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Abstract

We consider a finite horizon dynamic game with two players who observe their types privately and take

actions, which are publicly observed. Players’ types evolve as independent, controlled linear Gaussian processes

and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with

asymmetric information. We show that under certain conditions, players’ strategies that are linear in their private

types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is

shown that this is a signaling equilibrium due to the fact that future beliefs on players’ types are affected by the

equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward

algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate

covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance

matrices depend on equilibrium strategies.

I. INTRODUCTION

Linear quadratic Gaussian (LQG) team problems have been studied extensively under the framework

of classical stochastic control with single controller and perfect recall [1, Ch.7]. In such a system, the

state evolves linearly and the controller makes a noisy observation of the state which is also linear in the

state and noise. The controller incurs a quadratic instantaneous cost. With all basic random variables

being independent and Gaussian, the problem is modeled as a partially observed Markov decision

process (POMDP). The belief state process under any control law happens to be Gaussian and thus can

be sufficiently described by the corresponding mean and covariance processes, which can be updated

by the Kalman filter equations. Moreover, the covariance can be computed offline and thus the mean

(state estimate) is a sufficient statistic for control. Finally, due to the quadratic nature of the costs, the
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optimal control strategy is linear in the state. Thus, unlike most POMDP problems, the LQG stochastic

control problem can be solved analytically and admits an easy-to-implement optimal strategy.

LQG team problems have also been studied under non-classical information structure such as in

multi-agent decentralized team problems where two controllers with different information sets minimize

the same objective. Such systems with asymmetric information structure are of special interest today

because of the emergence of large scale networks such as social or power networks, where there are

multiple decision makers with local or partial information about the system. It is well known that

for decentralized LQG team problems, linear control policies are not optimal in general [2]. However

there exist special information structures, such as partially nested [3] and stochastically nested [4], where

linear control is shown to be optimal. Furthermore, due to their strong appeal for ease of implementation,

linear strategies have been studied on their own for decentralized teams even at the possibility of being

suboptimal (see [5] and references therein).

When controllers (or players) are strategic, the problem is classified as a dynamic game and an

appropriate solution concept is some notion of equilibrium. When players have different information

sets, such games are called games with asymmetric information. There are several notions of equilibrium

for such games, including perfect Bayesian equilibrium (PBE), sequential equilibrium, trembling hand

equilibrium [6], [7]. Each of these notions of equilibrium consists of a strategy and a belief profile of

all players where the equilibrium strategies are optimal given the beliefs and the beliefs are derived

from the equilibrium strategy profile and using Bayes’ rule (whenever possible), with some equilibrium

concepts requiring further refinements. Due to this circular argument of beliefs being consistent with

strategies which are in turn optimal given the beliefs, finding such equilibria is a difficult task. To date,

there is no known sequential decomposition methodology to find such equilibria for general dynamic

games with asymmetric information.

Authors in [8] studied a discrete-time dynamic LQG game with one step delayed sharing of

observations. Authors in [9] studied a class of dynamic games with asymmetric information under

the assumption that player’s posterior beliefs about the system state conditioned on their common

information are independent of the strategies used by the players in the past. Due to this independence

of beliefs and past strategies, the authors of [9] were able to provide a backward recursive algorithm

similar to dynamic programming to find Markov perfect equilibria [11] of a transformed game which



are equivalently a class of Nash equilibria of the original game. The same authors specialized their

results in [12] to find non-signaling equilibria of dynamic LQG games with asymmetric information.

Recently, we considered a general class of dynamic games with asymmetric information and

independent private types in [13] and provided a sequential decomposition methodology to find a class of

PBE of the game considered. In our model, beliefs depend on the players’ strategies, so our methodology

allows the possibility of finding signaling equilibria. In this paper, we build on this methodology to find

signaling equilibria for two-player dynamic LQG games with asymmetric information. We show that

players’ strategies that are linear in their private types in conjunction with consistent Gaussian beliefs

form a PBE of the game. Our contributions are:

(a) Under strategies that are linear in players’ private types, we show that the belief updates are

Gaussian and the corresponding mean and covariance are updated through Kalman filtering

equations which depend on the players’ strategies, unlike the case in classical stochastic control

and the model considered in [12]. Thus there is signaling [14], [15].

(b) We sequentially decompose the problem by specializing the forward-backward algorithm presented

in [13] for the dynamic LQG model. The backward algorithm requires, at each step, solving a fixed

point equation in ‘partial’ strategies of the players for all possible beliefs. We show that in this

setting, solving this fixed point equation reduces to solving a matrix algebraic equation for each

realization of the state estimate covariance matrices.

(c) The cost-to-go value functions are shown to be quadratic in the private type and state estimates,

which together with quadratic instantaneous costs and mean updates being linear in the control

action, implies that at every time t player i faces an optimization problem which is quadratic in

her control. Thus linear control strategies are shown to satisfy the optimality conditions in [13].

(d) For the special case of scalar actions, we provide sufficient algorithmic conditions for existence

of a solution of the algebraic matrix equation. Finally, we present numerical results on the steady

state solution for specific parameters of the problem.

The paper is structured as follows. In Section II, we define the model. In Section III, we introduce the

solution concept and summarize the general methodology in [13]. In Section IV, we present our main

results where we construct equilibrium strategies and belief through a forward-backward recursion. In

Section V we discuss existence issues and present numerical steady state solutions. We conclude in



Section VI.

A. Notation

We use uppercase letters for random variables and lowercase for their realizations. We use bold upper

case letters for matrices. For any variable, subscripts represent time indices and superscripts represent

player identities. We use notation −i to represent the player other than player i. We use notation at:t′

to represent vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector if t′ < t. We remove superscripts

or subscripts if we want to represent the whole vector, for example at represents (a1t , a
2
t ). We use δ(·)

for the Dirac delta function. We use the notation X ∼ F to denote that the random variable X has

distribution F . For any Euclidean set S , P(S) represents the space of probability measures on S with

respect to the Borel sigma algebra. We denote by P g (or Eg) the probability measure generated by

(or expectation with respect to) strategy profile g. We denote the set of real numbers by R. For any

random vector X and event A, we use the notation sm(·|·) to denote the conditional second moment,

sm(X|A) := E[XX†|A]. For any matrices A and B, we will also use the notation quad(·; ·) to denote

the quadratic function, quad(A; B) := B†AB. We denote trace of a matrix A by tr(A). N(x̂,Σ)

represents the vector Gaussian distribution with mean vector x̂ and covariance matrix Σ. All equalities

and inequalities involving random variables are to be interpreted in a.s. sense and inequalities in matrices

are to be interpreted in the sense of positive definitedness. All matrix inverses are interpreted as pseudo-

inverses.

II. MODEL

We consider a discrete-time dynamical system with 2 strategic players over a finite time horizon

T := {1, 2, . . . T} and with perfect recall. There is a dynamic state of the system xt := (x1t , x
2
t ), where

xit ∈ X i := Rni is private type of player i at time t which is perfectly observed by her. Player i at time t

takes action uit ∈ U i := Rmi after observing u1:t−1, which is common information between the players,

and xi1:t, which it observes privately. Thus at any time t ∈ T , player i’s information is u1:t−1, xi1:t.

Players’ types evolve linearly as

xit+1 = Ai
tx
i
t + Bi

tut + wit, (1)



where Ai
t,B

i
t are known matrices. (X1

1 , X
2
1 , (W

i
t )t∈T ) are basic random variables of the system which

are assumed to be independent and Gaussian such that X i
1 ∼ N(0,Σi

1) and W i
t ∼ N(0,Qi). As a

consequence, types evolve as conditionally independent, controlled Markov processes,

P (xt+1|u1:t, x1:t) = P (xt+1|ut, xt) =
2∏
i=1

Qi(xit+1|ut, xit). (2)

where Qi(xit+1|ut, xit) := P (wit = xit+1 − Ai
tx
i
t − Bi

tut). At the end of interval t, player i incurs an

instantaneous cost Ri(xt, ut),

Ri(xt, ut) = u†tT
iut + x†tP

ixt + 2u†tS
ixt

=
[
u†t x†t

]Ti Si

Si† Pi


ut
xt

 , (3)

where Ti,Pi,Si are real matrices of appropriate dimensions and Ti,Pi are symmetric. We define the

instantaneous cost matrix Ri as Ri :=

Ti Si

Si† Pi

. Let gi = (git)t∈T be a probabilistic strategy of player

i, where git : (U i)t−1 × (X i)t → P(U i) such that player i plays action uit according to distribution

git(·|u1:t−1, xi1:t). Let g := (gi)i=1,2 be a strategy profile of both players. The distribution of the basic

random variables and their independence structure together with the system evolution in (1) and players

strategy profile g define a joint distribution on all random variables involved in the dynamical process.

The objective of player i is to maximize her total expected cost

J i,g := Eg
{

T∑
t=1

Ri(Xt, Ut)

}
. (4)

With both players being strategic, this problem is modeled as a dynamic LQG game with asymmetric

information and with simultaneous moves.

III. PRELIMINARIES

In this section we introduce the equilibrium concept for dynamic games with asymmetric information

and summarize the general methodology developed in [13] to find a class of such equilibria.



A. Solution concept

Any history of this game at which players take action is of the form ht = (u1:t−1, x1:t). Let Ht be the

set of such histories at time t and H := ∪Tt=0Ht be the set of all possible such histories. At any time t

player i observes hit = (u1:t−1, x
i
1:t) and both players together have hct = u1:t−1 as common history. Let

Hi
t be the set of observed histories of player i at time t and Hc

t be the set of common histories at time t.

An appropriate concept of equilibrium for such games is the PBE [7] which consists of a pair (β∗, µ∗)

of strategy profile β∗ = (β∗,it )t∈T ,i=1,2 where β∗,it : Hi
t → P(U i) and a belief profile µ∗ = (µ∗,it )t∈T ,i=1,2

where µ∗,it : Hi
t → P(Ht) that satisfy sequential rationality so that for i = 1, 2,∀t ∈ T , hit ∈ Hi

t, β
i

E(β∗,iβ∗,−i, µ∗)

{
T∑
n=t

Ri(Xn, Un)
∣∣∣hit
}
≤ E(βiβ∗,−i, µ∗)

{
T∑
n=t

Ri(Xn, Un)
∣∣∣hit
}
, (5)

and the beliefs satisfy consistency conditions as described in [7, p. 331].

B. Structured perfect Bayesian equilibria

A general class of dynamic games with asymmetric information was considered in [13] by the authors

where players’ types evolve as conditionally independent controlled Markov processes. A backward-

forward algorithm was provided to find a class of PBE of the game called structured perfect Bayesian

equilibria (SPBE). In these equilibria, player i’s strategy is of the form U i
t ∼ mi

t(·|π1
t , π

2
t , x

i
t) where

mi
t : P(X 1)×P(X 2)×X i → P(U i). Specifically, player i’s action at time t depends on her private history

xi1:t only through xit. Furthermore, it depends on the common information u1:t−1 through a common

belief vector πt := (π1
t , π

2
t ) where πit ∈ P(X i) is belief on player i’s current type xit conditioned on

common information u1:t−1, i.e. πit(x
i
t) := P g(X i

t = xit|u1:t−1).

The common information u1:t−1 was summarized into the belief vector (π1
t , π

2
t ) following the common

agent approach used for dynamic decentralized team problems [16]. Using this approach, player i’s

strategy can be equivalently described as follows: player i at time t observes u1:t−1 and takes action

γit , where γit : X i → P(U i) is a partial (stochastic) function from her private information xit to uit of

the form U i
t ∼ γit(·|xit). These actions are generated through some policy ψi = (ψit)t∈T , ψit : (U i)t−1 →

{X i → P(U i)}, that operates on the common information u1:t−1 so that γit = ψit[u1:t−1]. Then any policy

of the player i of the form U i
t ∼ git(·|u1:t−1, xit) is equivalent to U i

t ∼ ψit[u1:t−1](·|xit) [16].



The common belief πit is shown in Lemma 2 of [13] to be updated as

πit+1(x
i
t+1) =

∫
xit
πit(x

i
t)γ

i
t(u

i
t|xit)Qi

t(x
i
t+1|xit, ut)dxit∫

x̃it
πit(x̃

i
t)γ

i
t(u

i
t|x̃it)dx̃it

, (6a)

if the denominator is not 0, and as

πit+1(x
i
t+1) =

∫
xit

πit(x
i
t)Q

i
t(x

i
t+1|xit, ut)dxit, (6b)

if the denominator is 0. The belief update can be summarized as,

πit+1 = F̄ (πit, γ
i
t, ut), (7)

where F̄ is independent of players’ strategy profile g. The SPBE of the game can be found through a

two-step backward-forward algorithm. In the backward recursive part, an equilibrium generating function

θ is defined based on which a strategy and belief profile (β∗, µ∗) are defined through a forward recursion.

In the following we summarize the algorithm and results of [13].

1) Backward Recursion: An equilibrium generating function θ = (θit)i=1,2,t∈T and a sequence of value

functions (V i
t )i=1,2,t∈{1,2,...T+1} are defined through backward recursion, where θit : P(X 1)× P(X 2)→

{X i → P(U i)}, V i
t : P(X 1)× P(X 2)×X i → R, as follows.

(a) Initialize ∀πT+1 ∈ P(X 1)× P(X 2), xiT+1 ∈ X i,

V i
T+1(πT+1, x

i
T+1) := 0. (8)

(b) For t = T, T − 1, . . . 1,

∀πt ∈ P(X 1)×P(X 2), let θt[πt] be generated as follows. Set γ̃t = θt[πt] where γ̃t is the solution

of the following fixed point equation, ∀i ∈ N , xit ∈ X i,

γ̃it(·|xit) ∈ arg min
γit(·|xit)

Eγit(·|xit)γ̃
−i
t

{
Ri(Xt, Ut) + V i

t+1(F (πt, γ̃t, Ut), X
i
t+1)
∣∣∣πt, xit} , (9)

where expectation in (9) is with respect to random variables (x−it , ut, x
i
t+1) through the measure

π−it (x−it )γit(u
i
t|xit)γ̃−it (u−it |x−it )Qi(xit+1|xit, ut) and F (πt, γt, ut) := (F̄ (π1

t , γ
1
t , ut), F̄ (π2

t , γ
2
t , ut)) .



Also define

V i
t (πt, x

i
t) := Eγ̃it(·|xit)γ̃

−i
t

{
Ri(Xt, Ut) + V i

t+1(F (πt, γ̃t, Ut), X
i
t+1)
∣∣∣πt, xit} . (10)

From the equilibrium generating function θ defined though this backward recursion, the equilibrium

strategy and belief profile (β∗, µ∗) are defined as follows.

2) Forward Recursion:

(a) Initialize at time t = 1,

µ∗1[φ](x1) :=
N∏
i=1

Qi(xi1). (11)

(b) For t = 1, 2 . . . T,∀i = 1, 2, u1:t ∈ Hc
t+1, x

i
1:t ∈ (X i)t

β∗,it (uit|u1:t−1xi1:t) := θit[µ
∗
t [u1:t−1]](u

i
t|xit) (12)

and

µ∗,it+1[u1:t] := F̄ (µ∗,it [u1:t−1], θ
i
t[µ
∗
t [u1:t−1]], ut) (13a)

µ∗t+1[u1:t](x
1
t , x

2
t ) :=

2∏
i=1

µ∗,it+1[u1:t](x
i
t). (13b)

The strategy and belief profile (β∗, µ∗) thus constructed form an SPBE of the game [13, Theorem 1].

IV. SPBE OF THE DYNAMIC LQG GAME

In this section, we apply the general methodology for finding SPBE described in the previous section,

on the specific dynamic LQG game model described in Section II. We show that players’ strategies that

are linear in their private types in conjunction with Gaussian beliefs, form an SPBE of the game. We

prove this result by constructing an equilibrium generating function θ using backward recursion such

that for all Gaussian belief vectors πt, γ̃t = θt[πt], γ̃
i
t is of the form γ̃it(u

i
t|xit) = δ(uit − L̃i

tx
i − m̃i

t) and

satisfies (9). Based on θ, we construct an equilibrium belief and strategy profile.

The following lemma shows that common beliefs remain Gaussian under linear deterministic γt of

the form γit(u
i
t|xit) = δ(uit − Li

tx
i
t −mi

t).

Lemma 1: If πit is a Gaussian distribution with mean x̂it and covariance Σi
t, and γit(u

i
t|xit) = δ(uit −

Li
tx
i
t −mi

t) then πit+1, given by (6), is also Gaussian distribution with mean x̂it+1 and covariance Σi
t+1,



where

x̂it+1 = Ai
tx̂
i
t + Bi

tut + Ai
tG

i
t(u

i
t − Li

tx̂
i
t −mi

t) (14a)

Σi
t+1 = Ai

t(I−Gi
tL

i
t)
†Σi

t(I−Gi
tL

i
t)A

i†
t + Qi, (14b)

where

Gi
t = Σi

tL
i†
t (Li

tΣ
i
tL

i†
t )−1. (15)

Proof: See Appendix I

Based on previous lemma, we define φix, φ
i
s as update functions of mean and covariance matrix,

respectively, as defined in (14), such that

x̂it+1 = φix(x̂
i
t,Σ

i
t,L

i
t,m

i
t, ut) (16a)

Σi
t+1 = φis(Σ

i
t,L

i
t). (16b)

We also say,

x̂t+1 = φx(x̂t,Σt,Lt,mt, ut) (17)

Σt+1 = φs(Σt,Lt). (18)

The previous lemma shows that with linear deterministic γit , the next update of the mean of the common

belief, x̂it+1 is linear in x̂it and the control action uit. Furthermore, these updates are given by appropriate

Kalman filter equations. It should be noted however that the covariance update in (14b) depends on the

strategy through γit and specifically through the matrix Li
t. This specifically shows how belief updates

depend on strategies on the players which leads to signaling, unlike the case in classical stochastic

control and the model considered in [12].

Now we will construct an equilibrium generating function θ using the backward recursion in (8)–(10).

The θ function generates linear deterministic partial functions γt, which, from Lemma 1 and the fact

that initial beliefs (or priors) are Gaussian, generates only Gaussian belief vectors (π1
t , π

2
t )t∈T for the

whole time horizon. These beliefs can be sufficiently described by their mean and covariance processes

(x̂1t ,Σ
1
t )t∈T and (x̂2t ,Σ

2
t )t∈T which are updated using (14).



For t = T + 1, T, . . . , 1, we define the vectors

eit :=


xit

x̂1t

x̂2t

 zit :=



uit

xit

x̂1t

x̂2t


yit :=



u1t

u2t

x1t

x2t

xit+1

x̂1t+1

x̂2t+1



. (19)

Theorem 1: The backward recursion (8)–(10) admits1 a solution of the form θt[πt] = θt[x̂t,Σt] =

γ̃t where γ̃it(u
i
t|xit) = δ(uit − L̃i

tx
i
t − m̃i

t) and L̃i
t, m̃

i
t are appropriately defined matrices and vectors,

respectively. Furthermore, the value function reduces to

V i
t (πt, x

i
t) = V i

t (x̂t,Σt, x
i
t) (20a)

= quad(Vi
t(Σt); e

i
t) + ρit(Σt). (20b)

with Vi
t(Σt) and ρit(Σt) as appropriately defined matrix and scalar quantities, respectively.

Proof: We construct such a θ function through the backward recursive construction and prove the

properties of the corresponding value functions inductively.

(a) For i = 1, 2,∀ ΣT+1, let Vi
T+1(ΣT+1) := 0, ρiT+1(ΣT+1) := 0. Then ∀ x̂1T+1, x̂

2
T+1,

Σ1
T+1,Σ

2
T+1, x

i
T+1 and for πt = (π1

t , π
2
t ), where πit is N(x̂it,Σ

i
t),

V i
T+1(πT+1, x

i
T+1) := 0 (21a)

= V i
T+1(x̂T+1,ΣT+1, x

i
T+1) (21b)

= quad(Vi
T+1(ΣT+1), e

i
T+1) + ρiT+1(ΣT+1). (21c)

(b) For all t ∈ {T, T − 1, . . . , 1}, i = 1, 2,

Suppose V i
t+1(πt+1, x

i
t+1) = quad(Vi

t+1(Σt+1), e
i
t+1) + ρit+1(Σt+1) (from induction hypothesis)

1Under certain conditions, stated in the proof.



where Vi
t+1 is a symmetric matrix defined recursively. Define V̄i

t as

V̄i
t(Σt,Lt) :=


Ti Si 0

Si† Pi 0

0 0 Vi
t+1(φs(Σt,Lt))

 . (22)

Since Ti,Pi are symmetric by assumption, V̄i
t is also symmetric.

For ease of exposition, we will assume i = 1 and for player 2, a similar argument holds. At time

t, the quantity that is minimized for player i = 1 in (9) can be written as

Eγ1t (·|x1t )
[
Eγ̃2t

[
R1(Xt, Ut) + V 1

t+1(F (πt, γ̃t, Ut), X
1
t+1)
∣∣∣πt, x1t , u1t] ∣∣∣πt, x1t] . (23)

The inner expectation can be written as follows, where γ̃2t (u
2
t |x2t ) = δ(u2t − L̃2

tx
2
t − m̃2

t ),

Eγ̃2t

quad

T1 S1

S1† P1

 ; zit

+ quad
(
V1
t+1(φs(Σt, L̃t)); e

i
t+1

)
+ ρ1t+1(φs(Σt, L̃t))

∣∣∣πt, x1t , uit


(24a)

= Eγ̃2t
[
quad

(
V̄1
t (Σt, L̃t); y

1
t

)
+ ρ1t+1(φs(Σt, L̃t))

∣∣∣πt, x1t , u1t] (24b)

= quad

V̄1
t (Σt, L̃t); D

1
t z

1
t + C1

t

m1
t

m̃2
t


+ ρ1t (Σt), (24c)

where V̄i
t is defined in (22) and function φs is defined in (18); yit, z

i
t are defined in (19); ρit is given

by

ρit(Σt) = tr
(
Σ−it quad

(
V̄i
t(Σt, L̃t); J

i
t

))
+ tr(QiV i

11,t+1(φs(Σt, L̃t))) + ρit+1(φs(Σt, L̃t)), (25)

where V i
11,t+1 is the matrix corresponding to xit+1 in V i

t+1 i.e. in the first row and first column of



the matrix V i
t+1; and matrices Di

t,C
i
t,J

i
t are as follows,

D1
t :=



I 0 0 0

0 0 0 L̃2
t

0 I 0 0

0 0 0 I

B1
1,t A1

t 0 B1
2,tL̃

2
t

A1
tG

1
t + B1

1,t 0 A1
t (I−G1

tL
1
t ) B1

2,tL̃
2
t

B2
1,t 0 0 A2

t + B2
2,tL̃

2
t



(26a)

D2
t :=



0 0 L̃1
t 0

I 0 0 0

0 0 I 0

0 I 0 0

B2
2,t A2

t B2
1,tL̃

1
t 0

B1
2,t 0 A1

t + B1
1,tL̃

1
t 0

A2
tG

2
t + B2

2,t 0 B2
1,tL̃

1
t A2

t (I−G2
tL

2
t )



(26b)

C1
t :=



0 0

0 I

0 0

0 0

0 B1
2,t

−A1
tG

1
t B1

2,t

0 B2
2,t



C2
t :=



I 0

0 0

0 0

0 0

B2
1,t 0

B1
1,t 0

B2
1,t −A2

tG
2
t



(27)



J1†
t :=

[
0 L2

t 0 I B1
2,tL

2
t B1

2,tL
2
t (B2

2,t + A2
tG

2
t )L

2
t

]†
J2†
t :=

[
L1
t 0 I 0 B2

1,tL
1
t (B1

1,t + A1
tG

1
t )L

1
t B2

1,tL
1
t

]†
(28)

where Bi
t =:

[
Bi

1,t Bi
2,t

]
, Bi

1,t,B
i
2,t are the parts of the matrix Bi

t that corresponds to u1t , u
2
t

respectively. Let D1
t =:

[
Du1
t De1

t

]
where Du1

t is the first column matrix of D1
t corresponding

to u1t and De1
t is the matrix composed of remaining three column matrices of D1

t corresponding

to e1t . The expression in (24c) is averaged with respect to u1t using the measure γ1t (·|x1t ) and

minimized in (9) over γ1t (·|x1t ). This minimization can be performed component wise leading to

a deterministic policy γ̃1t (u
1
t |x1t ) = δ(u1t − L̃1

tx
1
t − m̃1

t ) = δ(u1t − u1∗t ), assuming that the matrix

D̃u1†
t V̄1

t D̃
u1
t is positive definite2. In that case, the unique minimizer u1∗t = L̃1

tx
1
t + m̃1

t can be found

by differentiating (24c) w.r.t. u1†t and equating it to 0, resulting in the equation,

0 = 2
[
I 0 0 0

]
D̃1†
t V̄1

t (Σt, L̃t)
(
D̃1
t z

1
t + C̃1

t m̃t

)
(29a)

0 = D̃u1†
t V̄1

t (Σt, L̃t)
(
D̃u1
t u

1∗
t + D̃e1

t e
1
t + C̃1

t m̃t

)
(29b)

0 = D̃u1†
t V̄1

t (Σt, L̃t)
(
D̃u1
t (L̃1

tx
1
t + m̃1

t ) + [D̃e1
t ]1x

1
t + [D̃e1

t ]23x̂t + C̃1
t m̃t

)
, (29c)

where [Dei]1 is the first matrix column of Dei, [Dei]23 is the matrix composed of the second and

third column matrices of Dei. Matrices D̃i
t, C̃

i
t are obtained by substituting L̃i

t, G̃
i
t in place of Li

t,G
i
t

in the definition of D̃i
t, C̃

i
t in (27), respectively, and G̃i

t is the matrix obtained by substituting L̃i
t

in place of Li
t in (15).

Thus (29c) is equivalent to (9) and with a similar analysis for player 2, it implies that L̃i
t is solution

of the following algebraic fixed point equation,

(
D̃ui†
t V̄i

t(Σt, L̃t)D̃
ui
t

)
L̃i
t = −D̃ui†

t V̄i
t(Σt, L̃t)[D̃

ei
t ]1. (30a)

2This condition is true if the instantaneous cost matrix Ri =

[
Ti Si

Si† Pi

]
is positive definite and can be proved inductively in the proof

by showing that Vi
t and V̄i

t are positive definite.



For player 1, it reduces to,T1
11 +


B1

1,t

A1
tG

1
t + B1

1,t

B2
1,t


†

V1
t+1(φs(Σt, L̃t))


B1

1,t

A1
tG

1
t + B1

1,t

B2
1,t


 L̃1

t

= −

S1†
11 +


B1

1,t

A1
tG

1
t + B1

1,t

B2
1,t


†

V1
t+1(φs(Σt, L̃t))


A1
t

0

0


 , (30b)

and a similar expression holds for player 2.

In addition, m̃t can be found from (29c) asD̃u1†
t V̄1

t D̃
u1
t 0

0 D̃u2†
t V̄2

t D̃
u2
t

 m̃t = −

D̃u1†
t V̄1

t [D̃
e1
t ]23

D̃u2†
t V̄2

t [D̃
e2
t ]23

 x̂t −
D̃u1†

t V̄1
t C̃

1
t

D̃u2†
t V̄2

t C̃
2
t

 m̃t (31a)

m̃t = −


D̃u1†

t V̄1
t D̃

u1
t 0

0 D̃u2†
t V̄2

t D̃
u2
t

+

D̃u1†
t V̄1

t C̃
1
t

D̃u2†
t V̄2

t C̃
2
t



−1 D̃u1†

t V̄1
t [D̃

e1
t ]23

D̃u2†
t V̄2

t [D̃
e2
t ]23

 x̂t (31b)

=: M̃tx̂t =:

M̃1
t

M̃2
t

 x̂t, (31c)

Finally, the resulting cost for player i is,

V i
t (πt, x

i
t) = V i

t (x̂t,Σt, x
i
t) (32a)

:= quad

V̄i
t(Σt, L̃t);

[
D̃ui
t D̃ei

t

]L̃i
tx
i
t + M̃i

tx̂t

eit

+ C̃i
tM̃tx̂t

+ ρit(Σt) (32b)

= quad
(
V̄i
t(Σt, L̃t); D̃

ui
t (L̃i

tx
i
t + M̃i

tx̂t) + D̃e1
t e

i
t + C̃i

tM̃tx̂t

)
+ ρit(Σt) (32c)

= quad
(
V̄i
t(Σt, L̃t);

([
D̃ui
t L̃i

t D̃ui
t M̃i

t + C̃i
tM̃t

]
+ D̃ei

t

)
eit

)
+ ρit(Σt) (32d)

= quad
(
V̄i
t(Σt, L̃t); F̃

i
te
i
t

)
+ ρit(Σt) (32e)

= quad
(
F̃i†
t V̄i

t(Σt, L̃t)F̃
i
t; e

i
t

)
+ ρit(Σt) (32f)

= quad
(
Vi
t(Σt); e

i
t

)
+ ρit(Σt), (32g)



where,

F̃i
t :=

[
D̃ui
t L̃i

t D̃ui
t M̃i

t + C̃i
tM̃t

]
+ D̃ei

t (33a)

Vi
t(Σt) := F̃i†

t V̄i
t(Σt, L̃t)F̃

i
t. (33b)

Since V̄i
t is symmetric, so is Vi

t. Thus the induction step is completed.

Taking motivation from the previous theorem and with slight abuse of notation, we define

γ̃t = θt[πt] = θt[x̂t,Σt], (34)

and since γ̃it(u
i
t|xit) = δ(uit − L̃i

tx
i
t − m̃i

t), we define a reduced mapping (θL, θm) as

θLit [x̂t,Σt] = θLit [Σt] := L̃i
t and θmit [x̂t,Σt] := m̃i

t, (35)

where L̃i
t does not depend on x̂t and m̃i

t is linear in x̂t and is of the form m̃i
t = M̃i

tx̂t.

Now we construct the equilibrium strategy and belief profile (β∗, µ∗) through the forward recursion

in (11)–(13b), using the equilibrium generating function θ ≡ (θL, θm).

(a) Let

µ∗,i1 [φ](xi1) = N(0,Σi
1). (36)

(b) For t = 1, 2 . . . T−1,∀u1:t ∈ Hc
t+1, if µ∗,it [u1:t−1] = N(x̂it,Σ

i
t), let L̃i

t = θLit [Σt], m̃
i
t = θmit [x̂t,Σt] =

M̃i
tx̂. Then ∀xi1:t ∈ (X i)t

β∗,it (uit|u1:t−1xi1:t) := δ(uit − L̃i
tx
i
t − M̃i

tx̂t) (37a)

µ∗,it+1[u1:t] := N(x̂it+1,Σ
i
t+1) (37b)

µ∗t+1[u1:t](x
1
t , x

2
t ) :=

2∏
i=1

µ∗,it+1[u1:t](x
i
t), (37c)

where x̂it+1 = φix(x̂
i
t, L̃

i
t, m̃

i
t, ut) and Σi

t+1 = φis(Σ
i
t, L̃

i
t).

Theorem 2: (β∗, µ∗) constructed above is a PBE of the dynamic LQG game.

Proof: The strategy and belief profile (β∗, µ∗) is constructed using the forward recursion steps

(11)–(13b) on equilibrium generating function θ, which is defined through backward recursion steps



(8)–(10) implemented in the proof Theorem 1. Thus the result is directly implied by Theorem 1 in [13].

V. DISUSSION

A. Existence

In the proof of Theorem 1, D̃u1†
t V̄1

t D̃
u1
t is assumed to be positive definite. This can be achieved if

Ri is positive definite, through which it can be easily shown inductively in the proof of Theorem 1 that

the matrices V1
t , V̄

1
t are also positive definite.

Constructing the equilibrium generating function θ involves solving the algebraic fixed point equation

in (30) for L̃t for all Σt. In general, the existence is not guaranteed, as is the case for existence of γ̃t

in (9) for general dynamic games with asymmetric information. At this point, we don’t have a general

proof for existence. However, in the following lemma, we provide sufficient conditions on the matrices

Ai
t,B

i
t,T

i,Si,Pi,Vi
t+1 and for the case mi = 1, for a solution to exist.

Lemma 2: For m1 = m2 = 1, there exists a solution to (30) if and only if for i = 1, 2, ∃ li ∈ Rni

such that li†∆i(l1, l2)li ≥ 0, or sufficiently ∆i(l1, l2)+∆i,†(l1, l2) is positive definite, where ∆i, i = 1, 2

are defined in Appendix II.

Proof: See Appendix II.

B. Steady state

In Section III, we presented the backward/forward methodology to find SPBE for finite time-

horizon dynamic games, and specialized that methodology in this chapter, in Section IV, to find

SPBE for dynamic LQG games with asymmetric information, where equilibrium strategies are linear in

players’ types. It requires further investigation to find the conditions for which the backward-forward

methodology could be extended to infinite time-horizon dynamic games, with either expected discounted

or time-average cost criteria. Such a methodology for infinite time-horizon could be useful to characterize

steady state behavior of the games. Specifically, for time homogenous dynamic LQG games with

asymmetric information (where matrices Ai,Bi are time independent), under the required technical

conditions for which such a methodology is applicable, the steady state behavior can be characterized

by the fixed point equation in matrices (Li,Σi,Vi)i=1,2 through (18), (30b) and (33), where the time

index is dropped in these equations, i.e. for i = 1, 2,



1. Σ = φs(Σ,L) (38)

2.
(
Dui†V̄iDui

)
Li = −Dui†V̄i[Dei]1 (39)

3. Vi = Fi†V̄iFi, (40)

where V̄i =


Ti Si 0

Si† Pi 0

0 0 Vi

.

Observe that in the above equations the matrices Vi and V̄i do not appear as functions of Σ, as

in the finite horizon case described in (22), (33b), in the proof of Theorem 1. The reason for that is

as follows. The steady state behavior for a general dynamic game with asymmetric information and

independent types, if it exists, would involve fixed point equation in value functions (V i(·))i. However,

for the LQG case, it reduces to a fixed point equation in (V i(Σ))i, i.e. value functions evaluated at

a specific value of Σ. This is so because the functions V i are evaluated at Σ and φ(Σ,L), which at

steady state are exactly the same (see (38)). As a result, the fixed point equation reduces to the three

algebraic equations as shown above with variables the matrices Σ, L, V̄ and V, which represents an

enormous reduction in complexity.

1) Numerical examples: In this section, we present numerically found solutions for steady state,

assuming that our methodology extends to the infinite horizon problem for the model considered. We

assume Bi = 0 which implies that the state process (X i
t)t∈T is uncontrolled.

1. For i = 1, 2, mi = 1, ni = 2,Ai = 0.9I,Bi = 0,Qi = I,

T1 =

 I 1
4
I

1
4
I 0

 , T2 =

 0 1
4
I

1
4
I I

 , P1 =

I 0

0 0

 ,
P2 =

0 0

0 I

 , S1 =

1 0

0 0

 , S2 =

0 0

0 1

 , (41)

there exists a symmetric solution as, for i = 1, 2,

Li = −
[
1.062 1.062

]
,Σi =

 3.132 −2.132

−2.132 3.132

 . (42)



2. For i = 1, 2, mi = 2, ni = 2,A1 =

0.9 0

0 0.8

 ,A2 = 0.9I, and Bi,Ti,Pi,Si used as before with

appropriate dimensions, there exists a solution,

L1 = −

1.680 1.600

0.191 0.286

 , L2 = −

1.363 1.363

1.363 1.363


Σ1 = I, Σ2 =

 3.132 −2.132

−2.132 3.132

 . (43)

It is interesting to note that for player 1, where A1 does not weigh the two components equally,

the corresponding L1 is full rank, and thus reveals her complete private information. Whereas for

player 2, where A2 has equal weight components, the corresponding L2 is rank deficient, which

implies, at equilibrium player 2 does not completely reveal her private information. Also it is easy

to check from (14b) that with full rank Li matrices, steady state Σi = Qi.

VI. CONCLUSION

In this paper, we study a two-player dynamic LQG game with asymmetric information and perfect

recall where players’ private types evolve as independent controlled Markov processes. We show that

under certain conditions, there exist strategies that are linear in players’ private types which, together

with Gaussian beliefs, form a PBE of the game. We show this by specializing the general methodology

developed in [13] to our model. Specifically, we prove that (a) the common beliefs remain Gaussian under

the strategies that are linear in players’ types where we find update equations for the corresponding mean

and covariance processes; (b) using the backward recursive approach of [13], we compute an equilibrium

generating function θ by solving a fixed point equation in linear deterministic partial strategies γt for

all possible common beliefs and all time epochs. Solving this fixed point equation reduces to solving

a matrix algebraic equation for each realization of the state estimate covariance matrices. Also, the

cost-to-go value functions are shown to be quadratic in private type and state estimates. This result is

one of the very few results available on finding signaling perfect Bayesian equilibria of a truly dynamic

game with asymmetric information.



APPENDIX I

This lemma could be interpreted as Theorem 2.30 in [1, Ch. 7] with appropriate matrix substitution

where specifically, their observation matrix Ck should be substituted by our Lk. We provide an alternate

proof here for convenience.

πit+1 is updated from πit through (6). Since πit is Gaussian, γit(u
i
t|xit) = δ(uit − Litxit −mi

t) is a linear

deterministic constraint and kernel Qi is Gaussian, thus πit+1 is also Gaussian. We find its mean and

covariance as follows.

We know that xit+1 = Ai
tx
i
t + Bi

tut + wit. Then,

E[X i
t+1|πit, γit, ut]

= E[Ai
tX

i
t + Bi

tUt +W i
t |πit, γit, ut] (44a)

= Ai
tE[X i

t |πit, γit, ut] + Bi
tut (44b)

= Ai
tE[X i

t |Li
tX

i
t = uit −mi

t] + Bi
tut (44c)

where (44b) follows because W i
t has mean zero. Suppose there exists a matrix Gi

t such that X i
t−Gi

tL
i
tX

i
t

and Li
tX

i
t are independent. Then

E[X i
t

∣∣∣Li
tX

i
t = uit −mi

t] (45a)

= E[X i
t −Gi

tL
i
tX

i
t + Gi

tL
i
tX

i
t

∣∣∣Li
tX

i
t = uit −mi

t] (45b)

= E[X i
t −Gi

tL
i
tX

i
t ] + Gi

t(u
i
t −mi

t) (45c)

= x̂it + Gi
t(u

i
t − Li

tx̂
i
t −mi

t), (45d)

where Gi
t satisfies

E[(X i
t −Gi

tL
i
tX

i
t)(L

i
tX

i
t)
†]

= E[(X i
t −Gi

tL
i
tX

i
t)]E[(Li

tX
i
t)
†] (46a)

(I−Gi
tL

i
t)E[X i

tX
i†
t ]Li†

t = (I−Gi
tL

i
t)E[X i

t ]E[X i†
t ]Li†

t (46b)

(I−Gi
tL

i
t)(Σ

i
t + x̂itx̂

i†
t )Li†

t = (I−Gi
tL

i
t)x̂

i
tx̂
i†
t Li†

t (46c)

Gi
t = Σi

tL
i†
t (Li

tΣ
i
tL

i†
t )−1. (46d)



Σi
t+1 = sm

(
Ai
tX

i
t − E[Ai

tX
i
t |Li

tX
i
t = uit −mi

t]|Li
tX

i
t = uit −mi

t

)
+ Qi (47a)

Now

sm
(
X i
t − E[X i

t |Li
tX

i
t = uit −mi

t]|Li
tX

i
t = uit −mi

t

)
(48a)

= sm
(
(X i

t −Gi
tL

i
tX

i
t)− (E[X i

t −Gi
tL

i
tX

i
t |Li

tX
i
t = uit −mi

t])|Li
tX

i
t = uit −mi

t

)
(48b)

= sm
(
(X i

t −Gi
tL

i
tX

i
t)− (E[X i

t −Gi
tL

i
tX

i
t ])
)

(48c)

= sm
(
(I−Gi

tL
i
t)(X

i
t − E[X i

t ])
)

(48d)

= (I−Gi
tL

i
t)Σ

i
t(I−Gi

tL
i
t)
† (48e)

APPENDIX II

We prove the lemma for player 1 and the result follows for player 2 by similar arguments. For the

scope of this appendix, we define B̄1
t =


B1

1,t

B1
1,t

B2
1,t

 and for any matrix V, we define V∗i,Vi∗ as the ith

column and the ith row of V, respectively. Then the fixed point equation (30) can be written as,

0 =
[
T1

11 + (A1
tG

1
t )
†V1

22,t+1(A
1
tG

1
t )+

B̄1†
t V1

∗2,t+1A
1
tG

1
t + (A1

tG
1
t )
†V1

2∗,t+1B̄
1
t + B̄1†

t V1
t+1B̄

1
t

]
L1
t

+
[
S1†
11 + (A1

tG
1
t )
†V1

21,t+1A
1
t + B̄1†

t V1
∗1,t+1A

1
t

]
. (49)

It should be noted that Vi
t+1 is a function of Σt+1, which is updated through Σt and Lt as Σt+1 =

φs(Σt,Lt) (we drop this dependence here for ease of exposition). Substituting G1
t = Σ1

tL
1†
t (L1

tΣ
1
tL

1†
t )−1

and multiplying (49) by (L1
tΣ

1
tL

1†
t ) from left and (Σ1

tL
1†
t ) from right, we get



0 = L1
tΣ

1
t

[
L1†
t (T1

11 + B̄1†
t V1

t+1B̄
1
t )L

1
t + A1†

t V1
22,t+1A

1
t

+ L1†
t (B̄1†

t V1
∗2,t+1A

1
t + S1†

11 + B̄1†
t V1

∗1,t+1A
1
t )

+(A1†
t V1

2∗,t+1B̄
1
t + A1†

t V1
21,t+1A

1
t )L

1
t

]
Σ1
tL

1†
t (50)

Let L̄i
t = Li

t(Σ
i
t)

1/2, Āi
t = Ai

t(Σ
i
t)

1/2,

Λ1
a(Lt) := T1

11 + B̄1†
t V1

t+1B̄
1
t (51a)

Λ1
b(Lt) := Ā1†

t V1
22,t+1Ā

1
t (51b)

Λ1
c(Lt) := B̄1†

t V1
∗2,t+1Ā

1
t + S1†

11(Σ
1
t )

1/2 + B̄1†
t V1

∗1,t+1Ā
1
t (51c)

Λ1
d(Lt) := Ā1†

t V1
2∗,t+1B̄

1
t + Ā1†

t V1
21,t+1Ā

1
t . (51d)

Then,

0 = L̄1
t L̄

1†
t Λ1

a(Lt)L̄
1
t L̄

1†
t + L̄1

tΛ
1
b(Lt)L̄

1†
t + L̄1

t L̄
1†
t Λ1

c(Lt)L̄
1†
t + L̄1

tΛ
1
d(Lt)L̄

1
t L̄

1†
t (52)

Since m=1, Λ1
a is a scalar. Let L̄i

t = λili†, where λi = ||L̄i
t||2 and li is a normalized vector and t1 = T11.

Moreover, since the update of Σt in (14b) is scaling invariant, V1
t+1 only depends on the directions

l = (l1, l2). Then, (52) reduces to the following quadratic equation in λ1

(λ1)2Λ1
a(l) + λ1(Λ1

c(l)l
1 + l1†Λ1

d(l)) + l1†Λ1
b(l)l

1 = 0. (53)

There exists a real-valued solution3 of this quadratic equation in λ1 if and only if

(Λc(l)l
1 + l1†Λ1

d(l))
2 ≥ 4Λ1

a(l)l
1†Λ1

b(l)l
1 (54a)

l1†(Λ1†
c (l)Λ1

c(l) + Λ1
d(l)Λ

1†
d (l) + 2Λ1

d(l)Λ
1
c(l)− 4Λ1

a(l)Λ
1
b(l))l

1 ≥ 0. (54b)

Let ∆1(l) := (Λ1†
c (l)Λ1

c(l) + Λ1
d(l)Λ

1†
d (l) + 2Λ1

d(l)Λ
1
c(l)− 4Λ1

a(l)Λ
1
b(l)). (55)

There exists a solution to the fixed point equation (30) if and only if ∃l1, l2 ∈ Rn such that l1†∆1(l)l1 ≥ 0,

3Note that a negative sign of λ1 can be absorbed in l1.



or sufficiently ∆1(l) + ∆1†(l) is positive definite.
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