Ut), i.e.,

P (xt+1|x1:t, u1:t) = P (xt+1|xt, ut) (2.6)

Proof. This is trivially true due to the system evolution given in (2.2), the independence of
the basic random variables (X1

1 , X
2
1 , P

1
1 , P

2
1 , P

1
2 , P

2
2 , . . .) and the instantaneous cost being

a function of only the current state and action pair (Xt, Ut).

Thus by the theory of MDPs [Bertsekas, 1976, Kumar and Varaiya, 1986], there exists
a Markov policy of the form ut = (u1

t , u
2
t ) = ψ∗t (xt) that achieves the optimum cost J∗ in

(2.5). Moreover this optimal cost can be found using dynamic programming. The reader
is referred to the authors’ report [Vasal and Anastasopoulos, 2011] for more details about
this centralized problem and its solution.

2.3.2 Decentralized control problem

In this section, a more practical case is considered whereby users cannot observe each
other’s queues. This is an instance of decentralized information as the information sets of
the two nodes are not the same.

At time t, information available to node k is (xk1:t, u
k
1:t−1, w1:t−1) which is equivalent to

(xk1:t, u1:t−1), since as mentioned earlier, knowledge of one’s own actions and the feedback
reveals the actions of the other node. If φkt is a decentralized action policy of node k at time
t, then control actions can be defined as follows

ukt = φ̂kt (x
k
1:t, u

k
1:t−1, w1:t−1) = φkt (x

k
1:t, u1:t−1), k = 1, 2. (2.7)

In the remaining of this section, the infinite horizon problem is considered for expositional
simplicity (the proposed solution also applies to the finite-horizon case). The instantaneous
cost functions are assumed time invariant, i.e., gkt = gk. Let the combined cost be defined
as g(xt, ut) := g1(xt, ut)+g2(xt, ut). If φk is any strategy of node k i.e., φk = (φk1, φ

k
2, . . .)

where k ∈ {1, 2} then φ = (φ1, φ2) is the combined strategy of both the nodes and the
corresponding discounted cost Jφ is given by

Jφ = Eφ{
∞∑
t=1

λt−1g(Xt, Ut)}. (2.8)

The decentralized control problem can now be stated as
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Problem 2.2. Find the optimal decentralized policy φ∗ that achieves the optimal cost

J∗ := inf
φ
Jφ (2.9)

with Jφ defined in (2.8), system update equation given by (2.2), and control actions ut as
in (2.7).

The controls actions, as given in (2.7), are functions of an ever increasing space. In this
section, we seek to simplify the domain of these functions to a succinct, fixed space. To
that effect, a structural result is proved for the optimal decentralized policy, and shown that
it can be found as a solution of a Bellman-type fixed-point equation. It is first proven that
there exist optimal control actions of a node that depend only on its current queue length and
the entire control history of both the nodes i.e., (xkt , u1:t−1). In the second simplification
step, it is shown that there exists an optimal policy that depends on the current queue
length xkt and the posterior on xt conditioned on the control history u1:t−1. In the final
simplification step it is shown that the aforementioned posterior distribution on xt can be
substituted by the pair of marginal distributions over xkt for k = 1, 2.

In this decentralized case, at time t, xk1:t is the private information of node k and u1:t−1

is the common information available to both nodes. The following lemma proves that given
the common information, the private information of the two nodes is independent.

Lemma 2.2. For any fixed strategy φ, random variables X1
1:t and X2

1:t are conditionally
independent given the control history till time t, U1:t−1 i.e.,

Pφ(x1:t|u1:t−1) = Pφ1

(x1
1:t|u1:t−1)Pφ2

(x2
1:t|u1:t−1) (2.10)

Proof. The causal decomposition of Pφ(x1:t, u1:t−1) gives,

Pφ(x1:t, u1:t−1) =P (x1
1)

t−1∏
i=1

P (x1
i+1|x1

i , ui)P
φ1

(u1
i |x1

1:i, u1:i−1)

× P (x2
1)

t−1∏
j=1

P (x2
j+1|x2

j , uj)P
φ2

(u2
j |x2

1:j, u1:j−1) (2.11a)
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Thus,

Pφ(x1:t|u1:t−1) =
P (x1

1)
∏t−1

i=1 P (x1
i+1|x1

i , ui)P
φ1

(u1
i |x1

1:i, u1:i−1)∑
x11:t

P (x1
1)
∏t−1

i=1 P (x1
i+1|x1

i , ui)P
φ1

(u1
i |x1

1:i, u1:i−1)

×
P (x2

1)
∏t−1

j=1 P (x2
j+1|x2

j , uj)P
φ2

(u2
j |x2

1:j, u1:j−1)∑
x21:t

P (x2
1)
∏t−1

j=1 P (x2
j+1|x2

j , uj)P
φ2

(u2
j |x2

1:j, u1:j−1)
(2.11b)

=Pφ1

(x1
1:t|u1:t−1)Pφ2

(x2
1:t|u1:t−1). (2.11c)

We now proceed to show that each node can summarize its private information to only
the current queue state without loss of optimality. For this the following lemma is required.

Lemma 2.3. For any given fixed strategy φ2 of node 2, the process {(X1
t , U1:t−1, U

1
t ); t =

1, 2, . . .} is a controlled Markov process with state (X1
t , U1:t−1) and control input U1

t i.e.,

Pφ2

(x1
t+1, u1:t|x1

1:t, u1:t−1, u
1
1:t) = Pφ2

(x1
t+1, u1:t|x1

t , u1:t−1, u
1
t ) (2.12)

Eφ2{g(x1
t , x

2
t , u

1
t , u

2
t )|x1

1:t, u1:t−1, u
1
1:t} = Eφ2{g(x1

t , x
2
t , u

1
t , u

2
t )|x1

t , u1:t−1, u
1
t}

= ĝ(x1
t , u1:t−1, u

1
t ) (2.13)

Proof. See Appendix A

As a consequence of the MDP structure of the problem (given a fixed strategy φ2 of
node 2), the optimal policy by node 1 can be a Markov policy [Kumar and Varaiya, 1986].
Since this is true for any fixed strategy of node 2, it is also true for the optimal strategy of
the node 2. A similar result can be obtained by interchanging the roles of node 1 and 2,
thus the optimal decentralized policy can be of the form below without loss of optimality

ukt = φkt (x
k
t , u1:t−1), k = 1, 2. (2.14)

Even with the above simplification, Problem 2.2 reduces to two linked stochastic con-
trol problems for which a solution is not readily available. We proceed to the second sim-
plification step by reexamining this problem from the perspective of a fictitious coordina-
tor [Nayyar et al., 2011], who observes, at time t, the feedback wt or equivalently ut−1

(common information) but does not observe xkt , k ∈ {1, 2} (private information). This
fictitious coordinator (which can be replicated at both nodes) generates partial functions
γt = γ1:2

t = (γ1
t , γ

2
t ) as its control output, where γkt : N → Uk, k ∈ {1, 2}. Based upon

these coordinator control outputs, node k, k ∈ {1, 2} computes its action by operating these
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partial functions on its private information xkt , as shown in Fig. 2.2. In particular, denoting
the coordinator strategy at time t by Ψt = (Ψ1

t ,Ψ
2
t ) we can write

(γ1
t , γ

2
t ) = Ψt(u1:t−1) = (Ψ1

t (u1:t−1),Ψ2
t (u1:t−1)), (2.15)

and node k action will be given by

ukt = γkt (xkt ) (2.16a)

= Ψk
t (u1:t−1)(xkt ) (2.16b)

= φkt (x
k
t , u1:t−1). (2.16c)

In the following we show that the coordinator strategy can be simplified by summarizing
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Figure 2.2: Control by the fictitious coordinator: (a) original control action generation; (b)
equivalent control action generation through intermediate coordinator actions.

the history of the common information into a sufficient statistic with time-invariant domain.
In particular we show that belief on xt given the observation history u1:t−1 and control
history γ1:t−1 till time t, forms a sufficient state for the coordinator’s problem. We define
the random variable Πt ∈ P(N 2) as the posterior pmf ofXt conditioned on U1:t,Γ1:t−1 i.e.,

Πt(xt) = P (Xt = xt|U1:t−1,Γ1:t−1). (2.17)

The next lemma shows that this quantity can be recursively updated by the coordinator in
a deterministic fashion.

Lemma 2.4. There exists a deterministic update function F , independent of the coordina-
tor’s policy Ψ , that updates the state πt given control γt and variable ut .

πt+1 = F (πt, γt, ut) (2.18)
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Proof. See Appendix B.

The following theorem establishes that the coordinator’s problem is an MDP.

Theorem 2.1. The process {(Πt,Γt); t = 1, 2, ...} is a controlled Markov process with
state Πt and control Γt, i.e.,

P (πt+1|π1:t, γ1:t) = P (πt+1|πt, γt) (2.19)

E(g(xt, ut)|π1:t, γ1:t) = E(g(xt, ut)|πt, γt) (2.20)

=: ĝ(πt, γt) (2.21)

Proof. See Appendix C

Since {(Πt,Γt); t = 1, 2, . . .} is a controlled Markov process the optimal output func-
tions can be given by Markov policies [Kumar and Varaiya, 1986] (γ1

t , γ
2
t ) = ψt(πt). Thus

optimal action by node k can be written (with some notational abuse) as

ukt = γkt (xt) = ψkt (πt)(xt) = φkt (x
k
t , πt). (2.22)

Furthermore, the optimal actions for the coordinator are minimizers of the fixed-point equa-
tion

V (π) = inf
γ

[ĝ(π, γ) + λE{V (π′)|π, γ}], (2.23)

where the expectation is with respect to the conditional probability induced by the update
function F and ut as random variable (noise), in accordance with [Nayyar et al., 2011].

Finally, in the remaining of this section we proceed with the last simplification step and
show that, due to the specific nature of our problem, instead of the joint probability Πt on
the queue length of the two nodes, individual marginals form a sufficient state. To that
effect, we define the random variable Ξk

t ∈ P(N ) as the posterior pmf of Xk
t conditioned

on U1:t−1,Γ1:t−1 i.e.,

Ξk
t (x

k
t ) = P (Xk

t = xkt |U1:t−1,Γ1:t−1), k = 1, 2 (2.24)

and show that {(Ξt,Γt); t = 1, 2, ...} is controlled Markov process (where Ξt = Ξ1:2
t =

(Ξ1
t ,Ξ

2
t )). This gives a significant reduction in the size of the state space over which the

optimal policies are defined, since π is defined over a space of P(N 2) while ξ is defined
over P(N )×P(N ). For a finite queue length N , P(N 2) has dimensionality N2, and thus
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grows super exponentially in N as RN2 , whereas P(N ) × P(N ) has dimensionality 2N ,
and grows exponentially in N as R2N .

The above statement is made precise in the following lemma and subsequent theorem.

Lemma 2.5. There exist deterministic update functions Gk, k ∈ {1, 2}, independent of
the policy Ψ, that update the state ξkt given control γkt and actions ut as

ξkt+1 = Gk(ξkt , γ
k
t , ut), k ∈ {1, 2}. (2.25)

Proof. See Appendix D.

Theorem 2.2. The process {(Ξt,Γt); t = 1, 2, ...} is a controlled Markov process with
state Ξt and controls Γt, i.e.,

Pφ(ξt+1|ξ1:t, γ1:t) = P (ξt+1|ξt, γt) (2.26)

E(g(xt, ut)|ξ1:t, γ1:t) = E(g(xt, ut)|ξt, γ1:t)

:= g̃(ξt, γt) (2.27)

Proof. See Appendix E.

Since {(Ξt,Γt); t = 1, 2, ...} is a controlled Markov process, the optimal output func-
tions can be given by Markov policies γt = ψt(ξt), and can be derived as minimizers of the
fixed-point equation

V (ξ) = inf
γ

[g̃(ξ, γ) + λE{V (ξ̄)|ξ, γ}], (2.28)

where the expectation is with respect to the conditional probability induced by the update
functions (G1, G2) and ut as random variable (noise). In summary, the optimal control
actions are of the form

ukt = φkt (x
k
t , ξt), k = 1, 2, (2.29)

and in the on-line operation of the system are generated as follows: at time t, each node
(source and relay) first updates the quantities ξt−1 as dictated by the recursion (2.25), and
based upon ξt they find the corresponding action γt as dictated by the (off-line) solution of
(2.28). Finally they generate their action ukt by evaluating γkt on their private information
xkt i.e., ukt = γkt (xkt ).

We conclude this section by observing that in this model we assumed two independent
Bernoulli arrival processes for ease of exposition. The analysis can be easily extended
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to the case of independent first-order Markov arrival processes. This can be achieved by
defining Zk

t = (Xk
t , P

k
t ), k = 1, 2, where {P k

t }t, k = 1, 2 are independent Markov arrival
processes of node 1 and 2 respectively. Since in our model both Xk

t , P
k
t are observable,

so is Zk
t ; thus similar results can be easily derived for Zk

t in place of Xk
t , k ∈ {1, 2}.

When arrival processes (P 1
t , P

2
t ) follow joint Markov process, the analysis can be extended

in a similar way as for two independent Markov processes, till equation (2.23) but the
simplification in Theorem 2.2 does not follow.

2.3.3 Numerical results

In this section, we compare the performance of a suboptimal decentralized policy obtained
from our analysis in the previous section, with standard TDMA and RA policies (which
themselves are decentralized policies). We assume the cost function of the form g(xt, ut) =

x1
t + x2

t + e1(u1
t ) + e2(u2

t ).
Regarding the decentralized policy, we chose to solve the fixed-point equation (2.23)

instead of the simpler one in (2.28). Although (28) is an important theoretic simplification
of the state space, the reason for this choice is that equation (2.23) resembles a Bellman-
type fixed-point equation for a POMDP (partially observed MDP), and thus can be solved
using standard POMDP solvers if the underlying state and action space is finite. However,
although equation (2.28) has significantly smaller space of optimization, it cannot be solved
using standard POMDP solvers as it does not have the linear structure required by standard
POMDP solvers.

For a finite maximum queue length N , there are |U1|N · |U2|N possible γ functions.
We expect the optimum γ1:2,∗ functions to be of “threshold-type” [Hajek, 1984, Smith and
McCardle, 2002], i.e. the domain {0, 1, . . . , N} of each γi to be partitioned into contiguous
regions, one corresponding to each action in U i. The threshold nature of policies is proved
for queueing and other problems in [Hajek, 1984, Beutler and Teneketzis, 1993] and gen-
erally requires proving properties like concavity, supermodularity, superconcavity etc. of
the cost-to-go function. It is usually hard to show that some set of properties of the cost-to-
go function propagate through the dynamic programming equation, more so for POMDPs
where state space is a connected simplex. We do not prove the optimality of threshold
policies, however, inspired by the solution of centralized policies, we find a suboptimal de-
centralized policy by solving (2.23) over threshold policies defined as all possible policies
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of the following form parametrized by (α, β, θ). We call this policy ψ∗.

γ1(x1) =


W, x1 < α

T12, α ≤ x1 < β

T13, β ≤ x1

(2.30a)

γ2(x2) =

{
W, x2 < θ

T23, θ ≤ x2.
(2.30b)

For the numerical analysis, we choose N = 2, which is a compromise between ac-
curacy of results and complexity of solving the fixed-point equation. For a given policy
that results in a system where queues are expected to get empty frequently (i.e., (0, 0) is
expected to be a recurrent state), the stationary distribution of the system is expected to
have significant weight around the queue sizes (0, 0) and negligible weight for larger queue
lengths. Thus such a small value for N is a justified approximation for lightly loaded
systems. We numerically solve equation (2.23) over the set of threshold policies using
a POMDP solver for E12 = 0.1, E23 = 0.2, E13 = 10 and p1,∈ {0.1, 0.2, 0.4}, p2 ∈
{0.01, 0.1, 0.2, 0.4, 0.6}, N = 2, cd = 5, λ = 0.99. Figures 2.3 compare their costs for
different traffic parameters.

Both TDMA and RA policies prescribe allocation of slots to users. In each allocated
slot, a user chooses the optimal action that minimizes the cost to go. For example when
the slot is allocated to the source, it takes one of the following actions {W,T12, T13} that is
optimal for the current state. The numerical results are obtained by numerically analyzing
the steady state distribution of the Markov process induced by implementing the optimal
policy, which is found by enumerating all threshold policies. The TDMA policy assumes
that users access the channel as dictated by a commonly observed binary random variable,
the distribution of which is optimized for each pair of (p1, p2). As a result the channel is not
allocated equally to source and relay, but optimally as dictated by their traffic loads. The RA
policy assumes that users access the channel as dictated by private random back-off times
whose distribution is geometric and optimized for their traffic loads. The corresponding
results are obtained by numerically analyzing the steady state distribution of the induced
Markov process. In both TDMA and RA, when a slot is available to a node, that node plays
its optimal action. Thus for e.g. in TDMA, relaying is achieved as follows: when node 1
is given a slot, node 1 sends a packet to node 2, and when node 2 is given a slot, node 2 it
sends its packet to the receiver. Finally, the solution of the centralized problem mentioned
in Section 2.3.1 is shown, which serves as a lower bound for all decentralized policies.
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We make the following observations regarding the results shown in Fig. 2.3. The de-
centralized policy ψ∗ outperforms both RA and TDMA policies for all given p1, p2. To
take an instance, for p1 = 0.1, p2 = 0.1, the costs obtained for policies ψ∗, RA, TDMA
and optimum centralized are 0.4230, 0.6241, 0.5307, 0.3845, respectively.

2.4 Strategic users

This section considers the case when users are strategic i.e., when they have potentially
different cost criteria, and the information is perfect and complete3. For problems with
multiple agents as decision makers, having their individual objective functions, equilibrium
is an appropriate solution concept [Osborne and Rubinstein, 1994], where equilibrium is
loosely defined as set of policies for each agent such that no agent has an incentive to
unilaterally deviate from its policy.

With strategic nodes in our previous model, both nodes have linked stochastic processes
such that their actions affect each other’s current and future costs, so they determine their
actions in order to minimize their own average total cost over the given time horizon. In
this section we consider a centralized information model where all system variables are
perfectly observed by both agents (as was the case in Section 2.3.1). It is also assumed
that cost functions and system parameters are common knowledge. In this case, the system
evolves as a dynamic game of perfect information and simultaneous moves [Osborne and
Rubinstein, 1994]. In such a case, the relay node may not want to accept packets from the
source node as that will result in larger delay (longer backlog for his own queue) as well as
extra transmission energy. Thus, the socially optimal solution may not be implementable
in an equilibrium concept. One possible way to induce relay cooperation is for the source
to pay the relay node for relaying the packet (and similarly, for the relay to pay the source
for backing off from transmission so that it can transmit its own packets). This entails
the question of whether, through such payments, an equilibrium solution would lead to the
socially optimum solution.

The main result in this section is that there exist payment transfers to be imposed by
the network designer such that the optimum Markov policy of the centralized problem (as
discussed in Section 2.3.1) is also the unique subgame perfect equilibrium of the dynamic
game.

3This is a preliminary analysis of the system with strategic agents. We develop tools in the next chapter to
relax the condition of perfect information and study dynamic games with asymmetric information; however,
we do not do mechanism or incentive design. The problem with imperfect or incomplete information, is an
interesting problem that comes under the purview of dynamic mechanism design for games with asymmetric
information, and is not considered in this thesis.
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Figure 2.3: Numerical and simulation results for the decentralized policy, TDMA, and RA.
The baseline case (centralized solution) is also shown for comparison.

The model for the dynamic game with finite horizon T is now formalized. When nodes
are strategic, it is intuitive to think that the relay node would not want to accept source’s
packets since that increases it’s queue length. Thus the strategic users may never achieve
socially optimal cost when (T12,W ) is an optimum action. To capture this behavior of node
2, we enhance its available actions as

u2
t ∈ U2 = {Wa,Wr, T23}, (2.31)

where possible actions for node 2 are wait while accepting the packet from node 1 (Wa),
wait while rejecting the packet (Wr), or transmit to node 3 (T23). The queue length of a
node at time t is given by the minimum of (a) its queue size N and (b) its queue length at
time t− 1 plus 1 if there was an arrival in time slot t , minus 1 if a packet was successfully
transmitted in t− 1 slot, i.e.,

x1
t = min

{
p1
t + [x1

t−1 − 1{T12,T13}(u
1
t−1)1{Wa}(u

2
t−1)

−1{T13}(u
1
t−1)1{Wr}(u

2
t−1)]+, N

}
, (2.32a)

x2
t = min

{
p2
t + [x2

t−1 − 1{T23}(u
2
t−1)1{W}(u1

t−1)

+1{T12}(u
1
t−1)1{Wa}(u

2
t−1)]+, N

}
, (2.32b)
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with the meaning of these variables being exactly the same as in (2.2). Let H denote the
set of all histories that are all possible sequences of actions taken by the nodes and nature
(arrival processes pt = (p1

t , p
2
t ) ∈ {0, 1}2 are viewed as actions by nature) i.e.,

H := {ht = (p1:t, u1:t−1, x1:t)| ∀t ∈ {0, 1, . . . T}}, (2.33)

where state sequences have also been added to the histories since they can be determined
through (2.32) by the action and arrival histories. With N = 2 users, set of histories
H, generic instantaneous cost functions git(xt, ut), i = 1, 2, and simultaneous actions
taken at each time t based on the history ht, a dynamic game of perfect information
with simultaneous moves is defined [Osborne and Rubinstein, 1994, Başar and Olsder,
1982], henceforth referred to as G. The goal is to design a payment exchange mecha-
nism4 such that the optimal solution of the centralized problem discussed in Section 2.3.1
is achieved as the subgame perfect equilibrium of the dynamic game. To that effect func-
tions Ct : H × U1 × U2 → R are defined as the payment made5 by node 1 to node 2

at time t. With these payment exchanges, let the new game G̃, be defined as before with
instantaneous cost functions

ĝ1
t (h, ut) = g1

t (xt, ut) + Ct(h, ut), (2.34a)

ĝ2
t (h, ut) = g2

t (xt, ut)− Ct(h, ut), (2.34b)

for node 1 and 2 respectively. Note that although the payment functions are history depen-
dent, and thus their domain is time-varyting, it will be shown that due to the structure of
this problem, they need only be state dependent.

It is easy to see that with so many degrees of freedom, a game can be constructed such
that socially optimum solution is a (not necessarily unique) subgame perfect equilibrium
of the game as shown by the following construction. Indeed, for α ∈ (0, 1), let payments
be designed as

Ct(h, u) = Ct(xt, u) = αg2
t (xt, u)− (1− α)g1

t (xt, u).

4Note that this is not a “mechanism” in the sense of Implementation Theory [Börgers, 2013] since utilities
and system parameters are common knowledge.

5This payment can be positive or negative, as considered in many other problems [Groves and Ledyard,
1977,Hurwicz, 1979,Jackson, 2001,Kakhbod and Teneketzis, 2012b,Kakhbod and Teneketzis, 2012a,Sharma
and Teneketzis, 2012].
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Then the instantaneous costs of user 1 and 2 are

ĝ1
t (h, ut) = α

(
g1
t (xt, u) + g2

t (xt, u)
)

(2.35a)

ĝ2
t (h, ut) = (1− α)

(
g1
t (xt, u) + g2

t (xt, u)
)
. (2.35b)

In this case, the objectives of both users are aligned with the social objective and the socially
optimal solution is also a Nash Equilibrium. The problem with this construction is that, in
general, there may exist additional Nash equilibria that may not achieve socially optimal
solution.

In the remaining part of this section, a new construction of payment function is pro-
vided and sufficient conditions are found for the socially optimal strategy to be the unique
subgame perfect Nash equilibrium of game G̃. In the following lemma, payments are con-
structed for a static game, and later this idea is extended to dynamic games.

Lemma 2.6. Consider a strategic game of two players with finite action sets (U i)i=1,2 and
costs (gi)i=1,2. Fix an action profile (a, b) ∈ U1 × U2 (not necessarilly an equillibrium).
There exists a payment function C : U1 × U2 → R such that (a, b) is the unique strictly
dominant strategy equilibrium of the new strategic game with the updated costs.

Proof. For (a, b) to be the strictly dominant strategy equilibrium, the following conditions
need to be satisfied

g1(a, u2) + C(a, u2) < g1(u1, u2) + C(u1, u2) (2.36a)

∀u1 ∈ U1\{a}, u2 ∈ U2

g2(u1, b)− C(u1, b) < g2(u1, u2)− C(u1, u2) (2.36b)

∀u1 ∈ U1, u2 ∈ U2\{b}.

Let

r1(u1, u2) := g1(u1, u2)− g1(a, u2) (2.37a)

r2(u1, u2) := g2(u1, u2)− g2(u1, b) (2.37b)

Equations (2.36) for u2 = b, u1 = a are equivalent to, respectively,

C(a, b) < r1(u1, b) + C(u1, b) ∀u1 ∈ U1\{a} (2.38a)

C(a, u2) < r2(a, u2) + C(a, b) ∀u2 ∈ U2\{b} (2.38b)
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and for u1 6= a, u2 6= b, are equivalent to

C(a, u2)− r1(u1, u2) < C(u1, u2) < C(u1, b) + r2(u1, u2)

∀u1 ∈ U1\{a}, u2 ∈ U2\{b}. (2.39)

Since action sets are finite, there exists payments C(u1, u2) with C(u1, b) large enough and
C(a, u2) small enough such that inequalities (2.38)-(2.39) are satisfied.

The above lemma shows that the cost variables {C(u1, u2), (u1, u2) ∈ U1 × U2} need
to satisfy linear inequalities (2.38)-(2.39), i.e. can be chosen from a polytope that is always
non-empty. A feasible solution can be found by first applying a vertex enumeration algo-
rithm [Avis and Fukuda, 1992] which finds the vertices, rays and linearities of the polytope
described by the linear inequalities (2.38)-(2.39), and then an arbitrary point is selected as
the sum of a convex combination of the vertices, a conic combination of the rays and a
linear combination of the linearities.

Note that the above lemma provides a very strong type of equilibrium design, i.e.,
strictly dominant strategy equilibrium. Also, the above construction of the game allows for
negative payments by either user. Even though negative payments are commonly used
to induce users to behave in a way desired by the designer (see for e.g. [Groves and
Ledyard, 1977, Hurwicz, 1979, Kakhbod and Teneketzis, 2010, Kakhbod and Teneketzis,
2012a, Sharma and Teneketzis, 2012]), the above construction can be proved with positive
payments only6.

This idea is now extended to dynamic games in the following theorem.

Theorem 2.3. Fix a Markov policy ψ∗ = (ψ∗t )
T
t=1 for the original centralized stochastic

control problem (not necessarily the optimal one). Consider the dynamic game G defined
above. There exists payments Ct : N ×N ×U1 ×U2 → R which are exchanged between
nodes 1 and 2 at each time t ∈ {1, 2, . . . T − 1} such that ψ∗ is the unique subgame perfect
equilibrium of the resulting dynamic game G̃.

Proof. For game G̃ at any time t ∈ {1, 2, . . . T}, after history h ∈ H and action profile
u ∈ U1 × U2, the cost-to-go functions for both nodes are

V 1
t (h, u) := g1

t (xt, u) + Ct(h, u) + λE
[
V 1
t+1(h′)|h, u

]
(2.40a)

V 2
t (h, u) := g2

t (xt, u)− Ct(h, u) + λE
[
V 2
t+1(h′)|h, u

]
, (2.40b)

6 Due to the finiteness of the action sets, there always exists a c > 0 such that rk(u1, u2) ≥
−c ∀u1, u2, k = 1, 2, then choosing C(u1, b) = 4c ∀u1 6= a,C(a, u2) = c ∀u2 6= b, C(a, b) =
2c, C(u1, u2) = 2.5c ∀u1 6= a, u2 6= b will satisfy inequalities of Lemma 5 with all payments being positive.
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where V i
T+1(·, ·) = 0 and xt = (x1

t , x
2
t ) are queue lengths of user 1 and 2 corresponding to

history h.

Let σ = (σt)
T
t=1 be a Markov policy of the dynamic game G̃ such that for all histories

h ∈ H of length t, σ(h) = ψ∗t (x
1
t , x

2
t ). The payments Ct(h, u1, u2) are constructed back-

ward recursively as follows. Let V i,σ
T (x1

T , x
2
T ) = giT (x1

T , x
2
T ) for user i, i = 1, 2. Then

for any t ∈ {T − 1, T − 2 . . . 1}, let Ct(h, u1, u2) be constructed as in Lemma 2.6 for the
game with instantaneous costs being the cost-to-go functions git(xt, u) + λE[V i,σ

t+1(h′)|h, u]

for each user i, such that action profile σ(h) is the strictly dominant strategy equilibrium.
Then,

V 1,σ
t (h) = g1

t (xt, σ(h)) + Ct(h, σ(h)) + λE[V 1,σ
t+1(h′)|h, σ(h)] (2.41)

V 2,σ
t (h) = g2

t (xt, σ(h))− Ct(h, σ(h)) + λE[V 2,σ
t+1(h′)|h, σ(h)]. (2.42)

The above implies that for each subgame G̃(h), the policy σ|h strictly dominates every other
policy σ′ in G̃(h) that differs from σ|h only in the action it prescribes after the initial history
of G̃(h). By the one-shot deviation property [Osborne and Rubinstein, 1994, Lemma 98.2]
and strict dominance, the policy σ is the unique subgame perfect equilibrium of the game.
By construction, it achieves a socially optimal solution.

Since σ(h) is a Markov policy, Ct(·, ·) and V i,σ
t (·, ·) can be reduced to functions of

queue lengths x1
t , x

2
t corresponding to history h, instead of h. This follows from induction.

For t = T,CT (h, σ(h)) = 0 and V i,σ
T (x1

T , x
2
T ) = giT (x1

T , x
2
T ) which establishes the base

case. Now since V i,σ
t+1(·, ·) depends on history h only through the queue lengths xt+1, and

since σ(h) = ψ∗t (x
1
t , x

2
t ) depends on xt, it follows that Ct(h, u1, u2) constructed as in

Lemma 2.6 for the game with costs git(xt, σ(h))+λE[V i,σ
t+1(h′)|h, u] for user i also depends

on history h through queue lengths xt. Thus from equations (2.41)-(2.42), V i,σ
t (·, ·) also

depends only on xt. This completes the induction step.

The above result gives a constructive proof of existence of payment transfers such that
any Markov policy can be implemented, and thus the socially optimum Markov policy can
also be implemented as the unique subgame perfect equilibrium of the dynamic game.

Tables 2.1 and 2.2 show examples of construction of payments based on Proposition 2.3
for arbitrary payments and positive payments respectively. The system with parameters
E12 = 0.1, E23 = 0.2, E13 = 10, λ = 0.99, p1 = 0.1, p2 = 0.1, cd = 5, N = 10 is
considered, and an arbitrary state (x1

t , x
2
t ) = (3, 3) is chosen for demonstrating the resulting

cost-to-go functions and payments. Tables 2.1(a) and 2.2(a) give the cost-to-go functions
V 1,σ
t (xt) for the game at time t obtained using policy iteration such that the socially optimal
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Markov policy (for the centralized problem) is implemented (i.e. is the dominant strategy)
for all times after t. Due to the time-invariance of costs, policy iteration converges to a
stationary solution, which, for this set of parameters is the policy (W,T23) when at the
chosen state (x1

t , x
2
t ) = (3, 3). Note that from the values of the cost-to-go functions in

Tables 2.1(a), 2.2(a) it can be deduced that both actions (W,T23) and (T13,Wr) are Nash
equilibria, which is not desired. Tables 2.1(b), 2.2(b) give the cost-to-go functions V 1,σ

t (xt)

for the corresponding game G̃ (i.e., with payment transfers), where transfers for this instant
t are calculated according to Lemma 2.6. Note that with the introduction of payments,
action (W,T23) is the dominant strategy equilibrium.

In this game, the total expected cost for a user by participating in the game should be
less than the expected cost they incur by not participating in the game. It is assumed that
by non-participation, the users are not able to transmit their packets, and thus their queues
increase to capacity, whereas by participating in the game they do strictly better. Thus for
reasonable cost functions (for e.g. gi(x, u) ∼ xi) which are monotonously increasing and
unbounded with the queue length, and for large enough N and λ close to 1, the users will
always have an incentive to participate in the game.

Table 2.1: Costs for subgame at time t. Parameters are E12 = 0.1, E23 = 0.2, E13 =
10, λ = 0.99, p1 = 0.1, p2 = 0.1, cd = 5, N = 10. States are (x, y) = (3, 3).

(a) Without payments

Wa Wr T23

W
V 1
t (x, y)
V 2
t (x, y)

0.4586
0.3970

0.4586
0.3970

0.4103
0.3616

T13
V 1
t (x, y)
V 2
t (x, y)

0.4484
0.3842

0.4484
0.3842

0.5693
0.3992

T12
V 1
t (x, y)
V 2
t (x, y)

0.3743
0.4337

0.4597
0.3970

0.4597
0.3992

(b) With real-valued payments

Wa Wr T23

W
V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.4129
0.4427
−0.0438

0.4462
0.4094
−0.0124

0.4103
0.3616

0

T13

V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.4472
0.3854
−0.0012

0.4472
0.3854
−0.0012

0.5841
0.3844
0.0148

T12

V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.4139
0.3941
0.0397

0.4597
0.3970

0

0.4658
0.3931
0.0061
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Table 2.2: Costs for subgame at time t. Parameters are E12 = 0.1, E23 = 0.2, E13 =
10, λ = 0.99, p1 = 0.1, p2 = 0.1, cd = 5, N = 10. States are (x, y) = (3, 3).

(a) Without payments

Wa Wr T23

W
V 1
t (x, y)
V 2
t (x, y)

0.6258
0.2298

0.6258
0.2298

0.5782
0.1938

T13
V 1
t (x, y)
V 2
t (x, y)

0.6028
0.2298

0.6028
0.2298

0.7364
0.2320

T12
V 1
t (x, y)
V 2
t (x, y)

0.5282
0.2798

0.6269
0.2298

0.6269
0.2320

(b) With positive payments

Wa Wr T23

W
V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.6258
0.2298

0

0.6258
0.2298

0

0.5782
0.1938

0

T13

V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.6258
0.2068
0.0230

0.6258
0.2068
0.0230

0.7617
0.2068
0.0252

T12

V 1
t (x, y)
V 2
t (x, y)
Ct(x, y)

0.6258
0.1822
0.0977

0.6269
0.2298

0

0.6768
0.1822
0.0499
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2.5 Conclusion

This chapter studies energy and delay tradeoff in cooperative communication through a
simple relay channel, when the source and the destination node are cooperative and when
they are strategic. When users are cooperative, by posing it as a decentralized, infinite
horizon decentralized stochastic control problem, a structural result is proven stating that
the optimal policy can be found by solving a Bellman-type fixed-point equation and optimal
control can be given as ukt = gkt (xkt , ξ

1
t , ξ

2
t ). The domain of optimization is the space of

the pair of marginal probability mass functions on the integers P(N )×P(N ). Numerical
results are presented to compare the performance of a suboptimal policy from our analysis
with standard TDMA and RA policies. Future research directions include the unveiling of
additional structural properties of the optimal strategy (e.g., threshold strategies), as well
as designing optimal and efficient suboptimal strategies. This problem can be extended to
the case of multiple source/relay nodes. For this, the model needs to be enriched so that
each collision also contains the information regarding which nodes transmitted. This can
be achieved if each node transmits a “signature” waveform along with the data waveform
such that the signature waveforms of all users are mutually orthogonal and orthogonal to
the data (e.g., in frequency). The optimal decentralized solution scales exponentially with
the number of nodes i, since, as shown in this work, a sufficient state for control is the set
of marginal distributions {ξk(xkt ); k ∈ {1, 2, . . . i}} on the queue of size N , which grows
as RiN instead of the joint distribution π(x1

t , . . . x
i
t) which grows double exponentially in i

as RN i .
The second part of this chapter studies the relay channel with strategic source and re-

lay nodes that minimize their individual expected energy and average delay. It is shown
that there exist transfer payment functions Ct(·, ·) such that implementing socially optimal
Markov policy is also the unique subgame perfect equilibrium of the dynamic game. In
this work an important assumption is made that all information including states and utility
functions are known to everybody. The decentralized setup for strategic users i.e. when
states are not known, would be a challenging and interesting problem to consider and to
the best knowledge of the authors, dynamic games with decentralized information are not
well studied [Nayyar et al., 2014, Jerzy Filar, 1996]. If the assumption of known utilities
is relaxed, then the problem becomes significantly harder and comes under the purview of
mechanism design and Implementation Theory for dynamic games [Bergemann and Vali-
maki, 2010, Jackson and Sonnenschein, 2007].
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2.6 Appendix A (Proof of Lemma 2.3)

Proof.

Pφ2

(x1
t+1, u1:t|x1

1:t, u1:t−1, u
1
1:t) =Pφ2

(x1
t+1|x1

1:t, u1:t)P
φ2

(u1:t|x1
1:t, u1:t−1, u

1
t ) (2.43a)

=P (x1
t+1|x1

t , ut)P
φ2

(u2
t |x1

1:t, u1:t−1, u
1
t ) (2.43b)

=P (x1
t+1|x1

t , ut)P
φ2

(u2
t |u1:t−1) (2.43c)

=Pφ2

(x1
t+1, u1:t|x1

t , u1:t−1, u
1
t ) (2.43d)

where (2.43b) follows since x1
t+1 = ft(x

1
t , p

1
t+1, ut) where ft is as defined in (2.2) and by

independence of basic random variables, and (2.43c) follows since U2
t is a function of X2

1:t,
U1
t is a function of X1

1:t and X1
1:t, X

2
1:t are conditionally independent given U1:t−1 (Lemma

2.2).
For the second part,

Eφ2{g(xt, ut)|x1
1:t, u1:t−1, u

1
1:t} =

∑
xt,ut

g(xt, ut)P
φ2

(xt, ut|x1
1:t, u1:t−1, u

1
1:t) (2.44a)

=
∑
x2t ,u

2
t

g(xt, ut)P
φ2

(x2
t , u

2
t |x1

1:t, u1:t−1, u
1
1:t) (2.44b)

=
∑
x2t ,u

2
t

g(xt, ut)P
φ2

(x2
t , u

2
t |u1:t−1) (2.44c)

=Eφ2{g(xt, ut)|x1
t , u1:t−1, u

1
t} (2.44d)

=ĝ(x1
t , u1:t−1, u

1
t ) (2.44e)

where (2.44c) follows from Lemma 2.2.

2.7 Appendix B (Proof of Lemma 2.4)

Proof. Fix ψ

πt+1(xt+1) =Pψ(Xt+1 = xt+1|u1:t, γ1:t) (2.45a)

=
∑
xt

Pψ(xt+1, xt|u1:t, γ1:t) (2.45b)

=
∑
xt

Pψ(xt|u1:t, γ1:t).P (xt+1|xt, ut) (2.45c)
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where (2.45c) is true by Markov property and the fact that γ1:t is a function of u1:t. Now,

Pψ(xt|u1:t, γ1:t) =
Pψ(xt, ut|u1:t−1, γ1:t)∑
x̂t
Pψ(x̂t, ut|u1:t−1, γ1:t)

(2.46a)

=
Pψ(xt|u1:t−1, γ1:t)P

ψ(ut|u1:t−1, γ1:t, xt)∑
x̂t
P (x̂t, ut|u1:t−1, γ1:t)

(2.46b)

=
Pψ(xt|u1:t−1, γ1:t−1)1{γt(xt)}(ut)∑
x̂t
Pψ(x̂t|u1:t−1, γ1:t−1)1{γt(x̂t)}(ut)

(2.46c)

where first part in numerator in (2.46c) is true since given policy ψ, γt can be computed as
γt = ψt(u1:t−1).

We conclude that

P (xt|u1:t, γ1:t) =
πt(xt)1{γt(xt)}(ut)∑
x̂t
πt(x̂t)1{γt(x̂t)}(ut)

, (2.47)

thus,

πt+1 = F (πt, γt, ut) (2.48)

where F is independent of policy ψ.

2.8 Appendix C (Proof of Theorem 2.1)

Proof.

P (πt+1|π1:t, γ1:t) =
∑
ut

P (πt+1, ut|π1:t, γ1:t) (2.49a)

=
∑
ut

1{F (πt,γt,ut)}(πt+1)P (ut|π1:t, γ1:t) (2.49b)

=
∑
ut,xt

1{F (πt,γt,ut)}(πt+1)1{γt(xt)}(ut)P (xt|π1:t, γ1:t) (2.49c)

=
∑
ut,xt

πt(xt)1{F (πt,γt,ut)}(πt+1)1{γt(xt)}(ut) (2.49d)

= P (πt+1|πt, γt) (2.49e)
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E(g(xt, ut)|π1:t, γ1:t) =
∑
xt,ut

g(xt, ut)P (xt, ut|π1:t, γ1:t) (2.50a)

=
∑
xt,ut

g(xt, ut)P (xt|π1:t, γ1:t)1{γt(xt)}(ut) (2.50b)

=
∑
xt,ut

g(xt, ut)πt(xt)1{γt(xt)}(ut) (2.50c)

= ĝ(πt, γt) (2.50d)

2.9 Appendix D (Proof of Lemma 2.5)

Proof. For any fixed coordinator strategy ψ,

ξ1
t+1(x1

t+1) =Pψ(x1
t+1|u1:t, γ1:t) (2.51a)

=
∑
xt

Pψ(x1
t+1, xt|u1:t, γ1:t) (2.51b)

=
∑
xt

Pψ(xt|u1:t, γ1:t).P (x1
t+1|x1

t , ut) (2.51c)

Now,

Pψ(xt|u1:t, γ1:t) =
Pψ(xt, ut|u1:t−1, γ1:t)∑
x̂t
Pψ(x̂t, ut|u1:t−1, γ1:t)

(2.52a)

=
Pψ(xt|u1:t−1, γ1:t)P

ψ(ut|u1:t−1, γ1:t, xt)∑
x̂t
Pψ(x̂t, ut|u1:t−1, γ1:t)

(2.52b)

=
Pψ(xt|u1:t−1, γ1:t−1)1{γt(xt)}(ut)∑
x̂t
Pψ(x̂t|u1:t−1, γ1:t−1)1{γt(x̂t)}(ut)

(2.52c)

=
ξ1
t (x

1
t )ξ

2
t (x

2
t )1{γt(xt)}(ut)∑

x̂t
ξ1
t (x̂

1
t )ξ

2
t (x̂

2
t )1{γt(x̂t)}(ut)

(2.52d)

where (2.52c) is true since given policy ψ, γt = ψt(u1:t−1) and (2.52d) is true since X1
t and

X2
t are conditionally independent given Ut−1 (Lemma 2.2). Thus,

ξ1
t+1(x1

t+1) =
∑
xt

P (x1
t+1|x1

t , ut)
ξ1
t (x

1
t )ξ

2
t (x

2
t )1{γt(xt)}(ut)∑

x̂t
ξ1
t (x̂

1
t )ξ

2
t (x̂

2
t )1{γt(x̂t)}(ut)

(2.53a)
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=
∑
x1t

P (x1
t+1|x1

t , ut)

ξ1
t (x

1
t )1{γ1t (x1t )}(u

1
t )
∑

x2t
1{γ2t (x2t )}(u

2
t )ξ

2
t (x

2
t )∑

x̂1t
ξ1
t (x̂

1
t )1{γ1t (x̂1t )}(u

1
t )
∑

x̂2t
1{γ2t (x̂2t )}(u

2
t )ξ

2
t (x̂

2
t )

(2.53b)

=
∑
x1t

P (x1
t+1|x1

t , ut)
ξ1
t (x

1
t )1{γ1t (x1t )}(u

1
t )∑

x̂1t
ξ1
t (x̂

1
t )1{γ1t (x̂1t )}(u

1
t )

(2.53c)

=G1(ξ1
t , γ

1
t , ut)(x

1
t+1) (2.53d)

Similarly ξ2
t+1 = G2(ξ2

t , γ
2
t , ut) where G1 and G2 are deterministic functions independent

of policy ψ.

2.10 Appendix E (Proof of Theorem 2.2)

Proof. In the following we use the notation G := (G1, G2)

Pφ(ξ1
t+1, ξ

2
t+1|ξ1

1:t, ξ
2
1:t, γ1:t) =

∑
ut

Pφ(ξ1
t+1, ξ

2
t+1, ut|ξ1

1:t, ξ
2
1:t, γ1:t) (2.54a)

=
∑
ut

1{G(ξ1t ,ξ
2
t ,γt,ut)}(ξ

1
t+1, ξ

2
t+1)Pφ(ut|ξ1

1:t, ξ
2
1:t, γ1:t) (2.54b)

=
∑
ut,xt

1{G(ξ1t ,ξ
2
t ,γt,ut)}(ξ

1
t+1, ξ

2
t+1)1{γt(xt)}(ut)

Pφ(xt|ξ1
1:t, ξ

2
1:t, γ1:t) (2.54c)

=
∑
ut,xt

ξ1
t (x

1
t )ξ

2
t (x

2
t )1{G(ξ1t ,ξ

2
t ,γt,ut)}(ξ

1
t+1, ξ

2
t+1)1{γt(xt)}(ut)

(2.54d)

=
∑
xt

ξ1
t (x

1
t )ξ

2
t (x

2
t )1{G(ξ1t ,ξ

2
t ,γt,ut)}(ξ

1
t+1, ξ

2
t+1) (2.54e)

=P (ξ1
t+1, ξ

2
t+1|ξ1

t , ξ
2
t , γt) (2.54f)
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E(g(xt, ut)|ξ1:t, γ1:t) =
∑
xt,ut

(g(xt, ut))P (xt, ut|ξ1:t, γ1:t) (2.55a)

=
∑
xt,ut

(g(xt, ut))P (xt|ξ1:t, γ1:t)1{γt(xt)}(ut) (2.55b)

=
∑
xt,ut

(g(xt, ut))ξ
1
t (x

1
t )ξ

2
t (x

2
t )1{γt(xt)}(ut) (2.55c)

=g̃(ξt, γt) (2.55d)
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CHAPTER 3

Structured perfect Bayesian equilibria in
dynamic games with asymmetric information

3.1 Introduction

There are many practical scenarios where strategic players with different sets of observa-
tions are involved in a time-evolving dynamical process such that their actions influence
each others’ payoffs. Such scenarios include repeated online advertisement auctions, wire-
less resource sharing, competing sellers and energy markets. In the case of repeated online
advertisement auctions, advertisers place bids for locations on a website to sell a product.
These bids are based on the value of that product, which is privately observed by an adver-
tiser, and past actions of everybody else, which are observed publicaly. Each advertiser’s
goal is to maximize its reward, which depends on the value of the products and on the ac-
tions taken by everybody else. A similar scenario can be considered for wireless resource
sharing where players are allocated channels that interfere with each other. Each player
privately observes its channel gain and takes actions, which may be the choice of modula-
tion and coding scheme and also the transmission power. The reward here is the rate each
player gets at time t, which is a function of everyone’s channel gain and actions. Consider
another scenario where different sellers compete to sell different but related goods which
are complementary, substitutable or in general, with externalities. The true value of the
goods is private information of a seller who, at each stage, takes an action to stock some
amount of goods for sale. Her profit is based on some market mechanism (say through Wal-
rasian prices) based on the true value of all the goods and their availability in the market,
which depends on the actions of the other sellers. Each seller wants to maximize her own
profit. Finally, a similar scenario also exists for energy markets, where different suppliers
(to their different end consumers) bid their estimated power outputs to an independent sys-
tem operator (ISO) that forms the market mechanism to determine the prices assessed to
the different suppliers. Each supplier wants to maximize its returns, which depend on its
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cost of production of energy, which is their private information, and the market-determined
prices, which depend on all the bids.

Such dynamical systems with strategic players are modeled as dynamic games. In dy-
namic games with perfect and symmetric information, subgame perfect equilibrium (SPE)
is an appropriate equilibrium concept [Osborne and Rubinstein, 1994], [Başar and Olsder,
1982], [Fudenberg and Tirole, 1991] and there is a backward recursive algorithm to find all
subgame perfect equilibria of such games. Maskin and Tirole in [Maskin and Tirole, 2001]
introduced the concept of Markov perfect equilibrium (MPE) for dynamic games with per-
fect and symmetric information, where equilibrium strategies are dependent on some pay-
off relevant state of the system rather than on the entire history. However, for games with
asymmetric information, since players have different information sets in each period, they
need to form a belief on the information sets of other players, based upon which they pre-
dict their strategies. As a result, SPE or MPE are not appropriate equilibrium concepts
for such setting. There are several notions of equilibrium for such games, such as perfect
Bayesian equilibrium (PBE), sequential equilibrium, trembling hand equilibrium [Osborne
and Rubinstein, 1994, Fudenberg and Tirole, 1991]. Each of these notions of equilibrium
consists of a strategy and a belief profile of all players. The equilibrium strategies are
optimal given the beliefs and the beliefs are derived from the equilibrium strategy pro-
file and using Bayes’ rule (whenever possible), with some equilibrium concepts requiring
further refinements. Due to this circular argument of beliefs being consistent with strate-
gies, which are in turn optimal given the beliefs, finding such equilibria is a difficult task.
Moreover, strategies are function of histories, which belong to an ever-expanding space,
and thus the space of optimization also becomes computationally intractable. There is no
known methodology to find such equilibria for general dynamic games with asymmetric
information.

In this chapter, we consider a model where players observe their types privately and
publicly observe the actions taken by other players at the end of each period. Their instan-
taneous rewards depend on everyones’ types and actions. We provide a two-step algorithm
involving a backward recursion followed by a forward recursion to construct a class of
PBE for the dynamic game in consideration, which we call structured perfect Bayesian

equilibria (SPBE). In these equilibria, players’ strategies are based on their current type
and a set of beliefs on each type, which is common to all players and lie in a time-invariant
space. These beliefs on players’ types form independent controlled Markov processes that
together summarize the common information history, and are updated individually and se-
quentially, based on corresponding agents’ actions and (partial) strategies. The algorithm
works as follows. In a backward recursive way, for each stage, the algorithm finds an equi-
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librium strategy function for all possible beliefs on types of the players, which involves
solving a fixed point equation on the space of probability simplexes. Then, the equilibrium
strategies and beliefs are obtained through forward recursion by operating on the function
obtained in the backward step. The SBPEs that are developed in this chapter are analogous
to the MPEs for dynamic games with perfect information in the sense that players choose
their actions based on beliefs that depend on common information and have Markovian dy-
namics, where actions of a players are now partial functions from their private information
to their action sets.

Related literature on this topic include [Nayyar et al., 2014, Gupta et al., 2014] and
[Ouyang et al., 2015]. Nayyar et al. in [Nayyar et al., 2014, Gupta et al., 2014] consider a
model of dynamic games with asymmetric information. There is an underlying controlled
Markov process, where players jointly observe part of the process and also make some
observations privately. It is shown in [Nayyar et al., 2014, Gupta et al., 2014] that the
considered game with asymmetric information, under certain assumptions, can be trans-
formed to another game with symmetric information. Once this is established, a backward
recursive algorithm is provided to find MPE of the transformed game, which are equiv-
alently Nash equilibria of the transformed symmetric information game. For this strong
equivalence to hold, authors in [Nayyar et al., 2014, Gupta et al., 2014] make a critical
assumption in their model: based on the common information, a player’s posterior beliefs
about the system state and about other players’ information are independent of the strate-
gies used by the players in the past. Our model is different from the model considered
in [Nayyar et al., 2014,Gupta et al., 2014]. We assume that the underlying state of the sys-
tem has independent components, each constituting the type of a player. However, we do
not make any assumption regarding update of beliefs and allow the common information
based belief state to depend on players’ strategies.

Ouyang et al. in [Ouyang et al., 2015] consider a dynamic oligopoly game with N
strategic sellers of different goods and M strategic buyers. Each seller privately observes
the valuation of their good, which is assumed to have independent Markovian dynamics,
thus resulting in a dynamic game of asymmetric information. In each period, sellers post
prices for their goods and buyers make decisions regarding buying the goods. Then a pub-
lic signal indicating buyers experience is revealed, which depends on sellers’ valuation of
the goods. Authors in [Ouyang et al., 2015] consider a policy-dependent common infor-
mation based belief state based on which they define the concept of common information
based equilibria. They show that for any given update function of this belief state, which
is consistent with strategies of the players, if all other players play actions based on this
common belief and their private information, then player i faces a Markov decision process
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(MDP) with respect to its action with state as common belief and its type. For every prior
distribution, this defines a fixed point equation on belief update functions and strategies
of all players. They provide necessary and sufficient conditions for common information
based strategy profile and belief update functions to constitute PBE of the game; however
they do no provide a systematic way to find such equilibria. In addition, because of the
special structure of the reward function, the problem admits a degenerate solution where
agents’ strategies do not depend on their private information, and therefore no signaling
takes place. This allows existence of myopic, type-independent equilibrium policies (al-
though other equilibria may also exist).

The chapter is organized as follows. In Section 3.2, we present our model. In Sec-
tion 3.3 we present structural results that serve as motivation for SPBE. In Section 3.4
we present the main result by providing a two-step backward-forward recursive algorithm
to construct a strategy profile and a sequence of beliefs and show that it is a PBE of the
dynamic game considered. As an illustration, we apply this algorithm on a discrete ver-
sion of an example from [Fudenberg and Tirole, 1991] on repeated public good game in
Section 3.5. We conclude in Section 3.6. All proofs are presented in Appendices.

3.1.1 Notation

In this chapter, for an independent probabilistic strategy profile of players, (βit)i∈N , where
probability of action ait conditioned on a1:t−1, x

i
1:t is given by βit(a

i
t|a1:t−1, x

i
1:t), we use the

short hand notation β−it (a−it |a1:t−1, x
−i
1:t) to represent

∏
j 6=i β

j
t (a

j
t |a1:t−1, x

j
1:t).

3.2 Model

We consider a discrete-time dynamical system with N strategic players in the set N 4
=

{1, 2, . . . N}, over a time horizon T 4
= {1, 2, . . . T}, and with perfect recall. There is a

dynamic state of the system Xt
4
= (X1

t , X
2
t , . . . X

N
t ), where X i

t ∈ X i is the type of player
i at time t, which is perfectly observed and is its private information. Types of the players
evolve as conditionally independent, controlled Markov processes such that

P (x1) =
N∏
i=1

Qi
1(xi1) (3.1a)

P (xt|a1:t−1, x1:t−1) = P (xt|at−1, xt−1) (3.1b)

=
N∏
i=1

Qi
t(x

i
t|at−1, x

i
t−1), (3.1c)
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where Qi
t are known kernels. Player i at time t takes action ait ∈ Ai on observing a1:t−1,

which is common information among players, and xi1:t, which it observes privately. The
sets Ai,X i are assumed to be finite. Let gi = (git)t∈T be a probabilistic strategy of player
i where git : At−1 × (X i)t → P(Ai) such that player i plays action Ait according to
Ait ∼ git(·|a1:t−1, x

i
1:t). Let g 4= (gi)i∈N be a strategy profile of all players. At the end of

interval t, player i receives an instantaneous reward Ri(xt, at). The objective of player i is
to maximize its total expected reward

J i,g
4
= Eg

{
T∑
t=1

Ri(Xt, At)

}
. (3.2)

With all players being strategic, this problem is modeled as a dynamic game D with imper-
fect and asymmetric information, and with simultaneous moves.

3.3 Motivation for structured equilibria

In this section we present structural results for the considered dynamical process that serve
as a motivation for finding SPBE of the underlying game D. Specifically, we define a
belief state based on common information history, and show that any reward profile that
can be obtained through a general strategy profile can also be obtained through strategies
that depend on this belief state and player’s current type, which is its private information.
These structural results are inspired by the analysis of decentralized team problems, which
serve as guiding principles to design our equilibrium strategies. While these structural
results provide intuition and the required notation, they are not directly used in the proofs
for finding SPBEs, later, in Section 3.4.

At any time t, player i has information (a1:t−1, x
i
1:t) where a1:t−1 is the common infor-

mation among players, and xi1:t is the private information of player i. Since (a1:t−1, x
i
1:t) in-

creases with time, any strategy of the form Ait ∼ git(·|a1:t−1, x
i
1:t) becomes unwieldy. Thus

it is desirable to have an information state in a time-invariant space that succinctly summa-
rizes (a1:t−1, x

i
1:t), and that can be sequentially updated. We first show in Lemma 3.1 that

given common information a1:t−1 and its current type xit, player i can discard its type his-
tory xi1:t−1 and play a strategy of the form sit(a

i
t|a1:t−1, x

i
t). Then in Lemma 3.2, we show

that a1:t−1 can be summarized through a belief πt, defined as follows. For any strategy
profile g, belief πt on Xt, πt ∈ P(X ), is defined as πt(xt)

4
= P g(Xt = xt|a1:t−1) ∀xt ∈ X .

We also define the marginals πit(x
i
t)
4
= P g(xit = xit|a1:t−1) ∀xit ∈ X i.

For player i, we use notation g to denote a general policy of type Ait ∼ git(·|a1:t−1, x
i
1:t),
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notation s, where sit : (A)t−1×X i → P(Ai), to denote a policy of the form sit(a
i
t|a1:t−1, x

i
t),

and notation m, where mi
t : P(×i∈NX i) × X i → P(Ai), to denote a policy of the form

mi
t(a

i
t|πt, xit). It should be noted that since πt is a function of random variables a1:t−1, an

m policy is a special type of an s policy, which in turn, is a special type of a g policy.
Using the agent-by-agent approach [Ho, 1980], we show in Lemma 3.1 that any ex-

pected reward profile of the players that can be achieved by any general strategy profile g
can also be achieved by a strategy profile s.

Lemma 3.1. Given a fixed strategy g−i of all players other than player i and for any strategy
gi of player i, there exists a strategy si of player i such that

P sig−i(xt, at) = P gig−i(xt, at) ∀t ∈ T , xt ∈ X , at ∈ A, (3.3)

which implies J i,sig−i = J i,g
ig−i .

Proof. See Appendix A.

Since any si policy is also a gi type policy, the above lemma can be iterated over all
players, which implies that for any g policy profile there exists an s policy profile that
achieves the same reward profile i.e. (J i,s)i∈N = (J i,g)i∈N .

Policies of types s still have increasing domain due to increasing common informa-
tion, a1:t−1. In order to summarize this information, we take an equivalent view of the
system dynamics through a common agent, as taken by Nayyar et al. in [Nayyar et al.,
2013]. The common agent approach is a general approach that has been used extensively
for dynamic team problems [Mahajan, 2013, Mahajan and Teneketzis, 2008, Nayyar and
Teneketzis, 2008, Vasal and Anastasopoulos, 2014]. Using this approach, the problem can
be equivalently described as follows: player i at time t observes a1:t−1 and takes action
γit , where γit : X i → P(Ai) is a partial (stochastic) function from its private informa-
tion xit to ait of the form γit(a

i
t|xit). These actions are generated through some policy

ψi = (ψit)t∈T , ψit : At−1 → {X i → P(Ai)}, that operates on the common information
a1:t−1 so that γit = ψit[a1:t−1]. Then any policy of the form Ait ∼ sit(·|a1:t−1, x

i
t) is equiva-

lent to Ait ∼ ψit[a1:t−1](·|xit) [Nayyar et al., 2013].
We call a player i’s policy through common agent to be of type ψi if its actions γit are

taken as γit = ψit[a1:t−1]. We call a player i’s policy through common agent to be of type θi

where θit : P(X ) → {X i → P(Ai)}, if its actions γit are taken as γit = θit[πt]. A policy of
type θi is also a policy of type ψi. There is a one-to-one correspondence between policies
of type si and of type ψi and between policies of type mi and of type θi.

In the following lemma, we show that the space of profiles of type s is outcome-
equivalent to the space of profiles of type m.
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Lemma 3.2. For any given strategy profile s of all players, there exists a strategy profile m
such that

Pm(xt, at) = P s(xt, at) ∀t ∈ T , xt ∈ X , at ∈ A, (3.4)

which implies (J i,m)i∈N = (J i,s)i∈N . Furthermore πt can be factorized as πt(xt) =∏N
i=1 π

i
t(x

i
t) where each πit can be updated through an update function

πit+1 = F̄ (πit, γ
i
t, at), (3.5)

where F̄ is independent of s.

Proof. See Appendix B.

The above two lemmas show that any reward profile that can be generated through
policy profile of type g can also be generated through policy profile of type m. It should
be noted that the construction of si, as in (3.31), depends only on gi, while the construction
of mi depends on the whole policy profile g and not just on gi, since construction of θi

depends on ψ in (3.43). Thus any unilateral deviation of player i in g policy profile does
not necessarily translate to unilateral deviation of player i in the corresponding m policy
profile. Therefore g being an equilibrium of the game (in some appropriate notion) does
not necessitate the corresponding m also being an equilibrium.

As shown in the previous lemmas, due to the independence of types and their evolution
as independent controlled Markov processes, for any strategy of the players, joint beliefs
on types can be factorized as product of their marginals i.e. πt(xt) =

∏N
i=1 π

i
t(x

i
t). Since

in this chapter, we only deal with such joint beliefs, to accentuate this independence struc-
ture, we define πt ∈ ×i∈NP(X i) as vector of marginal beliefs where πt := (πit)i∈N .
In the rest of the chapter, we will use πt instead of πt whenever appropriate, where,
of course, πt can be constructed from πt. Similarly, we define a vector of belief up-
dates as F (π, γ, a) := (F̄ (πi, γi, a))i∈N . We also change the notation of policies of
type m as mi

t : ×i∈NP(X i) × X i → P(Ai) and common agent’s policies of type θ as
θit : ×i∈NP(X i)→ {X i → P(Ai)}.

We end this section by noting that finding general PBEs of type g of the game D would
be a desirable goal, but due to the space of strategies growing exponentially with time, that
would be computationally intractable. However lemma 3.1 suggests that strategies of type
m form a class that is rich in the sense that they achieve every possible reward profile.
Since these strategies are functions of beliefs πt that lie in a time-invariant space and are
easily updatable, equilibria of this type are potential candidates for computation through
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backward recursion. In this chapter our goal is to devise an algorithm to find structured
equilibria of type m of the dynamic game D.

3.4 Algorithm for SPBE computation

3.4.1 Preliminaries

Any history of this game at which players take action is of the form ht = (a1:t−1, x1:t).
Let Ht be the set of such histories of the game at time t when players take action, H 4

=

∪Tt=0Ht be the set of all possible such histories. At any time t player i observes hit =

(a1:t−1, x
i
1:t) and all players together have hct = a1:t−1 as common history. Let Hi

t be the
set of observed histories of player i at time t and Hc

t be the set of common histories at
time t. An appropriate concept of equilibrium for such games is PBE [Fudenberg and
Tirole, 1991], which consists of a pair (β∗, µ∗) of strategy profile β∗ = (β∗,it )t∈T ,i∈N where
β∗,it : Hi

t → P(Ai) and a belief profile µ∗ = (iµ∗t )t∈T ,i∈N where iµ∗t : Hi
t → P(Ht) that

satisfy sequential rationality so that ∀i ∈ N , t ∈ T , hit ∈ Hi
t, β

i

Eβ∗,iβ∗,−i, µ∗[hit]

{
T∑
n=t

Ri(Xn, An)
∣∣hit
}
≥ Eβiβ∗,−i, µ∗[hit]

{
T∑
n=t

Ri(Xn, An)
∣∣hit
}
, (3.6)

and the beliefs satisfy some consistency conditions as described in [Fudenberg and Tirole,
1991, p. 331]. In general, a belief for player i at time t, iµ∗t is defined on history ht =

(a1:t−1, x1:t) given its private history hit = (a1:t−1, x
i
1:t). Here player i’s private history

hit = (a1:t−1, x
i
1:t) consists of a public part hct = a1:t−1 and a private part xi1:t. At any

time t, the relevant uncertainty player i has is about other players’ type x−it . In our setting,
due to independence of types, player i’s current type xit does not provide any information
about x−it , as will be shown later. For this reason we consider beliefs that are functions
of each agent’s history hit only through the common history hct . Hence, for each agent i,
its belief for each history hct = a1:t−1 is derived from a common belief µ∗t [a1:t−1], which
itself factorizes into a product of marginals

∏
j∈N µ

∗,j
t [a1:t−1], as will be shown later. Thus

we can sufficiently use the system of beliefs, µ∗ = (µ∗t )t∈T with µ∗t : Hc
t → P(X ), with

the understanding that agent i’s belief on x−it is µ∗,−it [a1:t−1](x−it ) =
∏

j 6=i µ
∗,j
t [a1:t−1](xjt).

Under the above structure, all consistency conditions that are required for PBEs [Fudenberg
and Tirole, 1991, p. 331] are automatically satisfied.

Structural results from Section 3.3 provide us motivation to study equilibria of the form
(mi

t(a
i
t|πt, xit))i∈N , which are equivalent to policy profiles of the form (θit[πt](a

i
t|xit))i∈N
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and have the advantage of being defined on a time-invariant space.

3.4.2 Backward recursion

In this section, we define an equilibrium generating function θ = (θit)i∈N ,t∈T , where θit :

×i∈NP(X i) → {X i → P(Ai)} and a sequence of functions (V i
t )i∈N ,t∈{1,2,...T+1}, where

V i
t : ×i∈NP(X i)×X i → R, in a backward recursive way, as follows.

1. Initialize ∀πT+1 ∈ ×i∈NP(X i), xiT+1 ∈ X i,

V i
T+1(πT+1, x

i
T+1)

4
= 0. (3.7)

2. For t = T, T − 1, . . . 1, ∀πt ∈ ×i∈NP(X i), πt =
∏

i∈N π
i
t, let θt[πt] be generated

as follows. Set γ̃t = θt[πt], where γ̃t is the solution, if it exists1, of the following
equation, ∀i ∈ N , xit ∈ X i,

γ̃it(·|xit) ∈ arg max
γit(·|xit)

Eγit(·|xit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)

∣∣xit} ,
(3.8)

where expectation in (3.8) is with respect to random variables (X−it , At, X
i
t+1) through

the measure π−it (x−it )γit(a
i
t|xit)γ̃−it (a−it |x−it )Qi

t+1(xit+1|xit, at), and F is defined in the
proof of Lemma 3.2 and in particular Claim 3.5.

Furthermore, set

V i
t (πt, x

i
t)
4
= Eγ̃it(·|xit)γ̃

−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit} . (3.9)

It should be noted that in (3.8), γ̃it is not the outcome of the maximization operation as
in a best response equation similar to that of a Bayesian Nash equilibrium. Rather (3.8)
has characteristics of a fixed point equation. This is because the maximizer γ̃it appears in
both, the left-hand-side and the right-hand-side of the equation. This distinct construction
allows the maximization operation to be done with respect to the variable γit(·|xit) for every
xit separately as opposed to be done with respect to the whole function γit(·|·), and is pivotal
in the construction.

1Similar to the existence results shown in [Ouyang et al., 2015], in the special case of uncontrolled types
and where agents’ instantaneous rewards do not depend on their own private types, the fixed point equation
always has a type-independent, myopic solution γ̃it(·), since it degenerates to a best-response-like equation.
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To highlight the significance of structure of (3.8), we contrast it with two alternate
incorrect constructions:

(a) Following the common information approach as in decentralized team problems [Nay-
yar et al., 2013], instead of (3.8), suppose γit were constructed as equilibrium on
common agents’ actions γt, i.e. for a fixed πt, πt =

∏
i∈N π

i
t,∀i ∈ N ,

γ̃it ∈ arg max
γit

Eγit γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ
i
t γ̃
−i
t , At), X

i
t+1)
}
. (3.10)

It should be noted that in (3.10), the argument of the maximization operation, γit ,
appears both, in generation of action Ait and in the update of the belief πt. Moreover,
(3.10) is not conditioned on xit, the private information of player i, similar to the case
in the corresponding team problem. This is because the common agent who does not
observe the private information of the player i, averages out that information. While
this averaging of private information works for the team problem whose objective is
to maximize the total expected reward, for the case with strategic players, it is incom-
patible with the sequential rationality condition in (3.6), which requires conditioning
on the entire history (a1:t−1, x

i
t) and not just the common information a1:t−1.

If the private information is also conditioned on, the construction still remains invalid,
as discussed next.

(b) Instead of (3.8), suppose γit were constructed as best response of player i to other
players actions γ̃−it , similar to a standard Bayesian Nash equilibrium. For a fixed
πt, πt =

∏
i∈N π

i
t, ∀i ∈ N , xit ∈ X i,

γ̃it ∈ arg max
γit

Eγit(·|xit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ
i
t γ̃
−i
t , At), X

i
t+1)
∣∣xit} .

(3.11)

Then γ̃it would be a function of γ̃−it and xit through a best response relation γ̃it ∈
BRi

xit
(γ̃−it ), where BRi

xit
is appropriately defined from (3.11). Consequently, every

component of the solution of the fixed point equation (γ̃it ∈ BRi
xit

(γ̃−it ))xit∈X i,i∈N , if
it existed, would be a function of the whole type profile xt, resulting in a mapping
γ̃it = θit[πt, xt]. Since player i only observes its own type xit, it would not be able to
implement the corresponding γ̃it , and therefore the construction would be invalid.
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3.4.3 Forward recursion

As discussed above, a pair of strategy and belief profile (β∗, µ∗) is a PBE if it satisfies (3.6).
Based on θ defined above in (3.7)–(3.9), we now construct a set of strategies β∗ and beliefs
µ∗ for the game D in a forward recursive way, as follows2. As before, we will use the
notation µ∗

t
[a1:t−1] := (µ∗,it [a1:t−1])i∈N where µ∗t [a1:t−1] can be constructed from µ∗

t
[a1:t−1]

as µ∗t [a1:t−1](xt) =
∏N

i=1 µ
∗,i
t [a1:t−1](xit) ∀a1:t−1 ∈ Hc

t where µ∗,it [a1:t−1] is a belief on xit.

1. Initialize at time t = 1,

µ∗1[φ](x1) :=
N∏
i=1

Qi
1(xi1). (3.12)

2. For t = 1, 2 . . . T,∀i ∈ N , a1:t ∈ Hc
t+1, x

i
1:t ∈ (X i)t

β∗,it (ait|a1:t−1, x
i
1:t) = β∗,it (ait|a1:t−1, x

i
t) := θit[µ

∗
t
[a1:t−1]](ait|xit) (3.13)

and

µ∗,it+1[a1:t] := F̄ (µ∗,it [a1:t−1], θit[µ
∗
t
[a1:t−1]], at) (3.14)

where F̄ is defined in the proof of Lemma 3.2 and in particular Claim 3.5.
We now state our main result.

Theorem 3.1. A strategy and belief profile (β∗, µ∗), constructed through backward/forward
recursion algorithm described in Section 3.4 is a PBE of the game, i.e. ∀i ∈ N , t ∈
T , a1:t−1 ∈ Hc

t , x
i
1:t ∈ (X i)t, βi,

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}

≥ Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
. (3.15)

Proof. See Appendix C.

An intuitive explanation for why all players are able to use a common belief is the
following. The sequence of beliefs defined above serve two purposes. First, for any player

2 As discussed in starting of Section 3.4, beliefs at time t are functions of each agent’s history hit only
through the common history hct , and are the same for all agents.
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i, it puts a belief on x−it to compute an expectation on the current and future rewards.
Secondly, it predicts the actions of the other players since their strategies are functions of
these beliefs. Since for any strategy profile, xit is conditionally independent of x−it given
the common history a1:t−1, and since other players do not observe xit, knowledge of xit does
not affect this belief and thus in our definition, all players can use the same belief µ∗ which
is independent of their private information.

Independence of types is a crucial assumption in proving the above result, which mani-
fests itself in Lemma 3.5 in Appendix D, used in the proof of Theorem 3.1. This is because,
at equilibrium, player i’s reward-to-go at time t, conditioned on its type xit, depends on its
strategy at time t, βit , only through its action ait and is independent of the corresponding
partial function βit(·|a1:t−1, ·). In other words, given xit and ait, player i’s reward-to-go is
independent of βit . We discuss this in more detail below.

At equilibrium, all players observe past actions a1:t−1 and update their belief πt, which
is the same as µ∗t [a1:t−1], through the equilibrium strategy profile β∗. Now suppose at time
t, player i decides to unilaterally deviate to β̂it at time t for some history a1:t−1, keeping
the rest of its strategy the same. Then other players still update their beliefs (πt)t∈{t+1,...T}

same as before and take their actions through equilibrium strategy β∗,−it operated on πt

and x−it , whereas player i forms a new belief π̂t+1 on xt which depends on strategy profile
β∗1:t−1β̂t, β

∗,−i
t . Thus, at time t, player i would need both the beliefs πt+1, π̂t+1 to compute

its expected future reward (as also discussed in [Nayyar et al., 2014]); πt+1 to predict other
players’ actions and π̂t+1 to form a true belief on xt based on its information. As it turns
out, due to independence of types, π̂t+1 does not provide additional information to player
i to compute its future expected reward, and thus it can be discarded. Intuitively, this is so
because the belief on type j, πjt+1 is a function of strategy and action of player j till time
t (as shown in Claim 3.5 in Appendix B); thus π−it+1 = π̂−it+1. Now since player i already
observes its type xit, its belief π̂it on xit does not provide any additional information to player
i, and thus πt (which is the same as µ∗t [a1:t−1]) sufficiently computes future expected reward
for player i. Also πt+1 is updated from πt, β∗t (·|a1:t−1, ·) and at, and is independent of β̂it
given ait. This implies player i can use the equilibrium strategy β∗t to update its future
belief, as used in (3.8). Then by construction of θ and specifically due to (3.8), player i
does not gain by unilaterally deviating at time t keeping the remainder of its strategy the
same.

Finally, we note that in the two-step backward-forward algorithm described above, once
the equilibrium generating function θ is defined through backward recursion, the SPBEs
can be generated through forward recursion for any prior distribution Q on types X . Since,
in comparison to the backward recursion, the forward recursive part of the algorithm is
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computationally insignificant, the algorithm computes SPBEs for different prior distribu-
tions at the same time.

In the following lemma we show that all SPBE can be found through the backward-
forward methodology described before. In general, an SPBE can be defined as a PBE
(β∗, µ∗) of the game that is generated through forward recursion in (3.12)–(3.14), us-
ing an equilibrium generating function φ, where φ = (φit)i∈N ,t∈T , φit : ×i∈NP(X i) →
{X i → P(Ai)}, common belief update function F i and prior distributions Qi. As a conse-
quence, β∗,it only depends on current type xit of player i, and on the common information
a1:t−1 through the set of marginals µ

t
[a1:t−1], and µ∗,i depends only on common information

history a1:t−1.

Lemma 3.3. Let (β∗, µ∗) be an SPBE. Then there exists an equilibrium generating function
φ that satisfies (3.8) in backward recursion ∀ πt = µ∗t [a1:t−1], ∀ a1:t−1, such that (β∗, µ∗) is
defined through forward recursion using φ 3 .

Proof. See Appendix E.

3.4.4 Existence

While it is known that for any finite dynamic game with asymmetric information and per-
fect recall, there always exists a PBE [Osborne and Rubinstein, 1994, Prop. 249.1], exis-
tence of the fixed point equation in (3.8) is an unresolved question. Generally, existence
of a fixed point equation is shown through Kakutani’s fixed point theorem, as is done in
proving existence of a mixed strategy Nash equilibrium for any finite game [Osborne and
Rubinstein, 1994, Nash, 1951] by showing existence of fixed point of the best-response
correspondences of the game. Among other conditions, it requires closed graph property
of the correspondences, which is implied by the continuity property of the utility functions
involved. For (3.8), continuity of the term to be optimized, with respect to actions γit , is not
guaranteed. This is due to two reasons: (a) potential discontinuity of the πt update function
F when the denominator in the Bayesian update is 0, (b) as it is observed in the numerical
example in the next section, the value functions, V i

t , need not be continuous. Thus the
standard arguments for existence of the fixed point equation can not be directly applied and
existence of solution of (3.8) remains an open question.

In the next section, we discuss an example to illustrate the methodology described
above for the construction of SPBEs.

3Note that for πt 6= µ
t
[a1:t−1] for any a1:t−1, φ can be arbitrarily defined without affecting the definition

of (β∗, µ∗)
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3.5 Illustrative example: A two stage public goods game

We consider a discrete version of Example 8.3 from [Fudenberg and Tirole, 1991, ch.8],
which is an instance of a repeated public good game. There are two players who play a
two period game. In each period t, they simultaneously decide whether to contribute to the
period t public good, which is a binary decision ait ∈ {0, 1} for player i = 1, 2. Before the
start of period 2, both players know the actions taken by them in period 1. For both periods,
each player gets reward 1 if at least one of them contributed and 0 if none does. Player i’s
cost of contributing is xi which is its private information. Both players believe that xis are
drawn independently and identically with probability distributionQwith support {xL, xH};
0 < xL < 1 < xH , such that PQ(X i = xH) = q where 0 < q < 1.

This example is similar to our model where N = 2, T = 2 and reward for player i in
period t is

Ri(x, at) =

{
a−it if ait = 0

1− xi if ait = 1.
(3.16)

We will use the backward recursive algorithm, defined in Section 3.4, to find an SPBE
of this game. For period t = 1, 2 and for i = 1, 2, the partial functions γit can equivalently
be defined through scalars piLt and piHt such that γit(1|xL) = piLt , γit(0|xL) = 1 − piLt and
γit(1|xH) = piHt , γit(0|xH) = 1− piHt , where piLt , p

iH
t ∈ [0, 1]. Henceforth, we will use piLt

and piHt interchangeably with the corresponding γit .
For t = 2 and for any fixed π2 = (π1

2, π
2
2), where πi2 = πi2(xH) ∈ [0, 1] represents a

probability measure on the event {X i = xH}, player i’s reward is

Eγ2{Ri
2(X,A2)|π2, X

i = xL} = (1− piL2 )
(
(1− π−i2 )p−iL2 + π−i2 p−iH2

)
+ piL2 (1− xL),

(3.17a)

Eγ2{Ri
2(X,A2)|π2, X

i = xH} = (1− piH2 )
(
(1− π−i2 )p−iL2 + π−i2 p−iH2

)
+ piH2 (1− xH).

(3.17b)

Let γ̃2 = θ2[π2] and equivalently (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = θ2[π2] be defined through the
following fixed point equation, which is equivalent to (3.8). For i = 1, 2

p̃iL2 ∈ arg max
piL2

(1− piL2 )
(
(1− π−i2 )p̃−iL2 + π−i2 p̃−iH2

)
+ piL2 (1− xL), (3.18a)

p̃iH2 ∈ arg max
piH2

(1− piH2 )
(
(1− π−i2 )p̃−iL2 + π−i2 p̃−iH2

)
+ piH2 (1− xH). (3.18b)

Since 1 − xH < 0, p̃iH2 = 0 achieves the maximum in (3.18b). Thus (3.18a)–(3.18b) can
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be reduced to, ∀i ∈ {1, 2}

p̃iL2 ∈ arg max
piL2

(1− piL2 )(1− π−i2 )p̃−iL2 + piL2 (1− xL). (3.19)

This implies,

p̃iL2 =


0 if xL > 1− (1− π−i2 )p̃−iL2 ,

1 if xL < 1− (1− π−i2 )p̃−iL2 ,

arbitrary if xL = 1− (1− π−i2 )p̃−iL2 .

(3.20)

The fixed point equation (3.20) has the following solutions,

1. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (0, 1, 0, 0) for π1
2 ∈ [0, 1], π2

2 ≤ xL

• V 1
2 (π2, x

L) = 1− π2
2

• V 1
2 (π2, x

H) = 1− π2
2

• V 2
2 (π2, x

L) = 1− xL

• V 2
2 (π2, x

H) = 0.

2. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (1, 0, 0, 0) for π1
2 ≤ xL, π1

2 ∈ [0, 1]

• V 1
2 (π2, x

L) = 1− xL

• V 1
2 (π2, x

H) = 0

• V 2
2 (π2, x

L) = 1− π1
2

• V 2
2 (π2, x

H) = 1− π1
2 .

3. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (1, 1, 0, 0) for π1
2 ≥ xL, π2

2 ≥ xL

• V 1
2 (π2, x

L) = 1− xL

• V 1
2 (π2, x

H) = 1− π2
2

• V 2
2 (π2, x

L) = 1− xL

• V 2
2 (π2, x

H) = 1− π1
2 .

4. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (1, p̃2L
2 , 0, 0) for π1

2 = xL, π2
2 ∈ [0, 1] where

p̃2L
2 ∈

[
0,max

{
1, 1−xL

1−π2
2

}]
• V 1

2 (π2, x
L) = 1− xL

• V 1
2 (π2, x

H) = 1− π2
2.p̃

2L
2
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• V 2
2 (π2, x

L) = 1− xL

• V 2
2 (π2, x

H) = 1− π1
2 .

5. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (p̃1L
2 , 1, 0, 0) for π1

2 ∈ [0, 1], π2
2 = xL where

p̃1L
2 ∈

[
0,max

{
1, 1−xL

1−π1
2

}]
• V 1

2 (π2, x
L) = 1− xL

• V 1
2 (π2, x

H) = 1− π2
2

• V 2
2 (π2, x

L) = 1− xL

• V 2
2 (π2, x

H) = 1− π1
2.p̃

1L
2 .

6. (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) = (1−xL
1−π1

2
, 1−xL

1−π2
2
, 0, 0) for π1

2 ≤ xL, π2
2 ≤ xL

• V 1
2 (π2, x

L) = 1− xL

• V 1
2 (π2, x

H) = 1− xL

• V 2
2 (π2, x

L) = 1− xL

• V 2
2 (π2, x

H) = 1− xL.

Figure 3.1 shows these solutions in the space of (π1
2, π

2
2).

0 1

1

0, 1−𝑥
𝐿

1−𝜋2
1 , 1,0,0

(1,0,0,0)
1, [0,1] , 0,0

[0,1] , 1,0,0

1, 0, 1−𝑥
𝐿

1−𝜋2
2 , 0,0

0,1,0,0

(1,0,0,0) (1,1,0,0)

1−𝑥𝐿

1−𝜋2
1,
1−𝑥𝐿

1−𝜋2
2, 0,0

0,1,0,0
(1,0,0,0)

(0,1,0,0)

𝜋2
2

𝜋2
1

𝑥𝐿

𝑥𝐿

Figure 3.1: Solutions of fixed point equation in (3.20)

Thus for any π2, there can exist multiple equilibria and correspondingly multiple θ2[π2]

can be defined. For any particular θ2, at t = 1, the fixed point equation that needs to be
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solved is of the form, ∀i ∈ {1, 2}

p̃iL1 ∈ arg max
piL1

(1− piL1 )
(
(1− q)p̃−iL1 + qp̃−iH1 + Eγ̃1{V i

2 (F (Q2, γ̃1, (0, A
−i
1 )), xL)}

)
+ piL1

(
1− xL + Eγ̃1{V i

2 (F (Q2, γ̃1, (1, A
−i
1 )), xL)}

)
. (3.21a)

p̃iH1 ∈ arg max
piH1

(1− piH1 )
(
(1− q)p̃−iL1 + qp̃−iH1 + Eγ̃1{V i

2 (F (Q2, γ̃1, (0, A
−i
1 )), xH)}

)
+ piH1

(
1− xH + Eγ̃1{V i

2 (F (Q2, γ̃1, (1, A
−i
1 )), xH)}

)
. (3.21b)

where F (Q2, γ̃, (A1, A2)) = F̄ (Q, γ̃1, A1)F̄ (Q, γ̃2, A2) and

F̄ (Q, γ̃i1, 0) =
q(1− p̃iH1 )

q(1− p̃iH1 ) + (1− q)(1− p̃iL1 )
, (3.22a)

F̄ (Q, γ̃i1, 1) =
qp̃iH1

qp̃iH1 + (1− q)p̃iL1
, (3.22b)

if the denominators in (3.22a)–(3.22b) are strictly positive, else F̄ (Q, γ̃i1, A
i) = Q as in the

proof of Lemma 3.2, and in particular Claim 3.5. A solution of the fixed point equation in
(3.21a)-(3.21b) defines θ1[Q2].

Using one such θ defined as follows, we find an SPBE of the game for q = 0.1, xL =

0.2, xH = 1.2. We use θ2[π2] as one possible set of solutions of (3.20), shown in Figure 3.2
and described below,

θ2[π2] = (p̃1L
2 , p̃2L

2 , p̃1H
2 , p̃2H

2 ) =


(1−xL

1−π1
2
, 1−xL

1−π2
2
, 0, 0) π1

2 ∈ [0, xL), π2
2 ∈ [0, xL)

(1, 0, 0, 0) π1
2 ∈ [0, xL], π2

2 ∈ [xL, 1]

(0, 1, 0, 0) π1
2 ∈ [xL, 1], π2

2 ∈ [0, xL]

(1, 1, 0, 0) π1
2 ∈ (xL, 1], π2

2 ∈ (xL, 1].

(3.23)

Then, through iteration on the fixed point equation (3.21a)-(3.21b) and using the afore-
mentioned θ2[π2], we numerically find (and analytically verify) that θ1[Q2] = (p̃1L

1 , p̃2L
1 ,

p̃1H
1 , p̃2H

1 ) = (0, 1, 0, 0) is a fixed point. Thus

β1
1(A1

1 = 1|X1 = xL) = 0 β2
1(A2

1 = 1|X2 = xL) = 1

β1
1(A1

1 = 1|X1 = xH) = 0 β2
1(A2

1 = 1|X2 = xH) = 0

with beliefs µ∗2[00] = (q, 1), µ∗2[01] = (q, 0), µ∗2[10] = (q, 1), µ∗2[11] = (q, 0) and
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Figure 3.2: θ2[π2] described in (3.23 )

(βi2(·|a1, ·))i∈{1,2} = θ2[µ∗2[a1]] is an SPBE of the game. In this equilibrium, player 2
at time t = 1, contributes according to her type whereas player 1 never contributes,
thus player 2 reveals her private information through her action whereas player 1 does
not. Since θ2 is symmetric, there also exists an (antisymmetric) equilibrium where at
time t = 1, players’ strategies reverse i.e. player 2 never contributes and player 1 con-
tributes according to her type. We also obtain a symmetric equilibrium where θ1[Q2] =

( 1−xL
(1−q)(1+xL)

, 1−xL
(1−q)(1+xL)

, 0, 0) as a fixed point when xL > q
2−q , resulting in beliefs µ∗2[00] =

(p, p), µ∗2[01] = (p, 0), µ∗2[10] = (0, p), µ∗2[11] = (0, 0) where p = q(1+xL)
q(1+xL)+(1−xL)

.

3.6 Conclusion

In this chapter, we study a class of dynamic games with asymmetric information where
player i observes its true private type xit and together with other players, observe past ac-
tions of everybody else. The types of the players evolve as conditionally independent,
controlled Markov processes, conditioned on players current actions. We present a two-
step backward-forward recursive algorithm to find SPBE of this game, where equilibrium
strategies are function of a Markov belief state πt, which depends on the common informa-
tion, and current private types of the players. The backward recursive part of this algorithm
defines an equilibrium generating function. Each period in backward recursion involves
solving a fixed point equation on the space of probability simplexes for every possible
belief on types. Then using this function, equilibrium strategies and beliefs are defined
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through a forward recursion.
In this chapter we consider perfectly observable, independent dynamic types of the

players. In chapter 5, we consider the case where players do not perfectly observe their
types, rather they make independent, noisy observations. In general, this methodology
opens the door for finding PBEs for many applications, analytically or numerically, which
was not feasible before. One such case would be dynamic LQG games where types evolve
linearly with Gaussian noise and players incur quadratic cost, which we discuss in next
chapter.

3.7 Appendix A (Proof of Lemma 3.1)

We prove this lemma in the following steps.

(a) In Claim 3.1, we prove that for any policy profile g and ∀t ∈ T , xi1:t for i ∈ N are
conditionally independent given the common information a1:t.

(b) In Claim 3.2, using Claim 3.1, we prove that for every fixed strategy g−i of the players
−i, ((a1:t−1, x

i
t), a

i
t)t∈T is a controlled Markov process for player i.

(c) For a given policy g, we define a policy si of player i from g as sit(a
i
t|a1:t−1, x

i
t)
4
=

P g(ait|a1:t−1, x
i
t).

(d) In Claim 3.3, we prove that the dynamics of this controlled Markov process ((xit, a1:t−1),

ait)t∈T under (sig−i) are same as under g i.e. P sig−i(xit, x
i
t+1, a1:t) =

P g(xit, x
i
t+1, a1:t).

(e) In Claim 3.4, we prove that w.r.t. random variables (xt, at), xit is sufficient for player
i’s private information history xi1:t i.e. P g(xt, at|a1:t−1, x

i
1:t, a

i
t)

= P g−i(xt, at|a1:t−1, x
i
t, a

i
t).

(f) From (c), (d) and (e) we then prove the result of the lemma that P sig−i(xt, at) =

P g(xt, at).

Claim 3.1. For any policy profile g and ∀t,

P g(x1:t|a1:t−1) =
N∏
i=1

P gi(xi1:t|a1:t−1) (3.25)
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Proof.

P g(x1:t|a1:t−1)

=
P g(x1:t, a1:t−1)∑
x̄1:t

P g(x̄1:t, a1:t−1)
(3.26a)

=

∏N
i=1

(
Qi

1(xi1)gi1(ai1|xi1)
∏t

n=2 Q
i
n(xin|xin−1, an−1)gin(ain|a1:n−1, x

i
1:n)
)∑

x̄1:t

∏N
i=1

(
Qi(x̄i1)gi1(ai1|x̄i1)

∏t
n=2 Q

i
n(x̄in|x̄in−1, an−1)gin(ain|a1:n−1, x̄i1:n)

) (3.26b)

=

∏N
i=1

(
Qi

1(xi1)gi1(ai1|xi1)
∏t

n=2 Q
i
n(xin|xin−1, an−1)gin(ain|a1:n−1, x

i
1:n)
)∏N

i=1

(∑
x̄i1:t

Qi(x̄i1)gi1(ai1|x̄i1)
∏t

n=2Q
i
n(x̄in|x̄in−1, an−1)gin(ain|a1:n−1, x̄i1:n)

) (3.26c)

=
N∏
i=1

Qi
1(xi1)gi1(ai1|xi1)

∏t
n=2Q

i
n(xin|xin−1, an−1)gin(ain|a1:n−1, x

i
1:n)∑

x̄i1:t
Qi(x̄i1)gi1(ai1|x̄i1)

∏t
n=2Q

i
n(x̄in|x̄in−1, an−1)gin(ain|a1:n−1, x̄i1:n)

(3.26d)

=
N∏
i=1

P gi(xi1:t|a1:t−1) (3.26e)

Claim 3.2. For a fixed g−i, {(a1:t−1, x
i
t), a

i
t}t is a controlled Markov process with state

(a1:t−1, x
i
t) and control action ait.

Proof.

P g(ã1:t, x
i
t+1|a1:t−1, x

i
1:t, a

i
1:t)

=
∑
x−i1:t

P g(ã1:t, x
i
t+1, x

−i
1:t|a1:t−1, x

i
1:t, a

i
t) (3.27a)

=
∑
x−i1:t

P g(ã−it , x
i
t+1, x

−i
1:t|a1:t−1, x

i
1:t, a

i
t)I(a1:t−1,ait)

(ã1:t−1, ã
i
t) (3.27b)

=
∑
x−i1:t

P g−i(x−i1:t|a1:t−1)

(∏
j 6=i

gjt (ã
j
t |a1:t−1, x

j
1:t)

)
Qi
t(x

i
t+1|xit, ait, ã−it )I(a1:t−1,ait)

(ã1:t−1, ã
i
t)

(3.27c)

= P g−i(ã1:t, x
i
t+1|a1:t−1, x

i
t, a

i
t), (3.27d)

where (3.27c) follows from Claim 3.1 since x−i1:t is conditionally independent of xi1:t given
a1:t−1 and the corresponding probability is only a function of g−i.

For any given policy profile g, we construct a policy si in the following way,
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sit(a
i
t|a1:t−1, x

i
t)
4
= P g(ait|a1:t−1, x

i
t) (3.28)

=

∑
xi1:t−1

P g(ait, x
i
1:t|a1:t−1)∑

ãit

∑
x̃i1:t−1

P g(ãit, x̃
i
1:t−1x

i
t|a1:t−1)

(3.29)

=

∑
xi1:t−1

P gi(xi1:t|a1:t−1)git(a
i
t|a1:t−1, x

i
1:t)∑

ãit

∑
x̃i1:t−1

P gi(x̃i1:t−1x
i
t|a1:t−1)git(ã

i
t|a1:t−1, x̃i1:t−1x

i
t)

(3.30)

= P gi(ait|a1:t−1, x
i
t), (3.31)

where dependence of (3.30) on only gi is due to Claim 3.1.

Claim 3.3. The dynamics of the Markov process {(xit, a1:t−1), ait}t under (sig−i) are the
same as under g i.e.

P sig−i(xit, x
i
t+1, a1:t) = P g(xit, x

i
t+1, a1:t) ∀t (3.32)

Proof. We prove this by induction. Clearly,

P g(xi1) = P sig−i(xi1) = Qi
1(xi1) (3.33)

Now suppose (3.32) is true for t− 1 which also implies that the marginals P g(xit, a1:t−1) =

P sig−i(xit, a1:t−1). Then

P g(xit, a1:t−1, x
i
t+1, at) = P g(xit, a1:t−1)P g(ait|a1:t−1, x

i
t)P

g(xit+1, a1:t|xit, a1:t−1, a
i
t)

(3.34a)

= P sig−i(xit, a1:t−1)sit(a
i
t|a1:t−1, x

i
t)P

g−i(xit+1, a1:t|xit, a1:t−1, a
i
t)

(3.34b)

= P sig−i(xit, a1:t−1, x
i
t+1, at) (3.34c)

where (3.34b) is true from induction hypothesis, definition of si in (3.31) and since
{(a1:t−1, x

i
t), a

i
t}t is a controlled Markov process as proved in Claim 3.2 and its update

kernel does not depend on policy gi.This completes the induction step.

Claim 3.4. For any policy g,

P g(x̃t, ãt|a1:t−1, x
i
1:t, a

i
t) = P g−i(x̃t, ãt|a1:t−1, x

i
t, a

i
t) (3.35)
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Proof.

P g(x̃t, ãt|a1:t−1, x
i
1:t, a

i
t) = Ixit,ait(x̃

i
t, ã

i
t)P

g(x̃−it , ã
−i
t |a1:t−1, x

i
1:t) (3.36)

Now

P g(x̃−it , ã
−i
t |a1:t−1, x

i
1:t) =

∑
x̃−i1:t−1

P g(x̃−i1:t, ã
−i
t |a1:t−1, x

i
1:t) (3.37a)

=
∑
x̃−i1:t−1

P g(x̃−i1:t|a1:t−1, x
i
1:t)

(∏
j 6=i

gjt (ã
j
t |a1:t−1, x̃

j
1:t)

)
(3.37b)

=
∑
x̃−i1:t

P g−i(x̃−i1:t|a1:t−1)

(∏
j 6=i

gjt (ã
j
t |a1:t−1, x̃

j
1:t)

)
(3.37c)

= P g−i(x̃−it , ã
−i
t |a1:t−1) (3.37d)

where (3.37c) follows from Claim 3.1.
Hence

P g(x̃t, ãt|a1:t−1, x
i
1:t, a

i
t) = Ixit,ait(x̃

i
t, ã

i
t)P

g−i(x̃−it , ã
−i
t |a1:t−1) (3.38a)

= P g−i(x̃t, ãt|a1:t−1, x
i
t, a

i
t) (3.38b)

Finally,

P g(x̃t, ãt) =
∑

a1:t−1xi1:ta
i
t

P g(x̃t, ãt|a1:t−1, x
i
1:t, a

i
t)P

g(a1:t−1, x
i
1:t, a

i
t) (3.39a)

=
∑

a1:t−1xi1:t,a
i
t

P g−i(x̃t, ãt|a1:t−1, x
i
t, a

i
t)P

g(a1:t−1, x
i
1:t, a

i
t) (3.39b)

=
∑

a1:t−1xit,a
i
t

P g−i(x̃t, ãt|a1:t−1, x
i
t, a

i
t)P

g(a1:t−1, x
i
t, a

i
t) (3.39c)

=
∑

a1:t−1xit,a
i
t

P g−i(x̃t, ãt|a1:t−1, x
i
t, a

i
t)P

sig−i(a1:t−1, x
i
t, a

i
t) (3.39d)

= P sig−i(x̃t, ãt). (3.39e)

where (3.39b) follows from (3.35) in Claim 3.4 and (3.39d) from (3.32) in Claim 3.3.
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3.8 Appendix B (Proof of Lemma 3.2)

For this proof we will assume the common agents strategies to be probabilistic as opposed
to being deterministic, as was the case in Section 3.3. This means actions of the common
agent, γit’s are generated probabilistically from ψi as Γit · ψit(·|a1:t−1), as opposed to being
deterministically generated as γit = ψit[a1:t−1], as before. These two are equivalent ways
of generating actions ait from a1:t−1 and xit. We avoid using the probabilistic strategies of
common agent throughout the main text for ease of exposition, and because it conceptually
does not affect the results.

Proof. We prove this lemma in the following steps. We view this problem from the per-
spective of a common agent. Let ψ be the coordinator’s policy corresponding to policy
profile g. Let πit(x

i
t) = Pψi(xit|a1:t−1).

(a) In Claim 3.5, we show that πt can be factorized as πt(xt) =
∏N

i=1 π
i
t(x

i
t) where

each πit can be updated through an update function πit+1 = F̄ (πit, γ
i
t, at) and F̄ is

independent of common agent’s policy ψ.

(b) In Claim 3.6, we prove that (Πt,Γt)t∈T is a controlled Markov process.

(c) We construct a policy profile θ from g such that θt(dγt|πt)
4
= Pψ(dγt|πt).

(d) In Claim 3.7, we prove that dynamics of this Markov process (Πt,Γt)t∈T under θ is
same as under ψ i.e. P θ(dπt, dγt, dπt+1) = Pψ(dπt, dγt, dπt+1).

(e) In Claim 3.8, we prove that with respect to random variables (Xt, At), πt can sum-
marize common information a1:t−1 i.e. Pψ(xt, at|a1:t−1, γt) = P (xt, at|πt, γt).

(f) From (c), (d) and (e) we that prove the result of the lemma that Pψ(xt, at) = P θ(xt, at)

which is equivalent to P g(xt, at) = Pm(xt, at), wherem is the policy profile of play-
ers corresponding to θ .

Claim 3.5. πt can be factorized as πt(xt) =
∏N

i=1 π
i
t(x

i
t) where each πit can be updated

through an update function πit+1 = F̄ (πit, γ
i
t, at) and F̄ is independent of common agent’s

policy ψ. We also say πt+1 = F (πt, γt, at).

Proof. We prove this by induction. Since π1(x1) =
∏N

i=1Q
i
t(x

i
1), the base case is verified.
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Now suppose πt =
∏N

i=1 π
i
t. Then,

πt+1(xt+1) = Pψ(xt+1|a1:t, γ1:t+1) (3.40a)

= Pψ(xt+1|a1:t, γ1:t) (3.40b)

=

∑
xt
Pψ(xt, at, xt+1|a1:t−1, γ1:t)∑

x̃t+1x̃t
Pψ(x̃t, x̃t+1, at|a1:t−1, γ1:t)

(3.40c)

=

∑
xt
πt(xt)

∏N
i=1 γ

i
t(a

i
t|xit)Qi

t(x
i
t+1|xit, at)∑

x̃tx̃t+1
πt(x̃t)

∏N
i=1 γ

i
t(a

i
t|x̃it)Qi

t(x̃
i
t+1|x̃it, at)

(3.40d)

=
N∏
i=1

∑
xit
πit(x

i
t)γ

i
t(a

i
t|xit)Qi

t(x
i
t+1|xit, at)∑

x̃it
πit(x̃

i
t)γ

i
t(a

i
t|x̃it)

, (3.40e)

=
N∏
i=1

πit+1(xit+1) (3.40f)

where (3.40e) follows from induction hypothesis. It is assumed in (3.40c)-(3.40e) that the
denominator is not 0. If denominator corresponding to any γit is zero, we define

πit+1(xit+1) =
∑
xit

πit(x
i
t)Q

i
t(x

i
t+1|xit, at), (3.41)

where πt+1 still satisfies (3.40f). Thus πit+1 = F̄ (πit, γ
i
t, at) and πt+1 = F (πt, γt, a1) where

F̄ and F are appropriately defined from above.

Claim 3.6. (Πt,Γt)t∈T is a controlled Markov process with state Πt and control action Γt

Proof.

Pψ(dπt+1|π1:t, γ1:t) =
∑
at,xt

Pψ(dπt+1, at, xt|π1:t, γ1:t) (3.42a)

=
∑
at,xt

Pψ(xt|π1:t, γ1:t)

{
N∏
i=1

γit(a
i
t|xit)

}
IF (πt,γt,at)(πt+1) (3.42b)

=
∑
at,xt

πt(xt)

{
N∏
i=1

γit(a
i
t|xit)

}
IF (πt,γt,at)(πt+1) (3.42c)

= P (dπt+1|πt, γt). (3.42d)

For any given policy profile ψ, we construct policy profile θ in the following way.
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θt(dγt|πt)
4
= Pψ(dγt|πt). (3.43)

Claim 3.7.

Pψ(dπt, dγt, dπt+1) = P θ(dπt, dγt, dπt+1) ∀t ∈ T . (3.44)

Proof. We prove this by induction. For t = 1,

Pψ(dπ1) = P θ(dπ1) = IQ(π1). (3.45)

Now suppose Pψ(dπt) = P θ(dπt) is true for t, then

Pψ(dπt, dγt, dπt+1) = Pψ(dπt)P
ψ(dγt|πt)Pψ(dπt+1|πtγt) (3.46a)

= P θ(dπt)θt(dγt|πt)P (dπt+1|πt, γt) (3.46b)

= P θ(dπt, dγt, dπt+1). (3.46c)

where (3.46b) is true from induction hypothesis, definition of θ in (3.43) and since (Πt,Γt)t∈T

is a controlled Markov process as proved in Claim 3.6 and thus its update kernel does not
depend on policy ψ. This completes the induction step.

Claim 3.8. For any policy ψ,

Pψ(xt, at|a1:t−1, γt) = P (xt, at|πt, γt). (3.47)

Proof.

Pψ(xt, at|a1:t−1, γt) = Pψ(xt|a1:t−1, γt)
∏
i∈N

γit(a
i
t|xit) (3.48a)

= πt(xt)
∏
i∈N

γit(a
i
t|xit) (3.48b)

= P (xt, at|πt, γt). (3.48c)
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Finally,

Pψ(xt, at) =
∑

a1:t−1,γt

Pψ(xt, at|a1:t−1, γt)P
ψ(a1:t−1, γt) (3.49a)

=
∑

a1:t−1γt

P (xt, at|πt, γt)Pψ(a1:t−1, γt) (3.49b)

=
∑
πt,γt

P (xt, at|πt, γt)Pψ(πt, γt) (3.49c)

=
∑
πt,γt

P (xt, at|πt, γt)P θ(πt, γt) (3.49d)

= P θ(xt, at). (3.49e)

where (3.49b) follows from (3.47), (3.49c) is change of variable and (3.49d) from (3.44).

3.9 Appendix C (Proof of Theorem 3.1)

Proof. We prove (3.15) using induction and from results in Lemma 3.4, 3.5 and 3.6 proved
in Appendix D. For base case at t = T , ∀i ∈ N , (a1:T−1, x

i
1:T ) ∈ Hi

T , β
i

Eβ
∗,i
T β∗,−i

T , µ∗T [a1:T−1]
{
Ri(XT , AT )

∣∣a1:T−1, x
i
1:T

}
= V i

T (µ∗
T

[a1:T−1], xiT ) (3.50a)

≥ EβiT β
∗,−i
T , µ∗T [a1:T−1]

{
Ri(XT , AT )

∣∣a1:T−1, x
i
1:T

}
.

(3.50b)

where (3.50a) follows from Lemma 3.6 and (3.50b) follows from Lemma 3.4 in Appendix
D.

Let the induction hypothesis be that for t+1, ∀i ∈ N , a1:t ∈ Hc
t+1, x

i
1:t+1 ∈ (X i)t+1, βi,

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, x

i
1:t+1

}
(3.51a)

≥ Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, x

i
1:t+1

}
. (3.51b)
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Then ∀i ∈ N , (a1:t−1, x
i
1:t) ∈ Hi

t, β
i, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
= V i

t (µ∗
t
[a1:t−1], xit) (3.52a)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At], X
i
t+1)
∣∣a1:t−1, x

i
1:t

}
(3.52b)

= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t+1

}∣∣a1:t−1, x
i
1:t

}
(3.52c)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβit+1:T β
∗,−i
t+1:Tµ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t, X

i
t+1

}∣∣a1:t−1, x
i
1:t

}
(3.52d)

= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)

+Eβit:T β
∗,−i
t:T µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t, X

i
t+1

}∣∣a1:t−1, x
i
1:t

}
(3.52e)

= Eβit:T β
∗,−i
t:T µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
, (3.52f)

where (3.52a) follows from Lemma 3.6, (3.52b) follows from Lemma 3.4, (3.52c) follows
from Lemma 3.6, (3.52d) follows from induction hypothesis in (3.51b) and (3.52e) follows
from Lemma 3.5. Moreover, construction of θ in (3.8), and consequently definition of β∗

in (3.13) are pivotal for (3.52e) to follow from (3.52d).
We note that µ∗ satisfies the consistency condition of [Fudenberg and Tirole, 1991, p.

331] from the fact that (a) for all t and for every common history a1:t−1, all players use
the same belief µ∗t [a1:t−1] on xt and (b) the belief µ∗t can be factorized as µ∗t [a1:t−1] =∏N

i=1 µ
∗,i
t [a1:t−1] ∀a1:t−1 ∈ Hc

t where µ∗,it is updated through Bayes’ rule (F̄ ) as in Claim 3.5
in Appendix B.
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3.10 Appendix D

Lemma 3.4. ∀t ∈ T , i ∈ N , (a1:t−1, x
i
1:t) ∈ Hi

t, β
i
t

V i
t (µ∗

t
[a1:t−1], xit) ≥

Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[a1:t−1], β∗t (·|a1:t−1, ·), At), X i

t+1)
∣∣a1:t−1, x

i
1:t

}
.

(3.53)

Proof. We prove this Lemma by contradiction.
Suppose the claim is not true for t. This implies ∃i, β̂it , â1:t−1, x̂

i
1:t such that

Eβ̂itβ
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣â1:t−1, x̂

i
1:t

}
> V i

t (µ∗
t
[â1:t−1], x̂it). (3.54)

We will show that this leads to a contradiction.

Construct γ̂it(a
i
t|xit) =

{
β̂it(a

i
t|â1:t−1, x̂

i
1:t) xit = x̂it

arbitrary otherwise.
Then for â1:t−1, x̂

i
1:t, we have

V i
t (µ∗

t
[â1:t−1], x̂it) (3.55a)

= max
γit(·|x̂it)

Eγit(·|x̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(x̂itx

−i
t , at)

+V i
t+1(F (µ∗

t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣x̂it} , (3.55b)

≥ Eγ̂it(·|x̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣x̂it}

=
∑

x−it ,at,xt+1

{
Ri(x̂itx

−i
t , at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), xit+1)

}
×

µ∗,−it [â1:t−1](x−it )γ̂it(a
i
t|x̂it)β

∗,−i
t (a−it |â1:t−1, x

−i
t )Qi

t(x
i
t+1|x̂it, at) (3.55c)

=
∑

x−it ,at,xt+1

{
Ri(x̂itx

−i
t , at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), xit+1)

}
×

µ∗,−it [â1:t−1](x−it )β̂it(a
i
t|â1:t−1, x̂

i
1:t)β

∗,−i
t (a−it |â1:t−1, x

−i
t )Qi

t(x
i
t+1|x̂it, at)

(3.55d)
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= Eβ̂itβ
∗,−i
t ,µ∗t [â1:t−1]

{
Ri(x̂itx

−i
t , at)

+V i
t+1(F (µ∗

t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣â1:t−1, x̂

i
1:t

}
(3.55e)

> V i
t (µ∗

t
[â1:t−1], x̂it) (3.55f)

where (3.55b) follows from definition of V i
t in (3.9), (3.55d) follows from definition of γ̂it

and (3.55f) follows from (3.54). However this leads to a contradiction.

Lemma 3.5. ∀i ∈ N , t ∈ T , (a1:t, x
i
1:t+1) ∈ Hi

t+1 and βit

Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, x

i
1:t+1

}

= Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, x

i
1:t+1

}
. (3.56)

Thus the above quantities do not depend on βit .

Proof. Essentially this claim stands on the fact that µ∗,−it+1 [a1:t] can be updated from
µ∗,−it [a1:t−1], β∗,−it and at, as µ∗,−it+1 [a1:t] =

∏
j 6=i F̄ (µ∗,−it [a1:t−1], β∗,−it , at) as in Claim 3.5.

Since the above expectations involve random variables X−it+1, At+1:T , Xt+2:T , we consider
the probability
P βit:T β

∗,−i
t:T , µ∗t [a1:t−1](x−it+1, at+1:T , xt+2:T

∣∣a1:t, x
i
1:t+1).

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](x−it+1, at+1:T , xt+2:T

∣∣a1:t, x
i
1:t+1)

=

∑
x−it

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](x−it , at, xt+1, at+1:T , xt+2:T

∣∣a1:t−1, x
i
1:t)∑

x̃−it
P βit:T β

∗,−i
t:T , µ∗t [a1:t−1](x̃−it , at, x

i
t+1

∣∣a1:t−1, xi1:t)
(3.57a)

We consider the numerator and the denominator separately. The numerator in (3.57a) is
given by

Nr =
∑
x−it

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](x−it

∣∣a1:t−1, x
i
1:t)β

i
t(a

i
t|a1:t−1, x

i
1:t)β

∗,−i
t (a−it |a1:t−1, x

−i
t )

Q(xt+1|xt, at)P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at+1:T , xt+2:T |a1:t, x

i
1:t−1, xt:t+1) (3.57b)

=
∑
x−it

µ∗,−it [a1:t−1](x−it )βit(a
i
t|a1:t−1, x

i
1:t)β

∗,−i
t (a−it |a1:t−1, x

−i
t )Qi(xit+1|xit, at)

Q−i(x−it+1|x−it , at)P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, x

i
1:t, xt+1) (3.57c)

where (3.57c) follows from the conditional independence of types given common informa-
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tion, as shown in Claim 3.1, and the fact that probability on (at+1:T , x2+t:T ) given
a1:t, x

i
1:t−1, xt:t+1, µ

∗
t [a1:t−1] depends on a1:t, x

i
1:t, xt+1, µ

∗
t+1[a1:t] through βit+1:Tβ

∗,−i
t+1:T . Sim-

ilarly, the denominator in (3.57a) is given by

Dr =∑
x̃−it

P βit:T β
∗,−i
t:T , µ∗t (x̃−it |a1:t−1, x

i
1:t)β

i
t(a

i
t|a1:t−1, x

i
1:t)β

∗,−i
t (a−it |a1:t−1, x̃

−i
t )Qi(xit+1|xit, at)

(3.57d)

=
∑
x̃−it

µ∗,−it [a1:t−1](x̃−it )βit(a
i
t|a1:t−1, x

i
1:t)β

∗,−i
t (a−it |a1:t−1, x̃

−i
t )Qi(xit+1|xit, at) (3.57e)

By canceling the terms βit(·) and Qi(·) in the numerator and the denominator, (3.57a)
is given by

∑
x−it

µ∗,−it [a1:t−1](x−it )β∗,−it (a−it |a1:t−1, x
−i
t )Q−it+1(x−it+1|x−it , at)∑

x̃−it
µ∗,−it [a1:t−1](x̃−it )β∗,−it (a−it |a1:t−1, x̃

−i
t )

×

P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, x

i
1:t, xt+1) (3.57f)

=µ∗,−it+1 [a1:t](x
−i
t+1)P βit+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, x

i
1:t, xt+1) (3.57g)

=P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](x−it+1, at+1:T , xt+2:T |a1:t, x

i
1:t+1), (3.57h)

where (3.57g) follows from using the definition of µ∗,−it+1 [a1:t](x
−i
t ) in the forward recursive

step in (3.14) and the definition of the belief update in (3.40).

Lemma 3.6. ∀i ∈ N , t ∈ T , (a1:t−1, x
i
1:t) ∈ Hi

t,

V i
t (µ∗

t
[a1:t−1], xit) = Eβ

∗,i
t:T β

∗,−i
t:T ,µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
. (3.58)

Proof. We prove the Lemma by induction. For t = T ,

Eβ
∗,i
T β∗,−i

T , µ∗T [a1:T−1]
{
Ri(XT , AT )

∣∣a1:T−1, x
i
1:T

}
=
∑
x−iT aT

Ri(xT , aT )µ∗T [a1:T−1](x−iT )β∗,iT (aiT |a1:T−1, x
i
T )β∗,−iT (a−iT |a1:T−1, x

−i
T ) (3.59a)

= V i
T (µ∗

T
[a1:T−1], xiT ), (3.59b)
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where (3.59b) follows from the definition of V i
t in (3.9) and the definition of β∗T in the

forward recursion in (3.13).
Suppose the claim is true for t+ 1, i.e., ∀i ∈ N , t ∈ T , (a1:t, x

i
1:t+1) ∈ Hi

t+1

V i
t+1(µ∗

t+1
[a1:t], x

i
t+1) = Eβ

∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, x

i
1:t+1

}
. (3.60)

Then ∀i ∈ N , t ∈ T , (a1:t−1, x
i
1:t) ∈ Hi

t, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
= Eβ

∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t, X

i
t+1

}∣∣a1:t−1, x
i
1:t

}
(3.61a)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t, X

i
t+1

}∣∣a1:t−1, x
i
1:t

}
(3.61b)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At], X
i
t+1)
∣∣a1:t−1, x

i
1:t

}
(3.61c)

= Eβ
∗,i
t β∗,−i

t , µ∗t [a1:t−1]
{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At], X
i
t+1)
∣∣a1:t−1, x

i
1:t

}
(3.61d)

= V i
t (µ∗

t
[a1:t−1], xit), (3.61e)

where (3.61b) follows from Lemma 3.5 in Appendix D, (3.61c) follows from the induction
hypothesis in (3.60), (3.61d) follows because the random variables involved in expectation,
X−it , At, X

i
t+1 do not depend on β∗,it+1:Tβ

∗,−i
t+1:T and (3.61e) follows from the definition of β∗t

in the forward recursion in (3.13), the definition of µ∗t+1 in (3.14) and the definition of V i
t

in (3.9).

3.11 Appendix E (Proof of Lemma 3.3)

Proof. We prove this by contradiction. Suppose for any equilibrium generating function φ
that generates (β∗, µ∗) through forward recursion, there exists t ∈ T , i ∈ N , a1:t−1 ∈
Hc
t , such that for πt = µ

t
[a1:t−1], (3.8) is not satisfied for φ i.e. for γ̃it = φi[πt] =
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β∗,it (·|µ
t
[a1:t−1], xit),

γ̃it 6∈ arg max
γit

Eγit(·|xi)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit} . (3.62)

Let t be the first instance in the backward recursion when this happens. This implies ∃ γ̂it
such that

Eγ̂it(·|xi)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit}

> Eγ̃it(·|xi)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit} (3.63)

This implies for β̂t(·|µt[a1:t−1], ·) = γ̂it ,

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
= Eβ

∗,i
t β∗,−i

t , µ∗t [a1:t−1]
{
Ri(Xt, At)+

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t+1

}∣∣a1:t−1, x
i
1:t

}
(3.64)

= Eβ
∗,i
t β∗,−i

t , µ∗t [a1:t−1]
{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t+1

}∣∣a1:t−1, x
i
1:t

}
(3.65)

= Eγ̃it(·|xit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit} (3.66)

< Eβ̂it(·|µt[a1:t−1],xit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F (πt, γ̃t, At), X
i
t+1)
∣∣xit} (3.67)

= Eβ̂itβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)

+Eβ
∗,i
t+1:T β

∗,−i
t+1:Tµ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, x

i
1:t, X

i
t+1

}∣∣a1:t−1, x
i
1:t

}
(3.68)

= Eβ̂it ,β
∗,i
t+1:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, x

i
1:t

}
(3.69)

where (3.65) follows from Lemma 3.5, (3.66) follows from the definitions of γ̃it and
µt+1[a1:t−1, At] and Lemma 3.6, (3.67) follows from (3.63) and the definition of β̂it , (3.68)
follows from Lemma 3.4, (3.69) follows from Lemma 3.5. However, this leads to a contra-
diction since (β∗, µ∗) is a PBE of the game.
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CHAPTER 4

Signaling equilibria for dynamic LQG games
with asymmetric information

4.1 Introduction

Linear quadratic Gaussian (LQG) team problems have been studied extensively under the
framework of classical stochastic control with single controller and perfect recall [Kumar
and Varaiya, 1986, Ch.7]. In such a system, the state evolves linearly and the controller
makes a noisy observation of the state which is also linear in the state and noise. The
controller incurs a quadratic instantaneous cost. With all basic random variables being
independent and Gaussian, the problem is modeled as a partially observed Markov decision
process (POMDP). The belief state process under any control law happens to be Gaussian
and thus can be sufficiently described by the corresponding mean and covariance processes,
which can be updated by the Kalman filter equations. Moreover, the covariance can be
computed offline and thus the mean (state estimate) is a sufficient statistic for control.
Finally, due to the quadratic nature of the costs, the optimal control strategy is linear in the
state. Thus, unlike most POMDP problems, the LQG stochastic control problem can be
solved analytically and admits an easy-to-implement optimal strategy.

LQG team problems have also been studied under non-classical information structure
such as in multi-agent decentralized team problems where 2 controllers with different in-
formation sets minimize the same objective. Such systems with asymmetric information
structure are of special interest today because of the emergence of large scale networks
such as social or power networks, where there are multiple decision makers with local or
partial information about the system. It is well known that for decentralized LQG team
problems, linear control policies are not optimal in general [Witsenhausen, 1968]. How-
ever there exist special information structures, such as partially nested [Ho and Chu, 1972]
and stochastically nested [Yüksel, 2009], where linear control is shown to be optimal. Fur-
thermore, due to their strong appeal for ease of implementation, linear strategies have been
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studied on their own for decentralized teams even at the possibility of being suboptimal
(see [Mahajan and Nayyar, 2015] and references therein).

[Başar, 1978] studied a discrete-time dynamic LQG game with one step delayed shar-
ing of observations. [Nayyar et al., 2014] studied a class of dynamic games with asym-
metric information under the assumption that player’s posterior beliefs about the system
state conditioned on their common information are independent of the strategies used by
the players in the past. Due to this independence of beliefs and past strategies, the authors
were able to provide a backward recursive algorithm similar to dynamic programming to
find Markov perfect equilibria [Maskin and Tirole, 2001] of a transformed game which are
equivalently a class of Nash equilibria of the original game. The same authors specialized
their results in [Gupta et al., 2014] to find non-signaling equilibria of dynamic LQG games
with asymmetric information.

We considered a general class of dynamic games with asymmetric information and
independent private types in chapter 3 and provided a sequential decomposition method-
ology to find a class of PBE of the game considered. In our model, beliefs depend on the
players’ strategies, so it allows the possibility of signaling equilibria. In this chapter, we
build on this methodology to find signaling equilibria for two-player dynamic LQG games
with asymmetric information. We show that players’ strategies that are linear in their pri-
vate types in conjunction with consistent Gaussian beliefs form a PBE of the game. Our
contributions are:

(a) Under strategies that are linear in players’ private types, we show that the belief up-
dates are Gaussian and the corresponding mean and covariance are updated through
Kalman filtering equations which depend on the players’ strategies, unlike the case
in classical stochastic control and the model considered in [Gupta et al., 2014]. Thus
there is signaling [Ho, 1980, Kreps and Sobel, 1994].

(b) We sequentially decompose the problem by specializing the forward-backward algo-
rithm presented in chapter 3 for the dynamic LQG model. The backward algorithm
requires, at each step, solving a fixed point equation in ‘partial’ strategies of the
players for all possible beliefs. We show that in this setting, solving this fixed point
equation reduces to solving a matrix algebraic equation for each realization of the
state estimate covariance matrices.

(c) The cost-to-go value functions are shown to be quadratic in the private type and state
estimates, which together with quadratic instantaneous costs and mean updates being
linear in the control action, implies that at every time t player i faces an optimization
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problem which is quadratic in her control. Thus linear control strategies are shown
to satisfy the optimality conditions in chapter 3.

(d) For the special case of scalar actions, we provide sufficient algorithmic conditions
for existence of a solution of the algebraic matrix equation. Finally, we present nu-
merical results on the steady state solution for specific parameters of the problem.

The chapter is structured as follows. In Section 4.2, we define the model. In Section 4.3,
we summarize the general methodology in chapter 3. In Section 4.4, we present our main
results where we construct equilibrium strategies and belief through a forward-backward
recursion. In Section 4.5 we discuss existence issues and present numerical steady state
solutions. We conclude in Section 4.6.

4.1.1 Notation

We use δ(·) for the Dirac delta function. We use the notation X ∼ F to denote that the
random variable X has distribution F . For any Euclidean set S, P(S) represents the space
of probability measures on S with respect to the Borel sigma algebra. We denote by P g (or
Eg) the probability measure generated by (or expectation with respect to) strategy profile g.
For any random vectorX and event A, we use the notation sm(·|·) to denote the conditional
second moment, sm(X|A) := E[XX†|A]. For any matrices A and B, we will also use the
notation quad(·; ·) to denote the quadratic function, quad(A; B) := B†AB. We denote
trace of a matrix A by tr(A). N(x̂,Σ) represents the vector Gaussian distribution with
mean vector x̂ and covariance matrix Σ. All inequalities in matrices are to be interpreted in
the sense of positive definitedness. All matrix inverses are interpreted as pseudo-inverses.

4.2 Model

We consider a discrete-time dynamical system with 2 strategic players over a finite time
horizon T := {1, 2, . . . T} and with perfect recall. There is a dynamic state of the system
xt := (x1

t , x
2
t ), where xit ∈ X i := Rni is private type of player i at time t which is perfectly

observed by her. Player i at time t takes action uit ∈ U i := Rmi after observing u1:t−1,
which is common information between the players, and xi1:t, which it observes privately.
Thus at any time t ∈ T , player i’s information is u1:t−1, x

i
1:t. Players’ types evolve linearly

as

xit+1 = Ai
tx
i
t + Bi

tut + wit, (4.1)
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where Ai
t,B

i
t are known matrices. (X1

1 , X
2
1 , (W

i
t )t∈T ) are basic random variables of the

system which are assumed to be independent and Gaussian such that X i
1 ∼ N(0,Σi

1) and
W i
t ∼ N(0,Qi). As a consequence, types evolve as conditionally independent, controlled

Markov processes,

P (xt+1|u1:t, x1:t) = P (xt+1|ut, xt) =
2∏
i=1

Qi(xit+1|ut, xit). (4.2)

where Qi(xit+1|ut, xit) := P (wit = xit+1 −Ai
tx
i
t − Bi

tut). At the end of interval t, player i
incurs an instantaneous cost Ri(xt, ut),

Ri(xt, ut) = u†tT
iut + x†tP

ixt + 2u†tS
ixt

=
[
u†t x†t

] [Ti Si

Si† Pi

][
ut

xt

]
, (4.3)

where Ti,Pi,Si are real matrices of appropriate dimensions and Ti,Pi are symmetric. We

define the instantaneous cost matrix Ri as Ri :=

[
Ti Si

Si† Pi

]
. Let gi = (git)t∈T be a prob-

abilistic strategy of player i, where git : (U i)t−1 × (X i)t → P(U i) such that player i plays
action uit according to distribution git(·|u1:t−1, x

i
1:t). Let g := (gi)i=1,2 be a strategy pro-

file of both players. The distribution of the basic random variables and their independence
structure together with the system evolution in (4.1) and players strategy profile g define a
joint distribution on all random variables involved in the dynamical process. The objective
of player i is to maximize her total expected cost

J i,g := Eg
{

T∑
t=1

Ri(Xt, Ut)

}
. (4.4)

With both players being strategic, this problem is modeled as a dynamic LQG game with
asymmetric information and with simultaneous moves.

4.3 Structured perfect Bayesian equilibria

In Chapter 3, we considered a general class of dynamic games with asymmetric infor-
mation, where players’ types evolve as conditionally independent controlled Markov pro-
cesses. We introduced the notion of equilibria for such games in Section 3.4.1 and subse-
quently, a backward-forward algorithm was provided to find a class of PBE of the game
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called structured perfect Bayesian equilibria (SPBE). In these equilibria, player i’s strat-
egy is of the form U i

t ∼ mi
t(·|π1

t , π
2
t , x

i
t) where mi

t : P(X 1) × P(X 2) × X i → P(U i).
Specifically, player i’s action at time t depends on her private history xi1:t only through xit.
Furthermore, it depends on the common information u1:t−1 through a common belief vec-
tor πt := (π1

t , π
2
t ) where πit ∈ P(X i) is belief on player i’s current type xit conditioned on

common information u1:t−1, i.e. πit(x
i
t) := P g(X i

t = xit|u1:t−1).
The common information u1:t−1 was summarized into the belief vector (π1

t , π
2
t ) follow-

ing the common agent approach used for dynamic decentralized team problems [Nayyar
et al., 2013]. Using this approach, player i’s strategy can be equivalently described as
follows: player i at time t observes u1:t−1 and takes action γit , where γit : X i → P(U i)
is a partial (stochastic) function from her private information xit to uit of the form U i

t ∼
γit(·|xit). These actions are generated through some policy ψi = (ψit)t∈T , ψit : (U i)t−1 →
{X i → P(U i)}, that operates on the common information u1:t−1 so that γit = ψit[u1:t−1].
Then any policy of the player i of the form U i

t ∼ git(·|u1:t−1, x
i
t) is equivalent to U i

t ∼
ψit[u1:t−1](·|xit) [Nayyar et al., 2013].

The common belief πit is shown in Claim 3.5 of chapter 3 to be updated as

πit+1(xit+1) =

∫
xit
πit(x

i
t)γ

i
t(u

i
t|xit)Qi

t(x
i
t+1|xit, ut)dxit∫

x̃it
πit(x̃

i
t)γ

i
t(u

i
t|x̃it)dx̃it

, (4.5a)

if the denominator is not 0, and as

πit+1(xit+1) =

∫
xit

πit(x
i
t)Q

i
t(x

i
t+1|xit, ut)dxit, (4.5b)

if the denominator is 0. The belief update can be summarized as,

πit+1 = F̄ (πit, γ
i
t, ut), (4.6)

where F̄ is independent of players’ strategy profile g. The SPBE of the game can be
found through a two-step backward-forward algorithm. In the backward recursive part, an
equilibrium generating function θ is defined based on which a strategy and belief profile
(β∗, µ∗) are defined through a forward recursion.

4.4 SPBE of the dynamic LQG game

In this section, we apply the general methodology for finding SPBE described in chapter 3,
on the specific dynamic LQG game model described in Section 4.2. We show that players’
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strategies that are linear in their private types in conjunction with Gaussian beliefs, form an
SPBE of the game. We prove this result by constructing an equilibrium generating function
θ using backward recursion such that for all Gaussian belief vectors πt, γ̃t = θt[πt], γ̃

i
t is

of the form γ̃it(u
i
t|xit) = δ(uit − L̃i

tx
i − m̃i

t) and satisfies (3.8). Based on θ, we construct an
equilibrium belief and strategy profile.

The following lemma shows that common beliefs remain Gaussian under linear deter-
ministic γt of the form γit(u

i
t|xit) = δ(uit − Li

tx
i
t −mi

t).

Lemma 4.1. If πit is a Gaussian distribution with mean x̂it and covariance Σi
t, and γit(u

i
t|xit) =

δ(uit − Li
tx
i
t −mi

t) then πit+1, given by (4.5), is also Gaussian distribution with mean x̂it+1

and covariance Σi
t+1, where

x̂it+1 = Ai
tx̂
i
t + Bi

tut + Ai
tG

i
t(u

i
t − Li

tx̂
i
t −mi

t) (4.7a)

Σi
t+1 = Ai

t(I−Gi
tL

i
t)
†Σi

t(I−Gi
tL

i
t)A

i†
t + Qi. (4.7b)

where

Gi
t = Σi

tL
i†
t (Li

tΣ
i
tL

i†
t )−1. (4.8)

Proof. See Appendix A.

Based on previous lemma, we define φix, φ
i
s as update functions of mean and covariance

matrix, respectively, as defined in (4.7), such that

x̂it+1 = φix(x̂
i
t,Σ

i
t,L

i
t,m

i
t, ut) (4.9a)

Σi
t+1 = φis(Σ

i
t,L

i
t). (4.9b)

We also say,

x̂t+1 = φx(x̂t,Σt,Lt,mt, ut) (4.10)

Σt+1 = φs(Σt,Lt). (4.11)

The previous lemma shows that with linear deterministic γit , the next update of the mean
of the common belief, x̂it+1 is linear in x̂it and the control action uit. Furthermore, these
updates are given by appropriate Kalman filter equations. It should be noted however that
the covariance update in (4.7b) depends on the strategy through γit and specifically through
the matrix Li

t. This specifically shows how belief updates depend on strategies on the
players which leads to signaling, unlike the case in classical stochastic control and the
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model considered in [Gupta et al., 2014].
Now we will construct an equilibrium generating function θ using the backward re-

cursion in (3.7)–(3.9). The θ function generates linear deterministic partial functions γt,
which, from Lemma 4.1 and the fact that initial beliefs (or priors) are Gaussian, generates
only Gaussian belief vectors (π1

t , π
2
t )t∈T for the whole time horizon. These beliefs can be

sufficiently described by their mean and covariance processes (x̂1
t ,Σ

1
t )t∈T and (x̂2

t ,Σ
2
t )t∈T

which are updated using (4.7).
For t = T + 1, T, . . . , 1, we define the vectors

eit :=

x
i
t

x̂1
t

x̂2
t

 zit :=


uit

xit

x̂1
t

x̂2
t

 yit :=



u1
t

u2
t

x1
t

x2
t

xit+1

x̂1
t+1

x̂2
t+1


. (4.12)

Theorem 4.1. The backward recursion (3.7)–(3.9) admits1 a solution of the form θt[πt] =

θt[x̂t,Σt] = γ̃t where γ̃it(u
i
t|xit) = δ(uit − L̃i

tx
i
t − m̃i

t) and L̃i
t, m̃

i
t are appropriately defined

matrices and vectors, respectively. Furthermore, the value function reduces to

V i
t (πt, x

i
t) = V i

t (x̂t,Σt, x
i
t) (4.13a)

= quad(Vi
t(Σt); e

i
t) + ρit(Σt). (4.13b)

with Vi
t(Σt) and ρit(Σt) as appropriately defined matrix and scalar quantities, respectively.

Proof. We construct such a θ function through the backward recursive construction and
prove the properties of the corresponding value functions inductively.

(a) For i = 1, 2,∀ ΣT+1, let Vi
T+1(ΣT+1) := 0, ρiT+1(ΣT+1) := 0. Then ∀ x̂1

T+1, x̂
2
T+1,

Σ1
T+1,Σ

2
T+1, x

i
T+1 and for πt = (π1

t , π
2
t ), where πit is N(x̂it,Σ

i
t),

V i
T+1(πT+1, x

i
T+1) := 0 (4.14a)

= V i
T+1(x̂T+1,ΣT+1, x

i
T+1) (4.14b)

= quad(Vi
T+1(ΣT+1), eiT+1) + ρiT+1(ΣT+1). (4.14c)

(b) For all t ∈ {T, T − 1, . . . , 1}, i = 1, 2,
1Under certain conditions, stated in the proof.
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Suppose V i
t+1(πt+1, x

i
t+1) = quad(Vi

t+1(Σt+1), eit+1) + ρit+1(Σt+1) (from induction
hypothesis) where Vi

t+1 is a symmetric matrix defined recursively. Define V̄i
t as

V̄i
t(Σt,Lt) :=

Ti Si 0

Si† Pi 0

0 0 Vi
t+1(φs(Σt,Lt))

 . (4.15)

Since Ti,Pi are symmetric by assumption, V̄i
t is also symmetric.

For ease of exposition, we will assume i = 1 and for player 2, a similar argument
holds. At time t, the quantity that is minimized for player i = 1 in (3.8) can be
written as

Eγ1t (·|x1t )
[
Eγ̃2t

[
R1(Xt, Ut) + V 1

t+1(F (πt, γ̃t, Ut), X
1
t+1)
∣∣πt, x1

t , u
1
t

] ∣∣πt, x1
t

]
. (4.16)

The inner expectation can be written as follows, where γ̃2
t (u

2
t |x2

t ) = δ(u2
t − L̃2

tx
2
t −

m̃2
t ),

Eγ̃2t
[
quad

([
T1 S1

S1† P1

]
; zit

)
+quad

(
V1
t+1(φs(Σt, L̃t)); e

i
t+1

)
+ ρ1

t+1(φs(Σt, L̃t))
∣∣πt, x1

t , u
i
t

]
(4.17a)

= Eγ̃2t
[
quad

(
V̄1
t (Σt, L̃t); y

1
t

)
+ ρ1

t+1(φs(Σt, L̃t))
∣∣πt, x1

t , u
1
t

]
(4.17b)

= quad

(
V̄1
t (Σt, L̃t); D

1
t z

1
t + C1

t

[
m1
t

m̃2
t

])
+ ρ1

t (Σt), (4.17c)

where V̄i
t is defined in (4.15) and function φs is defined in (4.11); yit, z

i
t are defined

in (4.12); ρit is given by

ρit(Σt) = tr
(
Σ−it quad

(
V̄i
t(Σt, L̃t); J

i
t

))
+ tr(QiV i

11,t+1(φs(Σt, L̃t))) + ρit+1(φs(Σt, L̃t)), (4.18)

where V i
11,t+1 is the matrix corresponding to xit+1 in V i

t+1 i.e. in the first row and first
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column of the matrix V i
t+1; and matrices Di

t,C
i
t,J

i
t are as follows,

D1
t :=



I 0 0 0

0 0 0 L̃2
t

0 I 0 0

0 0 0 I

B1
1,t A1

t 0 B1
2,tL̃

2
t

A1
tG

1
t + B1

1,t 0 A1
t (I−G1

tL
1
t ) B1

2,tL̃
2
t

B2
1,t 0 0 A2

t + B2
2,tL̃

2
t


(4.19a)

D2
t :=



0 0 L̃1
t 0

I 0 0 0

0 0 I 0

0 I 0 0

B2
2,t A2

t B2
1,tL̃

1
t 0

B1
2,t 0 A1

t + B1
1,tL̃

1
t 0

A2
tG

2
t + B2

2,t 0 B2
1,tL̃

1
t A2

t (I−G2
tL

2
t )


(4.19b)

C1
t :=



0 0

0 I

0 0

0 0

0 B1
2,t

−A1
tG

1
t B1

2,t

0 B2
2,t


C2
t :=



I 0

0 0

0 0

0 0

B2
1,t 0

B1
1,t 0

B2
1,t −A2

tG
2
t


(4.20)

J1†
t :=

[
0 L2

t 0 I B1
2,tL

2
t B1

2,tL
2
t (B2

2,t + A2
tG

2
t )L

2
t

]†
J2†
t :=

[
L1
t 0 I 0 B2

1,tL
1
t (B1

1,t + A1
tG

1
t )L

1
t B2

1,tL
1
t

]†
(4.21)

where Bi
t =:

[
Bi

1,t Bi
2,t

]
, Bi

1,t,B
i
2,t are the parts of the matrix Bi

t that corresponds

to u1
t , u

2
t respectively. Let D1

t =:
[
Du1
t De1

t

]
where Du1

t is the first column matrix
of D1

t corresponding to u1
t and De1

t is the matrix composed of remaining three column
matrices of D1

t corresponding to e1
t . The expression in (4.17c) is averaged with
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respect to u1
t using the measure γ1

t (·|x1
t ) and minimized in (3.8) over γ1

t (·|x1
t ). This

minimization can be performed component wise leading to a deterministic policy
γ̃1
t (u

1
t |x1

t ) = δ(u1
t−L̃1

tx
1
t−m̃1

t ) = δ(u1
t−u1∗

t ), assuming that the matrix D̃u1†
t V̄1

t D̃
u1
t

is positive definite2. In that case, the unique minimizer u1∗
t = L̃1

tx
1
t+m̃

1
t can be found

by differentiating (4.17c) w.r.t. u1†
t and equating it to 0, resulting in the equation,

0 = 2
[
I 0 0 0

]
D̃1†
t V̄1

t (Σt, L̃t)
(
D̃1
t z

1
t + C̃1

t m̃t

)
(4.22a)

0 = D̃u1†
t V̄1

t (Σt, L̃t)
(
D̃u1
t u

1∗
t + D̃e1

t e
1
t + C̃1

t m̃t

)
(4.22b)

0 = D̃u1†
t V̄1

t (Σt, L̃t)
(
D̃u1
t (L̃1

tx
1
t + m̃1

t ) + [D̃e1
t ]1x

1
t + [D̃e1

t ]23x̂t + C̃1
t m̃t

)
,

(4.22c)

where [Dei]1 is the first matrix column of Dei, [Dei]23 is the matrix composed of the
second and third column matrices of Dei. Matrices D̃i

t, C̃
i
t are obtained by substitut-

ing L̃i
t, G̃

i
t in place of Li

t,G
i
t in the definition of D̃i

t, C̃
i
t in (4.20), respectively, and

G̃i
t is the matrix obtained by substituting L̃i

t in place of Li
t in (4.8).

Thus (4.22c) is equivalent to (3.8) and with a similar analysis for player 2, it implies
that L̃i

t is solution of the following algebraic fixed point equation,(
D̃ui†
t V̄i

t(Σt, L̃t)D̃
ui
t

)
L̃i
t = −D̃ui†

t V̄i
t(Σt, L̃t)[D̃

ei
t ]1. (4.23a)

For player 1, it reduces to,T1
11 +

 B1
1,t

A1
tG

1
t + B1

1,t

B2
1,t


†

V1
t+1(φs(Σt, L̃t))

 B1
1,t

A1
tG

1
t + B1

1,t

B2
1,t


 L̃1

t

= −

S1†
11 +

 B1
1,t

A1
tG

1
t + B1

1,t

B2
1,t


†

V1
t+1(φs(Σt, L̃t))

A1
t

0

0


 , (4.23b)

and a similar expression holds for player 2.

2This condition is true if the instantaneous cost matrix Ri =

[
Ti Si

Si† Pi

]
is positive definite and can be

proved inductively in the proof by showing that Vi
t and V̄i

t are positive definite.
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In addition, m̃t can be found from (4.22c) as[
D̃u1†
t V̄1

t D̃
u1
t 0

0 D̃u2†
t V̄2

t D̃
u2
t

]
m̃t = −

[
D̃u1†
t V̄1

t [D̃
e1
t ]23

D̃u2†
t V̄2

t [D̃
e2
t ]23

]
x̂t −

[
D̃u1†
t V̄1

t C̃
1
t

D̃u2†
t V̄2

t C̃
2
t

]
m̃t

(4.24a)

m̃t = −

[[
D̃u1†
t V̄1

t D̃
u1
t 0

0 D̃u2†
t V̄2

t D̃
u2
t

]
+

[
D̃u1†
t V̄1

t C̃
1
t

D̃u2†
t V̄2

t C̃
2
t

]]−1 [
D̃u1†
t V̄1

t [D̃
e1
t ]23

D̃u2†
t V̄2

t [D̃
e2
t ]23

]
x̂t

(4.24b)

=: M̃tx̂t =:

[
M̃1

t

M̃2
t

]
x̂t, (4.24c)

Finally, the resulting cost for player i is,

V i
t (πt, x

i
t) = V i

t (x̂t,Σt, x
i
t) (4.25a)

:= quad

(
V̄i
t(Σt, L̃t);

[
D̃ui
t D̃ei

t

] [L̃i
tx
i
t + M̃i

tx̂t

eit

]
+ C̃i

tM̃tx̂t

)
+ ρit(Σt)

(4.25b)

= quad
(
V̄i
t(Σt, L̃t); D̃

ui
t (L̃i

tx
i
t + M̃i

tx̂t) + D̃e1
t e

i
t + C̃i

tM̃tx̂t

)
+ ρit(Σt)

(4.25c)

= quad
(
V̄i
t(Σt, L̃t);

([
D̃ui
t L̃i

t D̃ui
t M̃i

t + C̃i
tM̃t

]
+ D̃ei

t

)
eit

)
+ ρit(Σt)

(4.25d)

= quad
(
V̄i
t(Σt, L̃t); F̃

i
te
i
t

)
+ ρit(Σt) (4.25e)

= quad
(
F̃i†
t V̄i

t(Σt, L̃t)F̃
i
t; e

i
t

)
+ ρit(Σt) (4.25f)

= quad
(
Vi
t(Σt); e

i
t

)
+ ρit(Σt), (4.25g)

where,

F̃i
t :=

[
D̃ui
t L̃i

t D̃ui
t M̃i

t + C̃i
tM̃t

]
+ D̃ei

t (4.26a)

Vi
t(Σt) := F̃i†

t V̄i
t(Σt, L̃t)F̃

i
t. (4.26b)

Since V̄i
t is symmetric, so is Vi

t. Thus the induction step is completed.

Taking motivation from the previous theorem and with slight abuse of notation, we
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define

γ̃t = θt[πt] = θt[x̂t,Σt] (4.27)

and since γ̃it(u
i
t|xit) = δ(uit − L̃i

tx
i
t − m̃i

t), we define a reduced mapping (θL, θm) as

θLit [x̂t,Σt] = θLit [Σt] := L̃i
t and θmit [x̂t,Σt] := m̃i

t, (4.28)

where L̃i
t does not depend on x̂t and m̃i

t is linear in x̂t and is of the form m̃i
t = M̃i

tx̂t.
Now we construct the equilibrium strategy and belief profile (β∗, µ∗) through the for-

ward recursion in (3.12)–(3.14), using the equilibrium generating function θ ≡ (θL, θm).

(a) Let µ∗,i1 [φ](xi1) = N(0,Σi
1).

For t = 1, 2 . . . T − 1,∀u1:t ∈ Hc
t+1, if µ∗,it [u1:t−1] = N(x̂it,Σ

i
t), let L̃i

t = θLit [Σt], m̃
i
t =

θmit [x̂t,Σt] = M̃i
tx̂, then

(b) For ∀xi1:t ∈ (X i)t

β∗,it (uit|u1:t−1x
i
1:t) := δ(uit − L̃i

tx
i
t − M̃i

tx̂t) (4.29a)

µ∗,it+1[u1:t] := N(x̂it+1,Σ
i
t+1) (4.29b)

µ∗t+1[u1:t](x
1
t , x

2
t ) :=

2∏
i=1

µ∗,it+1[u1:t](x
i
t), (4.29c)

where x̂it+1 = φix(x̂
i
t, L̃

i
t, m̃

i
t, ut) and Σi

t+1 = φis(Σ
i
t, L̃

i
t).

Theorem 4.2. (β∗, µ∗) constructed above is a PBE of the dynamic LQG game.

Proof. The strategy and belief profile (β∗, µ∗) is constructed using the forward recursion
steps (3.12)–(3.14) on equilibrium generating function θ, which is defined through back-
ward recursion steps (3.7)–(3.9) implemented in the proof of Theorem 4.1. Thus the result
is directly implied by Theorem 3.1 in Chapter 3.

4.5 Discussion

4.5.1 Existence

In the proof of Theorem 4.1, D̃u1†
t V̄1

t D̃
u1
t was assumed to be positive definite. This can be

achieved if Ri is positive definite, through which it can be easily shown inductively in the
proof of Theorem 4.1 that the matrices V1

t , V̄
1
t are also positive definite.
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Constructing the equilibrium generating function θ involves solving the algebraic fixed
point equation in (4.23) for L̃t for all Σt. In general, the existence is not guaranteed,
as is the case for existence of γ̃t in (3.8) for general dynamic games with asymmetric
information. At this point, we don’t have a general proof for existence. However, in the
following lemma, we provide sufficient conditions on the matrices Ai

t,B
i
t,T

i,Si,Pi,Vi
t+1

and for the case mi = 1, for a solution to exist.

Lemma 4.2. For m1 = m2 = 1, there exists a solution to (4.23) if and only if for i = 1, 2,
∃ li ∈ Rni such that li†∆i(l1, l2)li ≥ 0, or sufficiently ∆i(l1, l2) + ∆i,†(l1, l2) is positive
definite, where ∆i, i = 1, 2 are defined in Appendix B.

Proof. See Appendix B.

4.5.2 Steady state

In Chapter 3, we presented the backward/forward methodology to find SPBE for finite time-
horizon dynamic games, and specialized that methodology in this chapter, in Section 4.4,
to find SPBE for dynamic LQG games with asymmetric information, where equilibrium
strategies are linear in players’ types. It requires further investigation to find the conditions
for which the backward-forward methodology could be extended to infinite time-horizon
dynamic games, with either expected discounted or time-average, cost or reward crite-
ria. Such a methodology for infinite time-horizon could be useful to characterize steady
state behavior of the games. Specifically, for time homogenous dynamic LQG games with
asymmetric information (where matrices Ai,Bi are time independent), under the required
technical conditions for which such a methodology is applicable, the steady state behav-
ior can be characterized by the fixed point equation in matrices (Li,Σi,Vi)i=1,2 through
(4.11), (4.23b) and (4.26), where the time index is dropped in these equations, i.e.

1. Σ = φs(Σ, L̃)

2.
(
D̃ui†V̄i(Σ, L̃)D̃ui

)
L̃i = −D̃ui†V̄i(Σ, L̃)[D̃ei]1

3. Vi(Σ) := F̃i†V̄i(Σ, L̃)F̃i,

where V̄i(Σ, L̃) :=

Ti Si 0

Si† Pi 0

0 0 Vi(φs(Σ, L̃))

.

It is important to note that the steady state behavior for a general dynamic game with
asymmetric information and independent types, if it exists, would involve functional fixed
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point equations in value functions (V i(·))i, on domain as space of πt. However, for the
LQG case, it reduces to a fixed point equation in (V i(Σ))i, i.e. value functions evaluated
at specific Σ, as shown in the above mentioned algebraic fixed point equation in matrices,
which represents a significant reduction in complexity.

4.5.2.1 Numerical examples

We take a leap by assuming that methodology extends for infinite horizon problem for the
model considered in this section, and present numerically found solutions for steady state
as follows. We assume Bi = 0 which implies that the state process (X i

t)t∈T is uncontrolled.

1. For i = 1, 2, mi = 1, ni = 2,Ai = 0.9I,Bi = 0,Qi = I,

T1 =

[
I 1

4
I

1
4
I 0

]
, T2 =

[
0 1

4
I

1
4
I I

]
, P1 =

[
I 0

0 0

]
,

P2 =

[
0 0

0 I

]
, S1 =

[
1 0

0 0

]
, S2 =

[
0 0

0 1

]
. (4.30)

This gives a symmetric solution, for i = 1, 2,

L̃i = −
[
1.062 1.062

]
,Σi =

[
3.132 −2.132

−2.132 3.132

]
. (4.31)

2. For i = 1, 2, mi = 2, ni = 2,A1 =

[
0.9 0

0 0.8

]
,A2 = 0.9I, and Bi,Ti,Pi,Si used

as before with appropriate dimensions, then,

L̃1 = −

[
1.680 1.600

0.191 0.286

]
, L̃2 = −

[
1.363 1.363

1.363 1.363

]

Σ1 = I, Σ2 =

[
3.132 −2.132

−2.132 3.132

]
. (4.32)

It is interesting to note that for player 1, where A1 does not weigh the two com-
ponents equally, the corresponding L̃1 is full rank, and thus reveals her complete
private information. Whereas for player 2, where A2 has equal weight components,
the corresponding L̃2 is rank deficient, which implies, at equilibrium player 2 does
not completely reveal her private information. Also it is easy to check from (4.7b)
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that with full rank L̃i matrices, steady state Σi = Qi.

4.6 Conclusion

In this chapter, we study a two-player dynamic LQG game with asymmetric information
and perfect recall where players’ private types evolve as independent controlled Markov
processes. We show that under certain conditions, there exist strategies that are linear in
players’ private types which, together with Gaussian beliefs, form a PBE of the game. We
show this by specializing the general methodology developed in chapter 3 to our model.
Specifically, we prove that (a) the common beliefs remain Gaussian under the strategies
that are linear in players’ types where we find update equations for the corresponding mean
and covariance processes; (b) using the backward recursive approach of chapter 3, we com-
pute an equilibrium generating function θ by solving a fixed point equation in linear deter-
ministic partial strategies γt for all possible common beliefs and all time epochs. Solving
this fixed point equation reduces to solving a matrix algebraic equation for each realization
of the state estimate covariance matrices. Also, the cost-to-go value functions are shown to
be quadratic in private type and state estimates. This result is one of the very few results
available on finding signaling perfect Bayesian equilibria of a truly dynamic game with
asymmetric information.

4.7 Appendix A (Proof of Lemma 4.1)

This lemma could be interpreted as Theorem 2.30 in [Kumar and Varaiya, 1986, Ch. 7]
with appropriate matrix substitution where specifically, their observation matrix Ck should
be substituted by our Lk. We provide an alternate proof here for convenience.

πit+1 is updated from πit through (4.5). Since πit is Gaussian, γit(u
i
t|xit) = δ(uit −Litxit −

mi
t) is a linear deterministic constraint and kernel Qi is Gaussian, thus πit+1 is also Gaus-

sian. We find its mean and covariance as follows.
We know that X i

t+1 = Ai
tX

i
t + Bi

tUt +W i
t . Then,

E[X i
t+1|πit, γit, ut] = E[Ai

tX
i
t + Bi

tUt +W i
t |πit, γit, ut] (4.33a)

= Ai
tE[X i

t |πit, γit, ut] + Bi
tut (4.33b)

= Ai
tE[X i

t |Li
tX

i
t = uit −mi

t] + Bi
tut (4.33c)

where (4.33b) follows because W i
t is zero mean. Suppose there exists a matrix Gi

t such
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that X i
t −Gi

tL
i
tX

i
t and Li

tX
i
t are independent. Then

E[X i
t

∣∣Li
tX

i
t = uit −mi

t] = E[X i
t −Gi

tL
i
tX

i
t + Gi

tL
i
tX

i
t

∣∣Li
tX

i
t = uit −mi

t] (4.34a)

= E[X i
t −Gi

tL
i
tX

i
t ] + Gi

t(u
i
t −mi

t) (4.34b)

= x̂it + Gi
t(u

i
t − Li

tx̂
i
t −mi

t), (4.34c)

where Gi
t satisfies

E[(X i
t −Gi

tL
i
tX

i
t)(L

i
tX

i
t)
†] = E[(X i

t −Gi
tL

i
tX

i
t)]E[(Li

tX
i
t)
†] (4.35a)

(I−Gi
tL

i
t)E[X i

tX
i†
t ]Li†

t = (I−Gi
tL

i
t)E[X i

t ]E[X i†
t ]Li†

t (4.35b)

(I−Gi
tL

i
t)(Σ

i
t + x̂itx̂

i†
t )Li†

t = (I−Gi
tL

i
t)x̂

i
tx̂
i†
t Li†

t (4.35c)

Gi
t = Σi

tL
i†
t (Li

tΣ
i
tL

i†
t )−1. (4.35d)

Σi
t+1 =sm

(
Ai
tX

i
t − E[Ai

tX
i
t |Li

tX
i
t = uit −mi

t]|Li
tX

i
t = uit −mi

t

)
+ Qi (4.36a)

Now

sm
(
X i
t − E[X i

t |Li
tX

i
t = uit −mi

t]|Li
tX

i
t = uit −mi

t

)
(4.37a)

= sm
(
(X i

t −Gi
tL

i
tX

i
t)

−(E[X i
t −Gi

tL
i
tX

i
t |Li

tX
i
t = uit −mi

t])|Li
tX

i
t = uit −mi

t

)
(4.37b)

= sm
(
(X i

t −Gi
tL

i
tX

i
t)− (E[X i

t −Gi
tL

i
tX

i
t ])
)

(4.37c)

= sm
(
(I−Gi

tL
i
t)(X

i
t − E[X i

t ])
)

(4.37d)

= (I−Gi
tL

i
t)Σ

i
t(I−Gi

tL
i
t)
† (4.37e)

4.8 Appendix B (Proof of Lemma 4.2)

We prove the lemma for player 1 and the result follows for player 2 by similar arguments.

For the scope of this appendix, we define B̄1
t =

B1
1,t

B1
1,t

B2
1,t

 and for any matrix V, we define

V∗i,Vi∗ as the ith column and the ith row of V, respectively. Then the fixed point equation
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(4.23) can be written as,

0 =
[
T1

11 + (A1
tG

1
t )
†V1

22,t+1(A1
tG

1
t )+

B̄1†
t V1

∗2,t+1A
1
tG

1
t + (A1

tG
1
t )
†V1

2∗,t+1B̄
1
t + B̄1†

t V1
t+1B̄

1
t

]
L1
t

+
[
S1†

11 + (A1
tG

1
t )
†V1

21,t+1A
1
t + B̄1†

t V1
∗1,t+1A

1
t

]
. (4.38)

It should be noted that Vi
t+1 is a function of Σt+1 which is update through Σt and Lt.

Substituting G1
t = Σ1

tL
1†
t (L1

tΣ
1
tL

1†
t )−1 and multiplying (4.38) by (L1

tΣ
1
tL

1†
t ) from left and

(Σ1
tL
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t ) from right, we get
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Let L̄i
t = Li

t(Σ
i
t)

1/2, Āi
t = Ai

t(Σ
i
t)

1/2,

Λ1
a(Lt) := T1

11 + B̄1†
t V1

t+1B̄
1
t (4.40a)

Λ1
b(Lt) := Ā1†

t V1
22,t+1Ā

1
t (4.40b)

Λ1
c(Lt) := B̄1†

t V1
∗2,t+1Ā

1
t + S1†

11(Σ1
t )

1/2 + B̄1†
t V1

∗1,t+1Ā
1
t (4.40c)

Λ1
d(Lt) := Ā1†

t V1
2∗,t+1B̄

1
t + Ā1†

t V1
21,t+1Ā

1
t . (4.40d)

Then,

0 = L̄1
t L̄

1†
t Λ1

a(Lt)L̄
1
t L̄

1†
t + L̄1

tΛ
1
b(Lt)L̄

1†
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t (4.41)

Since m=1, Λ1
a is a scalar. Let L̄i

t = λili†, where λi = ||L̄i
t||2 and li is a normalized vector

and t1 = T11. Moreover, since the update of Σt in (4.7b), is scaling invariant, V1
t+1 only

depends on the directions l = (l1, l2). Then, (4.41) reduces to the following quadratic
equation in λ1

(λ1)2Λ1
a(l) + λ1(Λ1

c(l)l
1 + l1†Λ1

d(l)) + l1†Λ1
b(l)l

1 = 0. (4.42)
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There exists a real-valued solution3 of this quadratic equation in λ1 if and only if

(Λc(l)l
1 + l1†Λ1

d(l))
2 ≥ 4Λ1

a(l)l
1†Λ1

b(l)l
1 (4.43a)

l1†(Λ1†
c (l)Λ1

c(l) + Λ1
d(l)Λ

1†
d (l) + 2Λ1

d(l)Λ
1
c(l)− 4Λ1

a(l)Λ
1
b(l))l

1 ≥ 0. (4.43b)

Let ∆1(l) := (Λ1†
c (l)Λ1

c(l) + Λ1
d(l)Λ

1†
d (l) + 2Λ1

d(l)Λ
1
c(l)− 4Λ1

a(l)Λ
1
b(l)). (4.44)

There exists a solution to the fixed point equation (4.23) if and only if ∃l1, l2 ∈ Rn such
that l1†∆1(l)l1 ≥ 0, or sufficiently ∆1(l) + ∆1†(l) is positive definite.

3Note that a negative sign of λ1 can be absorbed in l1.
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CHAPTER 5

Decentralized Bayesian learning in dynamic
games

5.1 Introduction

In a classical Bayesian learning problem, there is a single decision maker who makes noisy
observations of the state of nature and based on these observations eventually learns the true
state. It is well known that through the likelihood ratio test, the probability of error con-
verges exponentially fast to zero as the number of observations increases, and the true state
is learnt asymptotically. With the advent of the Internet, in today’s world, there are many
scenarios, where strategic agents with different observations (i.e. information sets) interact
with each other to learn the state of the system that in turn affects the spread of information
in the system. One such scenario was studied in the seminal paper [Bikhchandani et al.,
1992], where authors studied the occurrence of fads in a social network, which was later
generalized in [Smith and Sörensen, 2000]. [Bikhchandani et al., 1992] and [Smith and
Sörensen, 2000] study the problem of learning over a social network, where observations
are made sequentially by different decision makers (users) who act strategically based on
their own private information and actions of previous users. It is shown that herding (infor-
mation cascade) can occur in such a case where a user discards its own private information
and follows the majority action of its predecessors (fads in social networks). As a result, all
future users repeat this behavior and a cascade occurs. While a good cascade is desirable,
there’s a positive probability of a bad cascade that hurts all the users in the community.
Thus from a social (i.e. team) perspective, it is highly desirable to avoid such situations.
Avoiding such bad cascades is an active area of research, for example [Acemoglu et al.,
2011] and [Le et al., 2014] propose alternative learning models that aim at avoiding such
bad cascades. There are however more general scenarios, such as cases where players par-
ticipate (take actions and receive rewards) in the game more than once, deterministically
or randomly through an exogenous or even an endogenous process. Furthermore there are
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practical scenarios where players may be adversarial to each others’ learning (e.g. dynamic
zero-sum games). Studying such scenarios may reveal more interesting and richer equilib-
rium behaviors such as cascading phenomena, not manifested in the models considered in
the current literature.

In this chapter, we study this problem from two different perspectives. Our first goal is
to study this problem to design incentives to align social or team objective with strategic
players’ objectives, which implicitly promotes learning to continue in the game. In the
second part, we seek to study learning dynamics of the system in a more general set up
where players participate in the game throughout the duration of the game and not just
once, as is the case for the models considered in the current literature. Since this requires
studying PBE of the game, we also generalize the methodology described in chapter 3 to
find perfect Bayesian equilibria (PBE) for the case where players’ do not observe their
types perfectly, but instead make noisy observations. This methodology then serves as a
framework for studying information cascades in a more general setting.

The chapter is structured as follows. In Section 5.2, we study the problem of incentive
design. Specifically, in Section 5.2.1, we present the model. In Section 5.2.2, we formu-
late the team problem as an instance of decentralized stochastic control and characterize
its optimal policies. In Section 5.2.3, we consider the case with strategic users and design
incentives for the users to align their objective with team objective. In Section 5.3, we con-
sider a more general dynamic model. In Section 5.3.1, we provide a methodology to find
a class of PBEs for such games. In Section 5.3.4, we specialize that methodology to study
a specific Bayesian learning game with partially controlled observations. We characterize
information cascades for this problem. While this example, limited as it is, provide analy-
sis and intuition on the learning dynamics in decentralized games, it serves as motivation
for exploring a vast landscape of the scenarios that can be studied through the proposed
methodology. We conclude in Section 5.4.

5.1.1 Notation

For a probabilistic strategy profile of players (βit)i∈N , where probability of action ait con-
ditioned on a1:t−1, x

i
1:t is given by βit(a

i
t|a1:t−1, x

i
1:t), we use the short hand notation

β−it (a−it |a1:t−1, x
−i
1:t) to represent

∏
j 6=i β

j
t (a

j
t |a1:t−1, x

j
1:t). We use the terms users and buy-

ers interchangeably.
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5.2 Incentive design

In this section we first consider the problem of designing incentives so that the players’
objectives can be aligned to the team objective. Most of the models of this problem consid-
ered in the literature assume time-invariant state of the nature. However, there are situations
where the state of the nature, for e.g. popularity of a product, could change over time, as
a consequence of endogenous or exogenous factors (for e.g., owing to the entering of a
new competitor product or improvement/drop in quality of the product). In this section,
we consider a simple scenario where users want to buy a product online. The product is
either good or bad (popular or unpopular) and the value of the product (state of the system)
is represented by Xt, which is changing exogenously via a Markov chain. The state is
not directly observed by the users but each user receives a private noisy observation of the
current state. Each user makes a decision to either buy or not buy the product, based on its
private observation and action profile of all the users before its.

The strategic user wants to maximize its expected value of the product. However, its
optimal action could be misaligned with the team objective of maximizing the expected
average reward of the users. Thus the question we seek to address is whether it is possible
to incentivize the users to align them with the team objective. To incentivize users to con-
tribute in the learning, we assume that users can also send reports (at some cost) about their
private observations after deciding to buy or to not buy the product. The idea is similar
to leaving a review of the product. Thus users could be paid to report their observations
to enrich the information of the future participants. Our objective is to use principles of
mechanism design to construct the appropriate payment transfers (taxes/subsidies). Al-
though, our approach deviates from general principles of mechanism design for solution of
the game problem to exactly coincide with the team problem. However, this analysis could
provide the bounds on the gap and an acceptable practical design.

5.2.1 Model

We consider a discrete-time dynamical system over infinite horizon. There is a product
whose value varies over time as (a slowly varying) discrete time Markov process (Xt)t,
where Xt takes value in the set {0, 1}; 0 represents that product was bad (has low intrinsic
value) and 1 represents and product is good (has high intrinsic value).

P (x1) = Q̂(x1) (5.1a)

P (xt|x1:t−1) = Qx(xt|xt−1), (5.1b)
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such that Qx(xt|xt−1) = ε if xt 6= xt−1, for 0 < ε < 1.
There are countably infinite number of exogenously selected, selfish buyers that act

sequentially and exactly once in the process. Buyer t makes a noisy observation of the
value of the product at time t, vt ∈ V

4
= {0, 1}, through a binary symmetric channel with

crossover probability p such that these observations are conditionally independent across
users given the system state (i.e. noise is i.i.d.) i.e. P (vt|x1:t, v1:t−1) = Qv(vt|xt) = p

if vt 6= xt. Based on actions of previous buyers and its private observation buyer t takes
two actions: at ∈ A

4
= {0, 1}, which correspond to either buying or not buying the good,

and bt ∈ B
4
= {∗, 1} where * represents not reporting its observation and 1 represent

reporting truthfully. Based on these actions and the state of the system, the buyer gets
reward R(xt, at, bt) where

R(xt, at, bt) = −c · I(bt = 1) +


1/2, xt = 1, at = 1

−1/2, xt = 0, at = 1

0, at = 0

, (5.2)

where c is cost of reporting its observation truthfully. The actions are publicly observed by
future buyers whereas the observations (vt)t are private information of the buyers.

5.2.2 Team problem

In this section, we study the team problem where the buyers are cooperative and want
to maximize the expected average reward per unit time for the team. At time t, buyer
t’s information consists of its private information vt and publicly available information
a1:t−1, b1:t−1. It takes action at, bt though a (deterministic) policy gt : At−1 × Bt−1 × V →
A× B as

(at, bt) = gt(a1:t−1, b1:t−1, vt). (5.3)

The objective as a team (or for a social planner) is to maximize the expected average reward
per unit time for all the users i.e.

J
4
= sup

g
lim sup
τ→∞

1

τ

τ∑
t=1

Eg{R(Xt, At, Bt)}. (5.4)

Since the decision makers (i.e. the buyers) have different information sets, this is an
instance of a decentralized stochastic control problem. We use techniques developed in
[Nayyar et al., 2011] to find structural properties of the optimal policies. Specifically, we
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equivalently view the system through the perspective of a common agent that observes at
time t, the common information a1:t−1, b1:t−1 and takes action γt : V → A × B, which is
a partial function that, when acted upon buyer’s private information vt, generates its action
(at, bt). The common agent’s actions (γt)t are taken through common agent’s strategy
ψ = (ψ)t as γt = ψt[a1:t−1, b1:t−1] where ψt : At−1 × Bt−1 → (V → A× B). The
corresponding common agent’s problem is

J c
4
= sup

ψ
lim sup
τ→∞

1

τ

τ∑
t=1

Eψ{R(Xt, At, Bt)}. (5.5)

This procedure transforms the original decentralized stochastic control problem of buy-
ers to a centralized stochastic control problem of the common agent, which is a POMDP.
Then, an optimal policy of the common agent can be translated to optimal policies for
the buyers. In order to characterize common agent’s optimal policy, we find an infor-
mation state for the common agent’s problem. We define a belief state πt at time t as
a probability measure on current state of the system given the common information i.e.
πt(xt)

4
= Pψ(xt|a1:t−1, b1:t−1, γ1:t). The following lemma shows that the common agent

faces a Markov decision problem (MDP).

Lemma 5.1. (Πt,Γt)t is a controlled Markov process with state Πt and action Γt such that

Pψ(πt+1|π1:t, γ1:t) =P (πt+1|πt, γt) (5.6a)

Eψ{R(Xt, At, Bt)|a1:t−1, b1:t−1, γ1:t} =E{R(Xt, At, Bt)|πt, γt} (5.6b)

= : R̂(πt, γt) (5.6c)

and there exists an update function F , independent of ψ such that πt+1 = F (πt, γt, at, bt).

Proof. See Appendix A

Lemma 5.1 implies that for common agent’s problem, it can summarize the common
information a1:t−1, b1:t−1 in the belief state πt. Furthermore there exists an optimal policy
for the common agent of the form θt : P(X ) → (V → A× B) that can be found as
solution of the following dynamic programming equation in the space of public beliefs πt
as, ∀π, γ∗ = θ[π] is the maximizer in the following equation

ρ+ V (π) = max
γ

R̂(π, γ) + E{V (Π′)|π, γ}, (5.7)

where the distribution of π′ is given through the kernel P (·|π, γ) in (5.6a) and ρ ∈ R, V :

P(X ) → R are solutions of the above fixed point equation. Based on this public belief πt
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and its private information xt, each user t takes actions as

(at, bt) = mt(πt, vt) = θt[πt](vt). (5.8)

We note that since states, actions and observations belong to a binary set, there are six-

teen partial functions γ possible that are shown in Table 5.1 below where γ =

[
γ(vt = 0)

γ(vt = 1)

]
=[

at, bt(vt = 0)

at, bt(vt = 1)

]
. Since the common belief is updated as πt+1 = F (πt, γ, γ(vt)) and vt is

binary valued, there exist two types of γ functions: learning (γL) and non-learning (γNL).
γL leads to update of belief through F (·) in (5.6a) that is informative of the private observa-
tion vt, whereas γNL leads to uninformative update of belief. Eight of them are dominated
in reward, for example vt need not be reported if it is revealed through at, or if it can be
revealed indirectly by absence of reporting.

Table 5.1: Learning vs. Non-learning γ

γL
[
0, ∗
1, ∗

] [
1, ∗
0, ∗

] [
1, 1
1, ∗

] [
1, ∗
1, 1

] [
0, 1
0, ∗

] [
0, ∗
0, 1

]

�
�
��@
@
@@

[
0, 1
1, 1

]
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��@

@
@@

[
1, 1
0, 1

]
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@
@@

[
0, 1
1, ∗

]
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��@

@
@@

[
1, 1
0, ∗

]
�
�
��@

@
@@

[
0, ∗
1, 1

]
�
�
��@

@
@@

[
1, ∗
0, 1

]

�
�
��@
@
@@

[
0, 1
0, 1

]
�
�
��@

@
@@

[
1, 1
1, 1

]
γNL

[
0, ∗
0, ∗

] [
1, ∗
1, ∗

]

5.2.3 Game problem

We now consider the case when the buyers are strategic. As before, buyer t observes public
history a1:t−1, b1:t−1 and its private observation vt and thus takes its actions as (at, bt) =

gt(a1:t−1, b1:t−1, vt). Its objective is to maximize its expected reward

Jt = max
gt

Eg{R(Xt, At, Bt)}. (5.9)

Since all buyers have different information, this defines a dynamic game with asymmetric
information. An appropriate solution concept is Perfect Bayesian Equilibrium (PBE) [Os-
borne and Rubinstein, 1994] that requires specification of an assessment (g∗t , µ

∗
t )t of strat-

egy and belief profile where g∗t is the strategy of buyer t, g∗t : At−1×Bt−1×V → P(A×B),
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and µ∗t is a belief as a function of buyer t’s history on the random variables not observed
by it till time t i.e. µ∗t : At−1 × Bt−1 × V → P(X t × V t). In general, finding a PBE
is hard [Osborne and Rubinstein, 1994] since it involves solving a fixed point equation in
strategies and beliefs that are function of histories, although there are few cases where there
exists an algorithm to find them [Nayyar et al., 2014,Vasal and Anastasopoulos, 2016]. For
this problem, since users act exactly once in the game and are thus myopic, it can be found
easily in a forward inductive way, as in [Bikhchandani et al., 1992, Smith and Sörensen,
2000]. Moreover, a belief on Xt, µ∗t (x)

4
= P g∗(Xt = x|a1:t−1, b1:t−1, vt), x ∈ {0, 1} is

sufficient and any joint belief consistent with µ∗t (x) along with equilibrium strategy profile
g∗ constitute a PBE. For any history, users compute a belief equilibrium strategy depending
on vt and πt as

γ∗t = φ[πt] = arg max
γt

R̂(πt, γt). (5.10)

With φ[·] defined through (5.10), for every history (a1:t−1, b1:t−1, vt), πt is updated using
forward recursion through πt+1 = F (πt, φ(πt), at, bt) and equilibrium strategies are gener-
ated as g∗t (a1:t−1, b1:t−1, vt) = φ[πt](vt). Finally the beliefs µ∗t can be easily derived from
πt and private information vt through Bayes rule.

In order to compare the team optimal and game equilibrium policies, we numerically
solve (5.7) using value iteration to find team optimal policy, shown in Figure 5.1, for pa-
rameters p = 0.2, ε = 0.001 and c = 0.05. For the same parameters, Figure 5.2 shows
equilibrium policy for a strategic user that solves (5.10).
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Figure 5.1: Decentralized team optimal policy
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Figure 5.2: Strategic optimal policy

5.2.3.1 Incentive design for strategic users

Our goal is to align each buyers’ objective with the team objective. In order to do so, we
introduce incentives (tax or subsidy) for user t, t : P(X ) × A × B → R such that its
effective reward is given by R̂(πt, γt)− t(πt, at, bt).

We first note that a user can not internalize social reward through incentives as is done
in a pivot mechanism [Vickrey, 1961,Clarke, 1971,Groves, 1973,Bergemann and Valimaki,
2010], i.e. there does not exist an incentive mechanism such that the following equation
could be true

R̂(π, γ)− t(π, a, b) = R̂(π, γ) + E{V (Π′)|π, γ} (5.11)

i.e. t(π, a, b) = −E{V (Π′)|π, γ} (5.12)

for V (·) defined in (5.7) and the distribution of π′ is given through the kernel P (·|π, γ)

in (5.6a). The left side of (5.11) is buyers’ effective reward and right side is the objective of
the team problem as in (5.7). Such a design is not feasible because while t(·) can depend
only on public observations (π, a, b), the second term in the RHS of (5.11) depends on γ as
well, which is not observed by the designer.

We observe in Figures 5.1, 5.2 that team optimal policy coincides with the strategic
optimal policy for a significant range of π(1). Let S be the set consisting of π(1) where the
team optimal policy coincides with the strategic optimal policy and Sc be the complement
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set. In order to align the two policies, we consider the following incentive design such that
a user is paid c units by the system planner whenever the public belief π(1) belongs to the
set Sc, and user reports its observation,

t(π, at, bt) = −c · I(π(1) ∈ Sc)I(bt = 1). (5.13)

These payments are made after any report for enforcement purposes. This is agreed upon,
i.e., system planner commits to this. With these incentives, the optimal policy of the strate-
gic user is shown in Figure 5.3. Figure 5.4 compares the time average reward achieved
through these policies, found through numerical results. This shows that the gap between
the team objective and the one with incentives is small. Intuitively, this occurs because the
buyers learn the true state of the system relatively quickly (exponentially fast) compared to
the expected time spent by the Markov processXt in any state. Equivalently, the time spent
by the process (Πt(1))t in the set Sc is small. Yet it is crucial for the social objective that
learning occurs in this region. Also in Figure 5.4, the gap between the mechanism (includ-
ing incentives) and the mechanism where incentives are subtracted signifies the expected
average payment made by the designer, which is relatively small.
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Figure 5.3: Strategic optimal policy with incentives
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5.3 General framework for decentralized Bayesian learn-
ing

An indispensable tool for studying cascades is a framework for finding equilibria for these
dynamical systems involving strategic players with different information sets, which are
modeled as dynamic games with asymmetric information. Appropriate equilibrium con-
cepts for such games include perfect Bayesian equilibrium (PBE), sequential equilibrium,
trembling hand equilibrium [Osborne and Rubinstein, 1994, Fudenberg and Tirole, 1991].
Each of these notions of equilibrium consists of a strategy and a belief profile of all play-
ers where the equilibrium strategies are optimal given the beliefs and the beliefs are de-
rived from the equilibrium strategy profile using Bayes’ rule (whenever possible). For the
games considered in the current literature including [Bikhchandani et al., 1992, Smith and
Sörensen, 2000,Acemoglu et al., 2011,Le et al., 2014], since every buyer participates only
for one time period and it does not have any future individually, finding PBE reduces to
solving a straightforward, one-shot optimization problem. However, for general dynamic
games with asymmetric information, finding PBE is hard, since it requires solving a fixed
point equation in the space of strategy and belief profiles across all users and all time pe-
riods. There is no known sequential decomposition methodology for finding PBE for such
games.

In chapter 3 we presented a methodology for finding PBE for a general class of dynamic
games where players types’ evolve as conditionally independent Markov processes and are
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observed perfectly by the corresponding players. In this section, we first generalize that
model to the case when players’ do not perfectly observe their types; rather they make in-
dependent, noisy observations. Specifically, we consider a dynamical system where a finite
number of players have different types, that evolve as conditionally independent Markov
processes. Players do not observe their own types, rather make observations about them
and their instantaneous rewards are a function of their current action and everyone’s types.
Unlike other scenarios discussed before, the proposed general framework can incorporate,
as special cases, scenarios where players participate in the game more than once, determin-
istically or randomly through an exogenous or endogenous process, and/or scenarios where
players may be adversarial to each others’ learning.

5.3.1 Model

We consider a discrete-time dynamical system with N strategic players in the set N :=

{1, 2, . . . N}, over a finite time horizon T := {1, 2, . . . T} and with perfect recall. The
system state is xt := (x1

t , x
2
t , . . . x

N
t ), where xit ∈ X i is the type of player i at time t.

Players’ types evolve as conditionally independent, controlled Markov processes such that

P (xt|x1:t−1, a1:t−1) = P (xt|xt−1, at−1) (5.14a)

=
N∏
i=1

Qi
x(x

i
t|xit−1, at−1), (5.14b)

where at = (a1
t , . . . , a

N
t ) and ait is the action taken by player i at time t. Player i does not

observe its type perfectly, rather it makes a private observation wit ∈ W i at time t, where
all observations are conditionally independent across time and across players given xt and
at−1, in the following way, ∀t ∈ 1, . . . T ,

P (w1:t|x1:t, a1:t−1) =
t∏

n=1

N∏
i=1

Qi
w(win|xin, an−1). (5.15)

Player i takes action ait ∈ Ai at time t upon observing a1:t−1, which is common information
among players, and wi1:t, which is player i’s private information. The sets Ai,X i,W i

are assumed to be finite. Let gi = (git)t be a probabilistic strategy of player i where
git : (×Nj=1Aj)t−1 × (W i)t → P(Ai) such that player i plays action ait according to Ait ∼
git(·|a1:t−1, w

i
1:t). Let g := (gi)i∈N be a strategy profile of all players. At the end of interval

t, player i gets an instantaneous reward Ri(xt, at). The objective of player i is to maximize
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its total expected reward

J i,g := Eg
[

T∑
t=1

Ri(Xt, At)

]
. (5.16)

With all players being strategic, this problem is modeled as a dynamic game D with im-
perfect and asymmetric information, and with simultaneous moves. Although this model
considers all N players acting at all times, it can accommodate cases where at each time t,
players are chosen through an endogenously defined (controlled) Markov process. This can
be done by introducing a nature player 0, who perfectly observes its type process (X0

t )t,
has reward function zero, and plays actions a0

t = w0
t = x0

t . Equivalently, all players pub-
licly observe a controlled Markov process (X0

t−1)t, and a player selection process could
be defined through this process. For instance, let X 0 = A0 = N , ∀i, Ri

t(xt, at) = 0 if
xit 6= a0

t , and Q(xit+1|xit, at) = Q(xit+1|xit, a
a0t
t ). Here, in each period only one player acts

in the game who is selected through an internal, controlled Markov process.

5.3.2 PBE of the game D

In this section, we provide a methodology to find PBE of the game D in the domain of
strategies that is time-invariant. Specifically, we seek equilibrium strategies that are struc-
tured in the sense that they depend on players’ common and private information through
belief states. In order to achieve this, at any time t, we summarize player i’s private infor-
mation, wi1:t, in the belief ξit , and its common information, a1:t−1, in the belief πt, where ξit
and πt are defined as follows. For a strategy profile g, let ξit(x

i
t) := P g(xit|a1:t−1, w

i
1:t) be

the belief of player i on its current type conditioned on its information, where ξit ∈ P(X i).
Also we define πit(ξ

i
t) := P g(ξit|a1:t−1) as common belief on ξit based on the common in-

formation of the players, a1:t−1, where πit ∈ P(P(X i)). As it will be shown later, due to
the independence of types and their evolution as independent controlled Markov processes,
for any strategy profile of the players, joint beliefs on types can be factorized as product of
their marginals i.e. πt(ξt) =

∏N
i=1 π

i
t(ξ

i
t). To accentuate this independence structure, we

define πt ∈ ×i∈NP(X i) as vector of marginal beliefs where πt := (πit)i∈N .
We now generate a player’s strategy in a canonical way, as is done in decentralized team

problems [Nayyar et al., 2013]. Using this approach, the player i’s actions are generated as
follows: player i at time t observes a common belief vector πt and takes action γit , where
γit : P(X i) → P(Ai) is a partial (stochastic) function from its private belief ξit to ait of
the form γit(a

i
t|ξit). These actions are generated through some policy θi = (θit)t∈T , θit :

×i∈NP(P(X i)) → {P(X i)→ P(Ai)}, that operates on the common belief vector πt so
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that γit = θit[πt]. Then, the generated policy of the form Ait ∼ θit[πt](·|ξit) is also a policy of
the form Ait ∼ git(·|a1:t−1, w

i
1:t) for an appropriately defined g. Although this is not relevant

to our proofs, similar to facts 3.1 and 3.2, it can be shown that these structured policies form
a sufficiently large set, which provides a good motivation for restricting attention to such
equilibria. Indeed, it can be shown that policies g are outcome equivalent to policies of
type θ, i.e., any expected total reward profile of the players that can be generated through
a general policy profile g can also be generated through some policy profile θ. In the
following Lemma, we present the update functions of the private belief ξit and the public
belief πit.

Lemma 5.2. There exist update functions F i, independent of players’ strategies g, such
that

ξit+1 = F i(ξit, w
i
t+1, at), (5.17)

and update functions F̄ i, independent of θ, such that

πit+1 = F̄ i(πit, γ
i
t, at). (5.18)

Thus πt+1 = F̄ (πt, γt, at) where F̄ is appropriately defined through (5.18).

Proof. The proofs are straightforward using Bayes’ rule and the fact that players’ type
and observation histories, X i

1:t,W
i
1:t, are conditionally independent across players given

the action history a1:t−1, and are provided in Appendix B.

Based on (5.17), we define an update kernel of ξit in (5.56) as Qi(ξit+1|ξit, at) :=

P (ξit+1|ξit, at). We now present the backward-forward algorithm to find PBE of the game
D, where strategies of the players are of type θ. The algorithm resembles the one presented
in chapter 3 for perfectly observable types.

5.3.2.1 Backward recursion

In this section, we define an equilibrium generating function θ = (θit)i∈N ,t∈T and a se-
quence of functions
(V i

t )i∈N ,t∈{1,2,...T+1}, where V i
t : ×i∈NP(P(X i)) × P(X i) → R, in a backward recursive

way, as follows.

1. Initialize ∀πT+1 ∈ ×i∈NP(P(X i)), ξiT+1 ∈ P(X i),

V i
T+1(πT+1, ξ

i
T+1) := 0. (5.19)

102



2. For t = T, T − 1, . . . 1, ∀πt ∈ ×i∈NP(P(X i)), let θt[πt] be generated as follows.
Set γ̃t = θt[πt], where γ̃t is the solution, if it exists1, of the following fixed point
equation, ∀i ∈ N , ξit ∈ P(X i),

γ̃it(·|ξit) ∈ arg max
γit(·|ξit)

Eγit(·|ξit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F̄ (πt, γ̃t, At),Ξ
i
t+1)

∣∣ξit} ,
(5.20)

where expectation in (5.20) is with respect to random variables (Xt, At,Ξ
i
t+1) through

the measure
ξt(xt)π

−i
t (ξ−it )γit(a

i
t|ξit)γ̃−it (a−it |ξ−it )Qi(ξit+1|ξit, at), F is defined in Lemma 5.5 and

Qi is defined in (5.56). Furthermore, set

V i
t (πt, ξ

i
t) := Eγ̃it(·|ξit)γ̃

−i
t , πt

{
Ri(Xt, At) + V i

t+1(F̄ (πt, γ̃t, At),Ξ
i
t+1)
∣∣ξit} . (5.21)

It should be noted that (5.20) is a fixed point equation where the maximizer γ̃it appears
in both, the left-hand-side and the right-hand-side of the equation. However, it is not the
outcome of the maximization operation as in a best response equation similar to that of a
Bayesian Nash equilibrium.

5.3.2.2 Forward recursion

Based on θ defined above in (5.19)–(5.21), we now construct a set of strategies β∗ and
beliefs µ∗ for the game D in a forward recursive way, as follows. As before, we will use
the notation µ∗

t
[a1:t−1] := (µ∗,it [a1:t−1])i∈N and µ∗t [a1:t−1] can be constructed from µ∗

t
[a1:t−1]

as µ∗t [a1:t−1](ξt) =
∏N

i=1 µ
∗,i
t [a1:t−1](ξit) where µ∗,it [a1:t−1] is a belief on ξit .

1. Initialize at time t = 0,

µ∗0[φ](ξ0) :=
N∏
i=1

δQix(ξ
i
0). (5.22)

1Similar to the existence results shown in [Ouyang et al., 2015], it can be shown that in the special case
where agent i’s instantaneous reward does not depend on its private type xit, and for uncontrolled types
and observations, the fixed point equation always has a type-independent, myopic solution γ̃it(·), since it
degenerates to a best-response-like equation.
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2. For t = 1, 2 . . . T, i ∈ N , ∀a1:t, w
i
1:t

β∗,it (ait|a1:t−1, w
i
1:t) := θit[µ

∗
t
[a1:t−1]](ait|ξit) (5.23a)

µ∗,it+1[a1:t] := F̄ (µ∗,it [a1:t−1], θit[µ
∗
t
[a1:t−1]], at) (5.23b)

where F̄ is defined in Lemma 5.5.

Theorem 5.1. A strategy and belief profile (β∗, µ∗), constructed through backward/forward
recursive algorithm is a PBE of the game, i.e. ∀i ∈ N , t ∈ T , (a1:t−1, w

i
1:t), β

i,

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}

≥ Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}
. (5.24)

Proof. The proof relies crucially on the specific fixed point construction in (5.20) and the
conditional independence structure of types and observations, and is provided in Appendix
C.

5.3.3 Informational cascades

In the following definition, we define informational cascades for a dynamic game with
asymmetric information, and for a given PBE of that game, as those public histories of the
game for which the future actions of the players are predictable.

Definition 5.1. For a given2 strategy and belief profile (β∗, µ∗) that constitute a PBE of the
game, and for any time t and a sequence of action profile at:T , informational cascades can
be defined as set of public histories hct of the game such that at hct and under (β∗, µ∗), actions
at:T are played almost surely, irrespective of players’ future private history realizations, i.e.
for a PBE (β∗, µ∗) and time t and actions at:T , cascades are defined by

Cat:Tt := {hct ∈ Hc
t | ∀i,∀n ≥ t,∀hin that are consistent with hct ,

and occur with non-zero probability, β∗,in (ain|hin) = 1}. (5.25)

We also call an informational cascade a constant informational cascade if action profiles in
the cascade are constant across time, i.e. for time t and action profile a, constant cascades

2A stronger notion of informational cascade could be defined for all PBE of the game.
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are defined by

Cat := {hct ∈ Hc
t | ∀i,∀n ≥ t,∀hin that are consistent with hct ,

and occur with non-zero probability, β∗,in (ai|hin) = 1}. (5.26)

For the general games considered in this section, which are dynamic game with asym-
metric information and independent types, a more useful definition of cascades is the fol-
lowing.

Definition 5.2. For a given equilibrium generating function θ, and for time t and actions
at:T , informational cascades are defined by the sets {C̃at:Tt }t=1,...T+1, which are defined as
follows. For t = T, T − 1, . . . 1,

C̃T+1 :=
{

All possible common beliefs πT+1

}
(5.27)

C̃at:Tt :=
{
πt | ∀i, ∀ξit ∈ supp(πit), θit[πt](ait|ξit) = 1 and F̄ (πt, θt[πt], at) ∈ C̃

at+1:T

t+1

}
(5.28)

A constant informational cascade for time t and actions profile a is defined as,

C̃T+1 :=
{

All possible common beliefs πT+1

}
(5.29)

C̃at :=
{
πt | ∀i, ∀ξit ∈ supp(πit), θit[πt](ai|ξit) = 1 and F̄ (πt, θt[πt], a) ∈ C̃at+1

}
(5.30)

In the following lemma, we show the connection between the two definitions.

Lemma 5.3. Let (β∗, µ∗) be an SPBE of a dynamic game with asymmetric information
and independent types, generated by an equilibrium generating function θ. Then ∀t, at:T ,

(µ∗t )
−1(C̃at:Tt ) = Cat:Tt (5.31)

Proof. See Appendix E.

Corollary 5.1. Let (β∗, µ∗) be an SPBE of a dynamic game with asymmetric information
and independent types, generated by an equilibrium generating function θ. Then ∀t, a,

(µ∗t )
−1(C̃at ) = Cat (5.32)

5.3.4 Specific learning model

We now consider a specific model that captures the learning aspect in a dynamic setting
with strategic agents and decentralized information. The model is similar in spirit to the
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model considered in [Bikhchandani et al., 1992, Smith and Sörensen, 2000] except we
consider a finite number of players who take action in every epoch and stay in the game
throughout the entire duration of the game. We assume that players’ types are uncontrol-
lable and static i.e. Qi

x(x
i
t+1|xit, at) = δxit(x

i
t+1), where X i = {−1, 1}. Since the set of

types, X i is has cardinality 2, the measure ξit can be sufficiently described by ξit(1). Hence-
forth, in this section and in Appendix F, with slight abuse of notation, we denote ξit(1) by
ξit ∈ [0, 1]. In each epoch t, player imakes independent observation wit about its type where
W i = {−1, 1}, through an observation kernel of the form Qi

w(wit|xit, ait−1), which does not
depend on a−it−1. Based on its information, it takes action ait, where Ai = {0, 1}, and earns
an instantaneous reward given by

Ri(x, ait) = ait

(
λxi + λ̄

∑
j 6=i x

j

N − 1

)
, (5.33)

where λ ∈ [0, 1], λ̄ = 1 − λ. This scenario can thought of the case when players’ types
represent their talent, capabilities or popularity, and a player makes a decision to either
choose (action = 1) or not choose (action = 0) these players, where its instantaneous re-
ward depends on some combination of the capabilities of all the players. We note that the
instantaneous reward does not depend on other players’ actions but on their types, and thus
learning players’ types is an important aspect of the problem.

5.3.4.1 Partially controlled observations

We consider the case where observations of the player i do depend on other players’ actions,
i.e. the observation kernel is of the form Qi

w(wit|xit, ait−1). These observations are made
through a binary symmetric channel such that Qi

w(1|1, ai) = Qi
w(−1| − 1, ai) = 1 − pai

and Qi
w(−1|1, ai) = Qi

w(1| − 1, ai) = pai , where p1 ≤ p0 < 1/2. This model implies that
taking action 1 can improve the quality of a player’s future private belief. In this case, the
update functions of ξit and πit in (5.17), (5.18) reduce to

ξit+1 = F i(ξit, w
i
t+1, a

i
t), (5.34a)

πit+1 = F̄ i(πit, γ
i
t, a

i
t), (5.34b)
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and (5.20) in the backward recursion reduces to

γ̃it(·|ξit) ∈ arg max
γit(·|ξit)

∑
ait

aitγ
i
t(a

i
t|ξit)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))

+ Eγit(·|ξit)γ̃
−i
t , πt

{
V i
t+1(F̄ (πt, γ̃t, At),Ξ

i
t+1)

∣∣ξit} , (5.35)

For the learning model considered in Section 5.3.4, we characterize constant informa-
tional cascades through a time invariant set Ĉa of common beliefs π, defined as follows.
Let

Ĉa :=

{
π | ∀i, 1

2
− λ̄

λ
(ξ̂−i − 1

2
) ≥ 1 if ai = 0,

1

2
− λ̄

λ
(ξ̂−i − 1

2
) ≤ 0 if ai = 1

}
(5.36)

where

ξ̂−i :=
1

N − 1

∑
j 6=i

Eπj [Ξj]. (5.37)

In the following theorem we show that the set Ĉa defined in (5.36) characterizes a set of
constant informational cascades for this problem. Specifically, we show that Ĉa ⊂ C̃a.

Theorem 5.2. If, for some time t0 and action profile a, πt0 ∈ Ĉ
a, then ∀t ≥ t0, πt ∈ Ĉa and

solutions of (5.35) satisfy γ̃it(a
i|ξit) = 1 ∀ξit ∈ [0, 1]. Moreover, for t0 ≤ t ≤ T , V i

t is given
by

V i
t (πt, ξ

i
t) = (T − t+ 1)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))ai ∀πt ∈ Ĉa. (5.38)

Proof. See Appendix F.

5.3.5 Discussion

We characterize informational cascades by those histories of the game where learning stops
for the players as a whole. Conceptually, they could be thought of as absorbing states of the
system. It begets questions regarding the dynamics of the process that could lead to those
states, for example hitting times of such sets and absorption probabilities. For the simplified
problem considered in [Bikhchandani et al., 1992], cascades can be characterized as the
fixed points of common belief update function, so that the common belief gets “stuck” once
it reaches that state. It was shown that cascades eventually occur with probability 1 for that
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model. For the learning model considered in this section, common beliefs πt still evolve
in a cascade, although uninformatively, i.e., their evolution is directed by the primitives of
the process and not on the new random variables being generated, namely, players’ private
observations. Also, if players’ observations are informative, they asymptotically learn their
true types, i.e., their private beliefs converge to dirac delta function on their true types.
One trivial case when cascades could occur for this model is if the system was born in
a cascade, i.e., the initial common belief, based on the prior distributions, is in cascades,
π1 ∈ Ĉa. In general, a cascade could occur as follows. Suppose all players have low types
(i.e. xi = −1), but they get atypical observations initially, which lead them into believing
that their types are high (xi = 1). This information is conveyed through their actions,
which leads the public belief into a cascade. Interestingly, even though players eventually
learn their true types, yet they remain in a (bad) cascade, each player believing that others
have high types on average.

5.4 Conclusion

In this chapter we studied Bayesian learning dynamics of specific dynamic games with
asymmetric information. We first considered an ergodic sequential buyers’ game where a
countable number of strategic buyers buy a product exactly once in the game. We model the
team problem as an instance of decentralized stochastic control problem and characterize
structure of optimum policies. When users are strategic, it is modeled as a dynamic game
with asymmetric information. We show that for some set πt ∈ S that occurs with high
probability, the strategic optimal policy coincides with the team optimal policy. Thus only
outside this set, i.e., when πt ∈ Sc, buyers need to be incentivized to report their observa-
tions so that higher average rewards can be achieved for the whole team. Since numerically
Sc occurs with low probability, the expected incentive payments are low. However, even
though infrequent, these incentives help in the learning for the team as a whole, specifically
for the future users. This suggests that using such a mechanism for the more general case
could be a useful way to bridge the gap between strategic and team objectives.

In second part, we considered a more general scenario where players could participate
in the game throughout the duration of the game. Players’ types evolved as conditionally
independent controlled Markov processes and players made noisy observations of their
types. We first presented a sequential decomposition methodology to find SPBE of the
game. We then studied a specific learning model and characterized information cascades
using the general methodology described before. In general, the methodology presented
serves as a framework for studying learning dynamics of decentralized systems with strate-
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gic agents. Some important research directions include characterization of cascades for
specific classes of models, studying convergent learning behavior in such games including
the probability and the rate of “falling” into a cascade, and incentive or mechanism design
to avoid bad cascades.

5.5 Appendix A (Proof of Lemma 5.1)

Claim 5.1. There exists an update function F , independent of ψ such that
πt+1 = F (πt, γt, at, bt).

Proof. Fix ψ

πt+1(xt+1) =Pψ(xt+1|a1:t, b1:t, γ1:t) (5.39a)

=
∑
xt

Pψ(xt+1, xt|a1:t, b1:t, γ1:t) (5.39b)

=
∑
xt

Pψ(xt|a1:t, b1:t, γ1:t)Q̂(xt+1|xt) (5.39c)

Now,

Pψ(xt|a1:t, b1:t, γ1:t) =
Pψ(xt, at, bt|a1:t−1b1:t−1, γ1:t)∑
x̂t
Pψ(x̂t, at, bt|a1:t−1, b1:t−1, γ1:t)

(5.40a)

= Pψ(xt|a1:t−1, b1:t−1, γ1:t)×∑
vt
Pψ(at, bt, vt|a1:t−1, b1:t−1, γ1:t, xt)∑
x̂t
P (x̂t, at, bt|a1:t−1, b1:t−1, γ1:t)

(5.40b)

=
Pψ(xt|a1:t−1b1:t−1, γ1:t−1)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|xt)∑

x̂t
Pψ(x̂t|a1:t−1b1:t−1, γ1:t−1)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

(5.40c)

where first part in numerator in (5.40c) is true since given policy ψ, γt can be computed as
γt = ψt(a1:t−1, b1:t−1).

We conclude that

P (xt|a1:t, γ1:t) =
πt(xt)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|xt)∑

x̂t
πt(x̂t)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

, (5.41)

thus,

πt+1 = F (πt, γt, at, bt) (5.42)
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where F is independent of policy ψ.

Claim 5.2. (Πt,Γt)t is a controlled Markov process with state Πt and action Γt such that

Pψ(πt+1|π1:t, γ1:t) = P (πt+1|πt, γt) (5.43)

Eψ{R(Xt, At, Bt)|a1:t−1, b1:t−1, γ1:t} = E{R(Xt, At, Bt)|πt, γt} (5.44)

=: R̂(πt, γt) (5.45)

Proof.

Pψ(πt+1|π1:t, γ1:t) =
∑
at,bt

Pψ(πt+1, at, bt|π1:t, γ1:t) (5.46a)

=
∑
at,bt

1{F (πt,γt,at,bt)}(πt+1)
∑
vt

Pψ(at, bt, vt|π1:t, γ1:t) (5.46b)

=
∑
at,bt,xt

1{F (πt,γt,at,bt)}(πt+1)Pψ(xt|π1:t, γ1:t)
∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt)

(5.46c)

=
∑
at,bt,xt

πt(xt)1{F (πt,γt,at,bt)}(πt+1)
∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt)

(5.46d)

= P (πt+1|πt, γt) (5.46e)

E(R(Xt, At, Bt)|π1:t, γ1:t) =
∑

xt,at,btvt

R(xt, at, bt)P (xt, at, bt, vt|π1:t, γ1:t) (5.47a)

=
∑
xt,at,bt

R(xt, at, bt)P (xt|π1:t, γ1:t)
∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt)

(5.47b)

=
∑
xt,at,bt

R(xt, at, bt)πt(xt)
∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt)

(5.47c)

= R̂(πt, γt) (5.47d)
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5.6 Appendix B (Proof of Lemma 5.2)

Lemma 5.4. There exists an update function F i, independent of g, such that

ξit+1 = F i(ξit, w
i
t+1, at). (5.48)

Proof. We first prove the following Claim on conditional independence of x1:t, w1:t given
a1:t−1.

Claim 5.3. For any policy profile g and ∀t,

P g(x1:t, w1:t|a1:t−1) =
N∏
i=1

P gi(xi1:t, w
i
1:t|a1:t−1) (5.49)

Proof.

P g(x1:t, w1:t|a1:t−1)

=
P g(x1:t, w1:t, a1:t−1)∑

x1:t,w1:t
P g(x1:t, w1:t, a1:t−1)

(5.50a)

=

∏N
i=1Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)∑

x1:t,w1:t

∏N
i=1 Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)

(5.50b)

=

∏N
i=1Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)∏N

i=1

∑
xi1:t,w

i
1:t
Qi
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)

(5.50c)

=
N∏
i=1

Qi
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)∑

xi1:t,w
i
1:t
Qi
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)

Qi
w(win+1|xin+1, an)

(5.50d)

=
N∏
i=1

P gi(xi1:t, w
i
1:t|a1:t−1) (5.50e)
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Now for any g we have,

ξit+1(xit+1)
4
= P g(xit+1|a1:t, w

i
1:t+1) (5.51a)

=

∑
xit
P g(xit, at, x

i
t+1, w

i
t+1|a1:t−1, w

i
1:t)∑

x̃it+1x̃
i
t
P g(x̃it, at, w

i
t+1, x̃

i
t+1|a1:t−1, wi1:t)

(5.51b)

=

∑
xit
ξit(x

i
t)P

g(a−it |a1:t−1, w
i
1:t, x

i
t)Q

i
x(x

i
t+1|at, xit)Qi

w(wit+1|xit+1, at)∑
x̃it+1x̃

i
t
ξit(x̃

i
t)P

g(a−it |a1:t−1, wi1:t, x̃
i
t)Q

i
x(x̃

i
t+1|at, x̃it)Qi

w(wit+1|x̃it+1, at)
,

(5.51c)

where (5.51c) is true because ait is a function of (a1:t−1, w
i
1:t) and thus term involving

can be cancelled in numerator and denominator. We now consider the quantity
P g(a−it |a1:t−1w

i
1:tx

i
t)

P g(a−it |a1:t−1, w
i
1:t, x

i
t) =

∑
w−i

1:t

P g(a−it , w
−i
1:t|a1:t−1, w

i
1:t, x

i
t) (5.52a)

=
∑
w−i

1:t

P g(w−i1:t|a1:t−1, w
i
1:t, x

i
t)
∏
j 6=i

gjt (a
j
t |a1:t−1, w

j
1:t) (5.52b)

=
∑
w−i

1:t

P g−i(w−i1:t|a1:t−1)
∏
j 6=i

gjt (a
j
t |a1:t−1, w

j
1:t) (5.52c)

= P g−i(a−it |a1:t−1) (5.52d)

where (5.52c) follows from Claim 5.3 in Appendix A since w−i1:t is conditionally indepen-
dent of (wi1:t, x

i
t) given a1:t−1 and is only a function of g−i. Since this term does not depend

on xit, it gets cancelled in the final expression of ξit+1

ξit+1(xit+1) =

∑
xit
ξit(x

i
t)Q

i
x(x

i
t+1|xit, at)Qi

w(wit+1|xit+1, at)∑
x̃it+1

∑
xit
ξit(x

i
t)Q

i
x(x̃

i
t+1|xit, at)Qi

w(wit+1|x̃it+1, at)
. (5.53)

Thus the claim of the Lemma follows. Based on this claim, we can conclude that

ξit(x
i
t) = P g(xit|a1:t−1, w

i
1:t) = P (xit|a1:t−1, w

i
1:t). (5.54)
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Also, based on the update of ξit in (5.48), we define an update kernel

Qi(ξit+1|ξit, at) := P (ξit+1|ξit, at) (5.55)

=
∑

xit,x
i
t+1,w

i
t+1

ξit(x
i
t)Q

i
x(x

i
t+1|xit, at)Qi

w(wit+1|xit+1, at)IF (ξit,w
i
t+1,a

i
t
)(ξit+1)

(5.56)

Lemma 5.5. There exists an update function F̄ of πt, independent of ψ

πit+1 = F̄ (πit, γ
i
t, at) (5.57)

Proof.

πt+1(ξt+1)

= Pψ(ξt+1|a1:t, γ1:t+1) (5.58a)

= Pψ(ξt+1|a1:t, γ1:t) (5.58b)

=

∑
ξt,xt,xt+1,wt+1

Pψ(ξt, xt, at, xt+1, wt+1, ξt+1|a1:t−1, γ1:t)∑
ξt
Pψ(ξt, at|a1:t−1, γ1:t)

(5.58c)

=

∑
ξt,xt,xt+1,wt+1

∏N
i=1 π

i
t(ξ

i
t)ξ

i
t(x

i
t)γ

i
t(a

i
t|ξit)Qi

x(x
i
t+1|xit, at)Qi

w(wit+1|xit+1, at)

IF i(ξit,wit+1,at)
(ξit+1)∑

ξt

∏N
i=1 π

i
t(ξ

i
t)γ

i
t(a

i
t|ξit)

(5.58d)

=
N∏
i=1

∑
ξit,x

i
t,x

i
t+1,w

i
t+1
πit(ξ

i
t)ξ

i
t(x

i
t)γ

i
t(a

i
t|ξit)Qi

x(x
i
t+1|xit, at)Qi

w(wit+1|xit+1, at)

IF i(ξit,wit+1,at)
(ξit+1)∑

ξit
πit(ξ

i
t)γ

i
t(a

i
t|ξit)

(5.58e)

Thus we have,

πt+1 =
N∏
i=1

F̄ (πit, γ
i
t, at) (5.58f)

113



5.7 Appendix C (Proof of Theorem 5.1)

Proof. We prove (5.24) using induction and from results in Lemma 5.6, 5.7 and 5.8 proved
in Appendix D. For base case at t = T , ∀i ∈ N , (a1:T−1, w

i
1:T ) ∈ Hi

T , β
i

Eβ
∗,i
T β∗,−i

T , µ∗T [a1:T−1]
{
Ri(XT , AT )

∣∣a1:T−1, w
i
1:T

}
= V i

T (µ∗
T

[a1:T−1], ξiT ) (5.59a)

≥ EβiT β
∗,−i
T , µ∗T [a1:T−1]

{
Ri(XT , AT )

∣∣a1:T−1, w
i
1:T

}
(5.59b)

where (5.59a) follows from Lemma 5.8 and (5.59b) follows from Lemma 5.6 in Appendix
D.

Let the induction hypothesis be that for t+ 1, ∀i ∈ N , (a1:t, w
i
1:t+1) ∈ Hi

t+1, β
i,

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, w

i
1:t+1

}

≥ Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, w

i
1:t+1

}
. (5.60a)
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Then ∀i ∈ N , (a1:t−1, w
i
1:t) ∈ Hi

t, β
i, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}
= V i

t (µ∗
t
[a1:t−1], ξit) (5.61a)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)
∣∣a1:t−1, w

i
1:t

}
(5.61b)

= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, w

i
1:tW

i
t+1

}∣∣a1:t−1, w
i
1:t

}
(5.61c)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβit+1:T β
∗,−i
t+1:Tµ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣a1:t−1, w
i
1:t

}
(5.61d)

= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβit:T β
∗,−i
t:T µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣a1:t−1, w
i
1:t

}
(5.61e)

= Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}
, (5.61f)

where (5.61a) follows from Lemma 5.8, (5.61b) follows from Lemma 5.6, (5.61c) follows
from Lemma 5.8, (5.61d) follows from induction hypothesis in (5.60a) and (5.61e) follows
from Lemma 5.7. Moreover, construction of θ in (5.20), and consequently definition of β∗

in (5.23a) are pivotal for (5.61e) to follow from (5.61d).
We note that µ∗ satisfies the consistency condition of [Fudenberg and Tirole, 1991, p.

331] from the fact that (a) for all t and for every common history a1:t−1, all players use
the same belief µ∗t [a1:t−1] on xt and (b) the belief µ∗t can be factorized as µ∗t [a1:t−1] =∏N

i=1 µ
∗,i
t [a1:t−1] ∀a1:t−1 ∈ Hc

t where µ∗,it is updated through Bayes’ rule (F̄ ) as in Lemma 5.5
in Appendix A.
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5.8 Appendix D

Lemma 5.6. ∀t ∈ T , i ∈ N , (a1:t−1, w
i
1:t) ∈ Hi

t, β
i
t

V i
t (µ∗

t
[a1:t−1], ξit) ≥

Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[a1:t−1], β∗t (·|a1:t−1, ·), At),Ξi

t+1)
∣∣a1:t−1, w

i
1:t

}
.

(5.62)

Proof. We prove this Lemma by contradiction.
Suppose the claim is not true for t. This implies ∃i, β̂it , â1:t−1, ŵ

i
1:t such that

Eβ̂itβ
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣â1:t−1, ŵ

i
1:t

}
> V i

t (µ∗
t
[â1:t−1], ξ̂it). (5.63)

We will show that this contradicts the definition of V i
t in (5.21).

Construct γ̂it(a
i
t|ξit) =

{
β̂it(a

i
t|â1:t−1, ŵ

i
1:t) ξit = ξ̂it

arbitrary otherwise.
Then for â1:t−1, ŵ

i
1:t, we have

V i
t (µ∗

t
[â1:t−1], ξ̂it) =

max
γit(·|ξ̂it)

Eγit(·|ξ̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣ξ̂it}

(5.64a)

≥ Eγ̂it(·|ξ̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣ξ̂it}

(5.64b)

=
∑

ξ−it ,at,ξt+1

{
Ri(xt, at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), ξit+1)

}
×

ξ̂it(x
i
t)ξ
−i
t (x−it )µ∗,−it [â1:t−1](ξ−it )γ̂it(a

i
t|ξ̂it)β

∗,−i
t (a−it |â1:t−1, ξ

−i
t )Qi(ξit+1|ξ̂it, at) (5.64c)

=
∑

ξ−it ,at,ξt+1

{
Ri(xt, at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), ξit+1)

}
×

ξ̂it(x
i
t)ξ
−i
t (x−it )µ∗,−it [â1:t−1](ξ−it )β̂it(a

i
t|â1:t−1, ŵ

i
1:t)β

∗,−i
t (a−it |â1:t−1, ξ

−i
t )Qi(ξit+1|ξ̂it, at)

(5.64d)

= Eβ̂itβ
∗,−i
t ,µ∗t [â1:t−1]

{
Ri(Xt, At) (5.64e)

+V i
t+1(F (µ∗

t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣â1:t−1, ŵ

i
1:t

}
(5.64f)

> V i
t (µ∗

t
[â1:t−1], ξ̂it) (5.64g)
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where (5.64a) follows from the definition of V i
t in (5.21), (5.64d) follows from definition

of γ̂it and (5.64g) follows from (5.63). However this leads to a contradiction.

Lemma 5.7. ∀i ∈ N , t ∈ T , (a1:t, w
i
1:t+1) ∈ Hi

t+1 and βit

Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, w

i
1:t+1

}

= Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, w

i
1:t+1

}
. (5.65)

Thus the above quantities do not depend on βit .

Proof. Essentially this claim stands on the fact that µ∗,−it+1 [a1:t] can be updated from
µ∗,−it [a1:t−1], β∗,−it and at, as µ∗,−it+1 [a1:t] =

∏
j 6=i F̄ (µ∗,−it [a1:t−1], β∗,−it , at) as in Lemma 5.5.

Since the above expectations involve random variables Xt+1:T , At+1:T ,, we consider
P βit:T β

∗,−i
t:T , µ∗t [a1:t−1](xt+1:T , at+1:T

∣∣a1:t, w
i
1:t+1).

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](xt+1:T , at+1:T

∣∣a1:t, w
i
1:t+1)

=
P βit:T β

∗,−i
t:T , µ∗t [a1:t−1](at, xt+1, w

i
t+1, at+1:T , xt+2:T

∣∣a1:t−1, w
i
1:t)

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at, wit+1

∣∣a1:t−1, wi1:t)
(5.66a)

=
Nr1

Dr1

(5.66b)

We consider the numerator and the denominator separately. The numerator in (5.66a) is
given by

Nr1 =
∑
xt,ξ

−i
t

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](xt, ξ

−i
t

∣∣a1:t−1, w
i
1:t)β

i
t(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ

−i
t )

Qx(xt+1|xt, at)Qi
w(wit+1|xit+1, at)P

βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt:t+1)

(5.66c)

=
∑
xt,ξ

−i
t

ξt(xt)µ
∗,−i
t [a1:t−1](ξ−it )βit(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ

−i
t )Qx(xt+1|xt, at)

Qi
w(wit+1|xit+1, at)P

βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt+1)

(5.66d)

where (5.66d) follows from the fact that probability on (at+1:T , x2+t:T ) given a1:t, w
i
1:t+1,

xt:t+1, µ∗t [a1:t−1] depends on a1:t, w
i
1:t+1, xt+1, µ∗t+1[a1:t] through βit+1:Tβ

∗,−i
t+1:T . Similarly,

the denominator in (5.66a) is given by
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Dr1 =
∑

x̃t,ξ̃
−i
t ,x̃it+1

P βit:T β
∗,−i
t:T , µ∗t (x̃t, ξ

−i
t |a1:t−1, w

i
1:t)β

i
t(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ̃

−i
t )

Qi
x(x̃

i
t+1|x̃it, at)Qi

w(wit+1|x̃it+1, at) (5.66e)

=
∑

x̃t,ξ̃
−i
t ,x̃it+1

ξit(x̃
i
t)ξ̃
−i
t (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )βit(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ̃

−i
t )

Qi
x(x̃

i
t+1|x̃it, at)Qi

w(wit+1|x̃it+1, at) (5.66f)

By canceling the terms βit(·) in the numerator and the denominator, (5.66a) is given by

Nr2

Dr2

× P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt+1) (5.66g)

where

Nr2 =
∑
xt,ξ

−i
t

ξt(xt)µ
∗,−i
t [a1:t−1](ξ−it )β∗,−it (a−it |a1:t−1, ξ

−i
t )Qx(xt+1|xt, at)Qi

w(wit+1|xit+1, at)

(5.66h)

Dr2 =
∑

x̃t,ξ̃
−i
t ,x̃it+1

ξit(x̃
i
t)ξ̃
−i
t (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )β∗,−it (a−it |a1:t−1, ξ̃

−i
t )Qi

x(x̃
i
t+1|x̃it, at)

Qw(wit+1|x̃it+1, at) (5.66i)

which can be written as

Nr3

Dr3

× P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt+1) (5.66j)

where

Nr3 =
∑
xit

ξit(x
i
t)Q

i
x(x

i
t+1|xit, ait)Qi

w(wit+1|xit+1, at)×∑
x−it ,ξ−it

ξ−it (x−it )µ∗,−it [a1:t−1](ξ−it )β∗,−it (a−it |a1:t−1, ξ
−i
t )Q−ix (x−it+1|x−it , at)

Dr3 =
∑
x̃it,x̃

i
t+1

ξit(x̃
i
t)Q

i
x(x̃

i
t+1|x̃it, at)Qw(wit+1|x̃it+1, at)×∑

x̃−it ,ξ̃−it

ξ̃−it (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )β∗,−it (a−it |a1:t−1, ξ̃
−i
t ) (5.66k)
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which is equal to

= ξt+1(xt+1)µ∗,−it+1 [a1:t](ξ
−i
t+1)P βit+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t, xt+1) (5.66l)

= P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](xt+1, at+1:T , xt+2:T |a1:t, w

i
1:t+1), (5.66m)

Lemma 5.8. ∀i ∈ N , t ∈ T , a1:t−1 ∈ Hc
t , w

i
1:t ∈ (W i)t

V i
t (µ∗

t
[a1:t−1], ξit) = Eβ

∗,i
t:T β

∗,−i
t:T ,µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}
. (5.67)

Proof. We prove the Lemma by induction. For t = T ,

Eβ
∗,i
T β∗,−i

T , µ∗T [a1:T−1]
{
Ri(XT , AT )

∣∣a1:T−1, w
i
1:T

}
=
∑
x−iT aT

Ri(xT , aT )ξT (xT )µ∗T [a1:T−1](ξ−iT )β∗,iT (aiT |a1:T−1, ξ
i
T )β∗,−iT (a−iT |a1:T−1, ξ

−i
T )

(5.68a)

= V i
T (µ∗

T
[a1:T−1], ξiT ), (5.68b)

where (5.68b) follows from the definition of V i
t in (5.21) and the definition of β∗T in the

forward recursion in (5.23a).
Suppose the claim is true for t+ 1, i.e., ∀i ∈ N , t ∈ T , (a1:t, w

i
1:t+1) ∈ Hi

t+1

V i
t+1(µ∗

t+1
[a1:t], ξ

i
t+1) = Eβ

∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t, w

i
1:t+1

}
. (5.69)
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Then ∀i ∈ N , t ∈ T , (a1:t−1, w
i
1:t) ∈ Hi

t, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣a1:t−1, w

i
1:t

}
= Eβ

∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣a1:t−1, w
i
1:t

}
(5.70a)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣a1:t−1, w
i
1:t

}
(5.70b)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)
∣∣a1:t−1, w

i
1:t

}
(5.70c)

= Eβ
∗,i
t β∗,−i

t , µ∗t [a1:t−1]
{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)

∣∣a1:t−1, w
i
1:t

}
(5.70d)

= V i
t (µ∗

t
[a1:t−1], ξit), (5.70e)

where (5.70b) follows from Lemma 5.7 in Appendix D, (5.70c) follows from the induction
hypothesis in (5.69), (5.70d) follows because the random variables involved in expectation,
X−it , At, X

i
t+1 do not depend on β∗,it+1:Tβ

∗,−i
t+1:T and (5.70e) follows from the definition of β∗t

in the forward recursion in (5.23a), the definition of µ∗t+1 in (5.23b) and the definition of
V i
t in (5.21).

5.9 Appendix E (Proof of Lemma 5.3)

Proof. We will prove the result by induction on t. The result is vacuously true for T + 1.
Suppose it is also true for t+ 1, i.e.

(µ∗t+1)−1(C̃at+1:T

t+1 ) = Cat+1:T

t+1 . (5.71)

We show that the result holds true for t. In the following two cases, we show that if there
exists an element in one set, it also belongs to the other. From the contrapositive of the
statement, if one is empty, so is the other.

Case 1. We prove (µ∗t )
−1(C̃at:Tt ) ⊂ Cat:Tt

Let hct ∈ (µ∗t )
−1(C̃at:Tt ). We will show that hct ∈ C

at:T
t .

120



Since hct ∈ (µ∗t )
−1(C̃at:Tt ), this implies µ∗t [h

c
t ] ∈ C̃

at:T
t . Then by the definition of

C̃at:Tt , ∀i, ∀ξit ∈ supp(µ
∗,i
t [hct ]), θ

i
t[µ
∗
t [h

c
t ]](a

i
t|ξit) = 1. Since ξit(x

i
t) = P (xit|hit) ∀xit,

µ∗,it [hct ](ξ
i
t) = P θ(ξit|hct) ∀ξit and β∗,it (ait|hit) = θit[µ

∗
t [h

c
t ]](a

i
t|ξit) by the definition

of β∗, this implies ∀i, β∗,it (ait|hit) = 1, ∀hit that are consistent with hct and occur
with non-zero probability.

Also since µ∗t [h
c
t ] ∈ C̃

at:T
t , this implies F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at) ∈ C̃

at+1:T

t+1 by defi-
nition of C̃at:Tt . Thus µ∗t+1[hct , at] ∈ C̃

at+1:T

t+1 , since µ∗t+1[hct , at] =

F̄ ([µ∗t [h
c
t ], θt[µ

∗
t [h

c
t ]], at) by definition. Using the induction hypothesis, (hct , at) ∈

Cat+1:T

t+1 , which implies ∀i, β∗,in (ain|hin) = 1, ∀n ≥ t + 1,∀hin that are consistent
with (hct , at) and occur with non-zero probability.

The above two facts conclude that ∀i, β∗,in (ain|hin) = 1, ∀n ≥ t,∀hin that are
consistent with hct and occur with non-zero probability, which implies hct ∈ C

at:T
t

by the definition of Cat:Tt .

Case 2. We prove (µ∗t )
−1(C̃at:Tt ) ⊃ Cat:Tt .

Let hct ∈ C
at:T
t . We will show that µ∗t [h

c
t ] ∈ C̃

at:T
t .

Since hct ∈ C
at:T
t , this implies ∀i, β∗,it (ait|hit) = 1, ∀hit that are consistent with hct

and occur with non-zero probability. Since β∗,it (ait|hit) = θit[µ
∗
t [h

c
t ]](a

i
t|ξit), by the

definition of β∗, where ξit(x
i
t) = P (xit|hit) ∀xit, this implies ∀i, θit[µ∗t [hct ]](ait|ξit) =

1,∀ξit ∈ supp(µ
∗,i
t [hct ]), where µ∗,it [hct ](ξ

i
t) = P θ(ξit|hct) ∀ξit .

Also, since hct ∈ C
at:T
t , it is implied by the definition of Cat:Tt that (hct , at) ∈ C

at+1:T

t+1 .
This implies µ∗t+1[hct , at] ∈ C̃

at+1:T

t+1 by the induction hypothesis. Since, by defini-
tion, µ∗t+1[hct , at] = F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at), this implies F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at)

∈ C̃at+1:T

t+1 .

Since we have shown that ∀i, θit[µ∗t [hct ]](ait|ξit) = 1,∀ξit ∈ supp(µ∗t [hct ]) and
F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at) ∈ C̃

at+1:T

t+1 , this implies µ∗t [h
c
t ] ∈ C̃

at:T
t by the definition of

C̃at:Tt .

The above two cases complete the induction step.

5.10 Appendix F (Proof of Theorem 5.2)

Proof. We prove this by induction on t0. For t0 = T , (5.35) reduces to

γ̃iT (·|ξiT ) ∈ arg max
γiT (·|ξiT )

∑
aiT

aiTγ
i
T (aiT |ξiT )(λ(2ξiT − 1) + λ̄(2ξ̂−iT − 1)), (5.72)

121



and since πT ∈ Ĉa, it is easy to verify that γ̃iT (ai|ξiT ) = 1, ∀ξiT ∈ [0, 1] and thus V i
T (πT , ξ

i
T )

= (λ(2ξiT − 1) + λ̄(2ξ̂−iT − 1))ai. This establishes the base case.
Now, suppose the claim is true for t0 = τ+1 i.e. if πτ+1 ∈ Ĉa, then ∀t ≥ τ+1, πt ∈ Ĉa

and γ̃it(a
i|ξit) = 1 ∀ξit ∈ [0, 1]. Moreover, for τ + 1 ≤ t ≤ T , V i

t is given by

V i
t (πt, ξ

i
t) = (T − t+ 1)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))ai ∀πt ∈ Ĉa. (5.73)

Then if πτ ∈ Ĉa, then γ̃iτ (a
i|ξiτ ) = 1 ∀ξiτ ∈ [0, 1] satisfies (5.35) since,

γ̃iτ (·|ξiτ ) ∈ arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ Eγiτ (·|ξiτ )γ̃−iτ , πτ
{
V i
τ+1(F (πτ , γ̃τ , Aτ ),Ξ

i
τ+1)

∣∣ξiτ} (5.74)

∈ arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ Eγiτ (·|ξiτ )γ̃−iτ , πτ
{

(T − τ)(λ(2Ξi
τ+1 − 1) + λ̄(2Ξ̂−iτ+1 − 1))ai|ξiτ

}
(5.75)

∈ arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ (T − τ)(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))ai (5.76)

∈ arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1)), (5.77)

where (5.75) follows from the fact that F (πτ , γ̃τ , aτ ) ∈ Ca ∀aτ , as shown in Claim 5.4,
and induction hypothesis, (5.76) follows from Claim 5.4 and Claim 5.5, and (5.77) follows
from the fact that the second term does not depend on γiτ (·|ξiτ ). This also shows that

V i
τ (π−iτ , ξ

i
τ ) = (T − τ + 1)(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))ai, (5.78)

which completes the induction step.

Claim 5.4. Mean of the distribution πit+1(ξit+1(1)), under non-informative γ̃it of the form
γ̃it(a

i|ξit(1)) = 1 ∀ξit(1) ∈ [0, 1], is the same as mean of πit(ξ
i
t(1)), i.e.,

E{Ξi
t+1(1)|πit, γ̃it, ai} = E{Ξi

t(1)|πit} (5.79)
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Proof.

E{Ξi
t+1(1)|πit, γ̃it, ai}

=
∑
ξit+1(1)

ξit+1(1)F̄ i(πit, γ̃
i
t, a

i)(ξit+1(1)) (5.80)

=

∑
ξit,x

i,ξit+1(1) ξ
i
t+1(1)πit(ξ

i
t)ξ

i
t(x

i)γ̃it(a
i
t|ξit)Qi

w(wit+1|xi, at)IF i(ξit,wit+1,at)(1)(ξ
i
t+1(1))∑

ξit,x
i,wit+1

πit(ξ
i
t)ξ

i
t(x

i)γ̃it(a
i
t|ξit)

(5.81)

=

∑
ξit,x

i,wit+1,ξ
i
t+1(1) ξ

i
t+1(1)πit(ξ

i
t)ξ

i
t(x

i)Qi
w(wit+1|xi, ai)IF i(ξit,wit+1,a

i)(1)(ξ
i
t+1(1))∑

ξit,x
i πit(ξ

i
t)ξ

i
t(x

i)
(5.82)

=
∑

ξit,x
i,wit+1

F i(ξit, w
i
t+1, a

i)(1)πit(ξ
i
t)ξ

i
t(x

i)Qi
w(wit+1|xi, ai) (5.83)

=
∑
ξit,w

i
t+1

ξit(1)Qi
w(wit+1|1, ai)∑

x̃i ξ
i
t(x̃

i)Qi
w(wit+1|x̃i, ai)

πit(ξ
i
t)
∑
xi

ξit(x
i)Qi

w(wit+1|xi, ai) (5.84)

=
∑
ξit

ξit(1)πit(ξ
i
t(1)) (5.85)

= E{Ξi
t(1)|πit} (5.86)

Claim 5.5. For any γit ,

E{Ξi
t+1(1)|ξit, γit} = ξit(1) (5.87)

Proof.

E{Ξi
t+1(1)|ξit, γit}

=
∑

xi,wit+1,a
i
t,ξ
i
t+1(1)

ξit+1(1)IF̄ i(ξit,wit+1,a
i
t)(1)(ξ

i
t+1(1))ξit(x

i)Qi
w(wit+1|xi, ait)γit(ait|ξit) (5.88)

=
∑

xi,wit+1,a
i
t

F̄ i(ξit, w
i
t+1, a

i
t)(1)ξit(x

i)Qi
w(wit+1|xi, ait)γit(ait|ξit) (5.89)

=
∑

ait,w
i
t+1

ξit(1)Qi
w(wit+1|1, ait)∑

x̃i ξ
i
t(x̃

i)Qi
w(wit+1|x̃i, ait)

γit(a
i
t|ξit)

∑
xi

ξit(x
i)Qi

w(wit+1|xi, ait) (5.90)

=
∑

ait,w
i
t+1

ξit(1)Qi
w(wit+1|1, ait)γit(ait|ξit) (5.91)

= ξit(1) (5.92)
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[Smith and Sörensen, 2000] Smith, L. and Sörensen, P. (2000). Pathological outcomes of
observational learning. Econometrica, 68(2):371–398.

[Srinivasan et al., 2003] Srinivasan, V., Nuggehalli, P., Chiasserini, C. F., and Rao, R.
(2003). Cooperation in wireless ad hoc networks. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies,
volume 2, pages 808–817 vol.2.

[van der Meulen, 1971] van der Meulen, E. C. (1971). Three-terminal communication
channels. Adv. Appl. Prob., pages 120–154.

[Vasal and Anastasopoulos, 2011] Vasal, D. and Anastasopoulos, A. (2011). Energy de-
lay tradeoff in cooperative communication. CSPL technical report 406, University of
Michigan, Ann Arbor, MI. can be downloaded from http://www.eecs.umich.
edu/systems/TechReportList.html.

[Vasal and Anastasopoulos, 2014] Vasal, D. and Anastasopoulos, A. (2014). Stochastic
control of relay channels with cooperative and strategic users. Communications, IEEE
Transactions on, 62(10):3434–3446.

[Vasal and Anastasopoulos, 2016] Vasal, D. and Anastasopoulos, A. (2016). A systematic
process for evaluating structured perfect Bayesian equilibria in dynamic games with
asymmetric information. In American Control Conference, Boston, US. Available on
arXiv.

[Vickrey, 1961] Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed
tenders. The Journal of finance, 16(1):8–37.

[Witsenhausen, 1968] Witsenhausen, H. (1968). A counterexample in stochastic optimum
control. SIAM Journal on Control, 6(1):131–147.

[Witsenhausen, 1971] Witsenhausen, H. S. (1971). Separation of estimation and control
for discrete time systems. Proceedings of the IEEE, 59(11):1557–1566.

[Yang and Brown, 2007] Yang, J. and Brown, D.R., I. (2007). Energy efficient relaying
games in cooperative wireless transmission systems. In Signals, Systems and Comput-
ers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on,
pages 835–839.
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