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Abstract. In this paper, we consider a stochastic Stackelberg games where there
is a defender (also called leader) who has to defend a target and an attacker
(also called follower). The attacker has a private type that evolves as a controlled
Markov process. The objective is to compute Stochastic Stackelberg equilibrium
of the game where defender commits to a strategy. The attacker’s strategy is the
best response to defender strategy and defender’s strategy is optimum given at-
tacker plays best response. In general computing such equilibrium involves solv-
ing a fixed-point equation for the whole game. In this paper, we present an al-
gorithm that computes such strategies by solving smaller fixed-point equations
for each time t. This reduces the computational complexity of the problem from
double exponential in time to linear in time. Based on this algorithm, we compute
Stackelberg equilibrium of a security example.

1 Introduction

In the past decade, Stackelberg games have been used extensively in security of real
world systems such as to protect ports, airports and wildlife [2,11,6,3]. In such games,
there is a defender and an attacker, where defender commits to a strategy that is ob-
servable to the attacker. The attacker then plays a best response to attacker’s strategy to
maximize its utility. Knowing that the attacker will play a best response, the defender
commits to and plays a strategy that maximizes its utility. Such pair of strategies is
called a Stackelberg equilibrium. It is known that such strategies can provide higher
utility to the defender than obtained in a Nash equilibrium of the game. Such games
are currently in use by security agencies such as the US Coast Guard, the Federal Air
Marshals Service, and the Los Angeles Airport Police [12]. Similar algorithms are used
in wildlife protection in Uganda and Malaysia [16].

Most of the above real world applications of Stackelberg equilibrium are based on
single-shot Bayesian game models. However, in many practical scenarios, the attacker
and defender interact periodically, thus reducing the applicability of such models. Solv-
ing a dynamic stochastic Stackelberg game when the attacker has a private Markovian
state is computationally challenging. This is because unlike other games, in such dy-
namic games of asymmetric information, there is coupling of players’ strategies across
time, rendering the complexity of finding equilibria of such games as double exponen-
tial in time. Recently, there has been results on sequential decomposition of certain
classes of games of asymmetric information [15,13,14]. In repeated Stackelberg secu-
rity games, there have been other approaches to mitigate this issue. For instance Kar et
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al in [5] consider a repeated Stackelberg game and use a new human behavior model
to study such games. Mareki et.al. in [7] study a Bayesian repeated Stackelberg game
where they assume defenders are myopic, thus significantly simplifying the analysis of
finding the equilibrium. Balcan et al in [1] consider a learning theoretic approach to
study a repeated stackelberg game between attacker and defender where they use re-
gret analysis to learn attacker’s types, and show sub linear regret for both complete and
partial information models.

In this paper, we provide a sequential decomposition algorithm for Stochastic dy-
namic Stackelberg games to compute equilibria with fully rational attacker and de-
fender. Our algorithm reduces the complexity of finding Markovian equilibria of such
games from double exponential to linear in time. Based on this algorithm, we study a
security game where we numerically find its Stackelberg equilibria.

2 Model

We consider a stochastic Stackelberg game over a time horizon [T ]
4
= {1, 2, . . . T} with

perfect recall as follows. Suppose there are two kinds of players: a leader and a follower.
The leader has no private type, whereas follower privately observes a state xt ∈ X at
time t, where xt evolves as a controlled Markov process in the following way,

P (xt|a1:t−1, x1:t−1) = Q(xt|at−1, xt−1), (1a)

where at = (alt, a
f
t ) and Q are known kernels. Leader takes action alt ∈ Al at time t on

observing a1:t−1, which is common information among players, and the follower takes
action aft ∈ Af at time t on observing a1:t−1 and x1:t which it observes privately. The
sets Al,Af ,X are assumed to be finite. Let σi = (σit)t∈[T ] be a probabilistic strategy
of player i ∈ {l, f} where σlt : At−1 → P(Al) such that the leader plays action Alt
according to Alt ∼ σlt(·|a1:t−1). Similarly σft : At−1 × X t → P(Af ) such that the

follower plays action Aft according to Aft ∼ σft (·|a1:t−1, xf1:t). Let σ
4
= (σi)i∈{l,f}

be a strategy profile of all players. At the end of interval t, the leader receives an in-
stantaneous reward Rlt(xt, a

l
t, a

f
t ) and the follower receives an instantaneous reward

Rft (xt, a
l
t, a

f
t ). Suppose players discount their rewards by a discount factor δ ≤ 1.

3 Preliminaries

3.1 Stackelberg Equilibrium

The stackelberg equilibrium is defined for a game as follows. For a given strategy profile
of the leader, σl, the follower maximizes its total discounted expected utility over finite
horizon T ,

max
σf

Eσ
l,σf

{
T∑
t=1

δt−1Rft (Xt, At)

}
. (2)
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Let BRf (σl) be the set of optimizing strategies of the follower given a strategy σl of
the leader, i.e.

BRf (σl) = arg max
σf

Eσ
l,σf

{
T∑
t=1

δt−1Rft (Xt, At)

}
(3)

The leader finds its optimal strategy that maximizes its total expected discounted reward
given that the follower will use its best response to it,

σ̃l ∈ max
σl

Eσ
l,BRf (σl)

{
T∑
t=1

δt−1Rlt(Xt, At)

}
, (4)

Then (σ̃lt, σ̃
f ) constitute a Stackelberg equilibrium where σ̃f ∈ BRf (σ̃l).

3.2 Perfect Stackelberg equilibrium

In this paper, we will consider follower’s equilibrium policies that only depend on its
current state xt i.e. at equilibrium, aft ∼ σ̃t(·|a1:t−1, xt).1

For the game considered, we introduce a notion of Perfect Stackelberg Equilibrium
(PSE), inspired by perfect Bayesian equilibrium [4] as follows.

Let (σ̃, µ) be a PSE of the game, where µ = (µt)t∈[T ], and for any t, a1:t−1,
µt[a1:t−1] ∈ P(X ) is the equilibrium belief on the current follower’s state xt, given
the action history a1:t−1, i.e. µt[a1:t−1](xt) = P σ̃(xt|a1:t−1). Then for all t ∈ [T ],
hct = a1:t−1, hft = (a1:t−1, x1:t), for any given σl, let BRft (σl) be defined as, ∀hft

BRft (σl) := arg max
σf

Eσ
l,σf ,µt

{
T∑
n=t

δn−tRln(Xn, An)|hft

}
(5)

and

σ̃l ∈ max
σl

Eσ
l,BRf (σl),µt

{
T∑
n=t

δn−tRln(Xn, An)|hct

}
, (6)

Then (σ̃l, σ̃f ) constitute a PSE of the game where σ̃f ∈ BRft (σ̃l) ∀ t ∈ [T ].

4 Common agent approach

We recall that the leader and the follower generate their actions at time t as follows,
alt ∼ σlt(·|a1:t−1) and aft ∼ σft (·|a1:t−1, x1:t) An alternative way to view the problem
is as follows. As is done in common information approach [8], at time t, a fictitious
common agent observes the common information a1:t−1 and generates prescription
functions γt = (γlt, γ

f
t ) = ψt[a1:t−1]. Player i uses its prescription function γit to

1 Note, however, that for the purpose of equilibrium, the optimization will be performed in the
space of all possible strategies that may depend on the entire history of state.
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operate on its private information (if any) to produce its action ait, i.e. γlt ∈ P(Ai)
and γft : X t → P(Ai) and alt ∼ γlt(·) and aft ∼ γft (·|x1:t). It is easy to see that for
any σ policy profile of the players, there exists an equivalent ψ profile of the common
agent (and vice versa) that generates the same control actions for every realization of
the information of the players.

Here, we will consider Markovian common agent’s policy as follows. We call a
common agent’s policy be of “type θ” if the common agent observes the common be-
lief πt derived from the common observation a1:t−1, and generates prescription func-
tions γt = (γlt, γ

f
t ) = θt[πt], where πt is a belief on the current state xt defined as,

πt(xt) = P θ(xt|a1:t−1). The follower uses these prescription function γft to operates
on its current private type xt to produce its action aft , i.e. γft : X → P(Af ) and
aft ∼ γft (·|xt). Similarly, the leader uses prescription function γlt to produce its action
alt as γlt ∈ P(Af ) and alt ∼ γ

f
t (·).

In the next lemma we show that for any given θ policy, the belief states πt can be
updated recursively as follows. Let π1(x) := Q(x).

Lemma 1. For any given policy of type θ, there exists update functions F , independent
of θ, such that

πt+1 = F (πt, γ
f
t , at) (7)

Proof. Please see Appendix A.

Definition 1. We call a strategy profile σ Markov PSE (MPSE), if it is a PSE of type θ.

In the next section, we design an algorithm to compute MPSE of the game.

5 Algorithm for MPSE computation

5.1 Backward Recursion

In this section, we define an equilibrium generating function θ = (θit)i∈{l,f},t∈[T ],
where θt : P(X )→

{
X → P(Af )

}
×P(Al) and a sequence of functions (V lt , V

f
t )t∈{1,2,...T+1},

where V lt : P(X )→ R, V ft : P(X )×X → R, in a backward recursive way, as follows.

1. Initialize ∀πT+1 ∈ P(X ), xT+1 ∈ X ,

V lT+1(πT+1)
4
= 0. (8)

V fT+1(πT+1, xT+1)
4
= 0 (9)

2. For t = T, T − 1, . . . 1, ∀πt ∈ P(X ), let θt[πt] be generated as follows. Set γ̃t =

θt[πt], where γ̃t = (γ̃lt, γ̃
f
t ) is the solution of the following fixed-point equation.

For a given γlt, define BR(γlt) as follows, ∀xt ∈ X ,

BRft (γlt) =

{
γ̃ft : γ̃ft ∈ arg max

γf
t (·|xt)

Eγ
f
t (·|xt)γ

l
t, πt

{
Rft (xt, At) + δV ft+1(F (πt, γ̃

f
t , At), Xt+1)

∣∣xt}} ,
(10)
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where expectation in (21) is with respect to random variables (At, Xt+1) through
the measure γft (aft |xt)γlt(alt)Q(xt+1|xt, at) and F is defined in (7).
Then let (γ̃lt, γ̃

f
t ) is a solution of the following fixed-point equation,

γ̃ft ∈ BR
f
t (γ̃lt) (11)

and

γ̃lt ∈ arg max
γl
t

EBR
f
t (γ

l
t)γ

l
t, πt

{
Rlt(Xt, At) + δV lt+1(F (πt, BR

f
t (γlt), At))

}
(12)

where the above expectation is defined with respect to random variables (Xt, At)

through the measure πt(xt)γ̂
f
t (aft )γlt(a

l
t), and γ̂t ∈ BRft (γlt).

Let (γ̃lt, γ̃
f
t ) be a pair of solution of the above operation. Then set ∀xt ∈ X ,

V ft (πt, xt)
4
= Eγ̃

f
t (·|xt)γ̃

l
t, πt

{
Rft (xt, At) + δV ft+1(F (πt, γ̃

f
t , At), Xt+1)

∣∣xt} .
(13)

and

V lt (πt)
4
= Eγ̃

f
t γ̃

l
t, πt

{
Rlt(Xt, At) + δV lt+1(F (πt, γ̃

f
t , At))

}
. (14)

5.2 Forward Recursion

Based on θ defined in the backward recursion above, we now construct a set of strategies
σ̃ (through beliefs µ) in a forward recursive way as follows.

1. Initialize at time t = 1,

µ1[φ](x1) := Q(x1). (15)

2. For t = 1, 2 . . . T, ∀i = 1, 2, a1:t ∈ Hct+1, x1:t ∈ X t

σ̃lt(a
l
t|a1:t−1) := θlt[µt[h

c
t ]](a

l
t) (16)

σ̃ft (aft |a1:t−1, x1:t) := θft [µt[h
c
t ]](a

f
t |xt) (17)

µt+1[hct+1] := F (µt[h
c
t ], θ

f
t [µt[h

c
t ]], at) (18a)

where F is defined in (7).

Theorem 1. A strategy profile σ̃, as constructed through backward/forward recursion
algorithm above is an MPSE of the game

Proof. We will prove this theorem in two parts. In Part 1 in Appendix B for the follower,
we prove that σ̃f ∈ BRft (σ̃l) i.e. ∀ t ∈ [T ], ∀σf , hft = (a1:t−1, x1:t)

Eσ̃
l,σ̃f ,µt

{
T∑
n=t

δn−tRfn(Xn, An)|a1:t−1, x1:t

}
≥

Eσ̃
l,σf ,µt

{
T∑
n=t

δn−tRfn(Xn, An)|a1:t−1, x1:t

}
. (19)
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In Part 2 in Appendix D for the leader, we show that

Eσ̃
l,σ̃f ,µt[a1:t−1]

{
T∑
n=t

δn−tRln(Xn, An)|a1:t−1

}
≥

Eσ
l,BRf (σl),µt[a1:t−1]

{
T∑
n=t

δn−tRln(Xn, An)|a1:t−1

}
, (20)

where σ̃f ∈ BRf (σ̃l), as shown in Part 1.
Combining both the parts prove the above result.

6 Infinite horizon

The above results can be extended to infinite horizon case when the reward functions
Rl, Rf are time homogenous and are absolutely bounded, and δ < 1. In the following,
due to space constraints, we just state the algorithm without proof.

6.1 Backward Recursion

Define an equilibrium generating function θ = (θi)i∈{l,f}, where θ : P(X )→
{
X → P(Af )

}
×

P(Al) and a vector of functions (V l, V f ), where V l : P(X )→ R, V f : P(X )×X →
R through the following one-shot fixed-point equation.

Let θ[π] be generated as follows. Set γ̃ = θ[π], where γ̃ = (γ̃l, γ̃f ) is the solution of
the following fixed-point equation. For a given γl, define BR(γl) as follows, ∀x ∈ X ,

BRf (γl) =

{
γ̃f : γ̃f ∈ arg max

γf (·|x)

Eγ
f (·|x)γl, π

{
Rf (x,A) + δV f (F (π, γ̃f , A), X ′)

∣∣x}} , (21)

where expectation in (21) is with respect to random variables (A,X ′) through the mea-
sure γf (af |x)γl(al)Q(x′|x, a) and F is defined in (7).

Then let (γ̃l, γ̃f , V l, V f ) be a solution of the following fixed-point equation,

γ̃f ∈ BRf (γ̃l) (22)

and

γ̃l ∈ arg max
γl

EBR
f (γl)γl, π

{
Rl(X,A) + δV l(F (π,BRf (γl), A))

}
(23)

where the above expectation is defined with respect to random variables (X,A,X ′)
through the measure π(x)γ̂f (af )γl(al)Q(x′|x, a), and γ̂ ∈ BRf (γl). And ∀x ∈ X ,

V f (π, x) = Eγ̃
f (·|x)γ̃l, π

{
Rf (x,A) + δV f (F (π, γ̃f , A), X ′)

∣∣x} . (24)

and

V l(π) = Eγ̃
f γ̃l, π

{
Rl(X,A) + δV l(F (π, γ̃f , A))

∣∣x} . (25)
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6.2 Forward Recursion

Based on θ defined above, we now construct a set of strategies σ̃ (through beliefs µ) in
a forward recursive way as follows.

1. Initialize at time t = 1,

µ1[φ](x1) := Q(x1). (26)

2. For t = 1, 2 . . . ,∀i = 1, 2, a1:t ∈ Hct+1, x1:t ∈ X t

σ̃lt(a
l
t|a1:t−1) := θl[µt[h

c
t ]](a

l
t) (27)

σ̃ft (aft |a1:t−1, x1:t) := θf [µt[h
c
t ]](a

f
t |xt) (28)

µt+1[hct+1] := F (µt[h
c
t ], θ

f [µt[h
c
t ]], at) (29)

where F is defined in (7).

6.3 Existence of ε-equilibrium

In this section, we prove existence of a ε−solution of fixed-point equations (11),(12),
defined below.

Lemma 2. For all πt,γlt, BR
f
t (γlt) as defined in (21) is non-empty.

Proof. Please see Appendix F.

Theorem 2. There exists a γ̃lt that is an ε−maximizer of (12),

Proof. Since X ,A are finite,R(x, a) is absolutely bounded, say by a constantM . Then
Vt+1 is absolutely bounded by (T − t−1)M . Since (12) involves optimizing a bounded
(not necessarily continuous) function over a compact set, there always exists a γ̃lt that
is an ε−maximizer of (12).

7 Complexity

In general, computing a Stackelberg equilibrium involves solving a fixed-point equa-
tion in the space of strategies of both the players for all histories of the game i.e. of
the form σ = f(σ) where f is appropriately defined from (4). For any time t, since
σft : At−1 × X t → P(Af ) and σlt : At−1 → P(Al), there exist |P(Al)||A|t−1×|X|t

number of possible strategies of the leader and |P(A)||A|t−1

number of strategies of the
follower. Since the complexity at the last time t dominates, solving a stackelberg equi-
librium reduces to solving a fixed-point equation in the space of |P(Al)||A|T−1×|X|T ×
|P(Al)||A|T−1

number of strategies.
In our algorithm, each time t involves solving a fixed-point equation (11),(12),

for every πt, where πt ∈ P(X ). Thus computing a Stackelberg equilibrium involves
solving T |P(X )| “smaller” fixed-point equations (11) (12). Therefore, our algorithm
reduces the computational dependence on T from double exponential to linear. The
complexity of solving each smaller fixed-point equation depends on the specific model
parameters and is an important direction for future research.



8 D. Vasal

8 Security Example

In this section, we consider a repeated Stackelberg game as a security example. We as-
sume thatX = Al = Af = {0, 1} and type of the defender is static i.e.Q(xt+1|xt, at) =
1(xt+1 = xt). We assume δ = 0.6. Let pl = γl(1), pf,0 = γf (1|0) and pf,1 = γf (1|1)
and the rewards of the players are given in Table I below.

Table 1
X=0 Attacker Attacker

A1 A2

Defender D1 (2, 1) (4, 0)

Defender D2 (1, 0) (3, 2)

X=1 Attacker Attacker
A1 A2

Defender D1 (3, 2) (2, 0)

Defender D2 (0, 1) (1, 1)

The equilibrium strategies and value functions are provided in Figures 1-6.

9 Conclusion

In this paper, we study a general leader/defender, follower/attacker security game where
the attacker has a private type what evolves a controlled Markov process. We present
a novel dynamic programing like methodology to sequentially decompose the problem
of computing Markov perfect Stackelberg equilibrium for these games. Based on this
algorithm we study a repeated security game where we numerically compute the equi-
librium policies. We believe this result can be extended to the case when the leader also
has a private type, which we propose as future work.

A

Proof.

πt+1(xt+1) = P θ(xt+1|a1:t) (30)

=

∑
xt
P θ(xt, at, xt+1|a1:t−1)∑
xt
P θ(xt, at|a1:t−1)

(31)

=

∑
xt
πt(xt)γ

f
t (aft |xt)γlt(alt)Q(xt+1|xt, at)∑

xt
πt(xt)γ

f
t (aft |xt)γlt(alt)

(32)

=

∑
xt
πt(xt)γ

f
t (aft |xt)Q(xt+1|xt, at)∑

xt
πt(xt)γ

f
t (aft |xt)

(33)

where γlt(a
l
t) cancels out in the numerator and the denominator. Thus,

πt+1 = F (πt, γ
f
t , at) (34)



Stochastic Stackelberg security games 9

0 0.2 0.4 0.6 0.8 1

(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
f,
0

Probability of follower taking action 1 when state is low

Fig. 1: Probability of follower taking action 1 when its state is low
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Fig. 2: Probability of follower taking action 1 when its state is high
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B Part 1: Follower

Proof. In the following theorem, we will prove that σ̃f ∈ BRft (σ̃l) ∀ t ∈ [T ], i.e.
∀σf , hft = (a1:t−1, x1:t)

Eσ̃
l,σ̃f ,µt

{
T∑
n=t

δn−tRfn(Xn, An)|a1:t−1, x1:t

}
≥

Eσ̃
l,σf ,µt

{
T∑
n=t

δn−tRfn(Xn, An)|a1:t−1, x1:t

}
(35)

We prove the above result using induction and from results in Lemma 3, 4 and 5
proved in Appendix C.

For base case at t = T , ∀(a1:T−1, x1:T ) ∈ HfT , σf

Eσ̃
f
T σ̃

l
T , µT [a1:T−1]

{
RfT (XT , AT )

∣∣a1:T−1, x1:T}
= V fT (µt[a1:T−1], xT ) (36a)

≥ Eσ
f
T σ̃

l
T , µT [a1:T−1]

{
RfT (XT , AT )

∣∣a1:T−1, x1:T} . (36b)

where (36a) follows from Lemma 5 and (36b) follows from Lemma 3 in Appendix C.
Let the induction hypothesis be that for t+ 1, ∀(a1:t, x1:t+1) ∈ Hft+1, σ

f ,

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t, x1:t+1

}

≥ Eσ
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t, x1:t+1

}
(37a)

Then ∀(a1:t−1, x1:t) ∈ HfT , σf , we have

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑
n=t

Rfn(Xn, An)
∣∣a1:t−1, x1:t}

= V ft (µt[a1:t−1], xt) (38a)

≥ Eσ
f
t σ̃

l
t, µt[a1:t−1]

{
Rft (Xt, At) + V ft+1(µt+1[a1:t−1At], Xt+1)

∣∣a1:t−1, x1:t} (38b)

= Eσ
f
t σ̃

l
t, µt[a1:t−1]

{
Rft (Xt, At)+

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t−1,At]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t−1, At, x1:t, Xt+1

} ∣∣a1:t−1, x1:t}
(38c)

(38d)
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≥ Eσ
f
t σ̃

l
t, µt[a1:t−1]

{
Rft (Xt, At)+

Eσ
f
t+1:T σ̃

l
t+1:Tµt+1[a1:t−1,At]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t−1, At, x1:t, Xt+1

} ∣∣a1:t−1, x1:t}
(38e)

= Eσ
f
t σ̃

l
t, µt[a1:t−1]

{
Rft (Xt, At)+

Eσ
f
t:T σ̃

l
t:Tµt[a1:t−1]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t−1, At, x1:t, Xt+1

} ∣∣a1:t−1, x1:t}
(38f)

= Eσ
f
t:T σ̃

l
t:T µt[a1:t−1]

{
T∑
n=t

Rfn(Xn, An)
∣∣a1:t−1, x1:t} , (38g)

where (38a) follows from Lemma 5, (38b) follows from Lemma 3, (38c) follows from
Lemma 5, (38e) follows from induction hypothesis in (37a) and (38f) follows from
Lemma 4.

C

Lemma 3. ∀t ∈ [T ], (a1:t−1, x1:t) ∈ Hft , σ
f
t

V ft (µt[a1:t−1], xt) ≥ Eσ
f
t σ̃

l
t, µt[a1:t−1]

{
Rft (Xt, At)+

V ft+1(F (µt[a1:t−1], σ̃ft (·|a1:t−1, ·), At), Xt+1)
∣∣a1:t−1, x1:t} (39)

Proof. We prove this lemma by contradiction. Suppose the claim is not true for t. This
implies ∃i, σ̂ft , â1:t−1, x̂1:t such that

Eσ̂
f
t σ̃

l
t, µt[â1:t−1]

{
Rft (Xt, At) + V ft+1(F (µt[â1:t−1], σ̃t(·|â1:t−1, ·), At), Xt+1)

∣∣â1:t−1, x̂1:t}
> V ft (µt[â1:t−1], x̂t). (40)

We will show that this leads to a contradiction.

Construct γ̂ft (aft |xt) =

{
σ̂ft (aft |â1:t−1, x̂1:t) xt = x̂t
arbitrary otherwise.

Then for â1:t−1, x̂1:t, we have

V ft (µt[â1:t−1], x̂t) (41a)

= max
γf
t (·|x̂t)

Eγ
f
t (·|x̂t)σ̃

l
t, µt[â1:t−1]

{
Rft (x̂t, at)+

V ft+1(F (µt[â1:t−1], σt(·|â1:t−1, ·), At), Xt+1)
∣∣x̂t} , (41b)
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≥ Eγ̂
f
t (·|x̂t)σ̃

l
t, µt[â1:t−1]

{
Rft (Xt, At)+

V ft+1(F (µt[â1:t−1], σt(·|â1:t−1, ·), At), Xt+1)
∣∣x̂1:t} (41c)

= Eσ̂
f
t σ̃

l
t,µt[â1:t−1]

{
Rft (x̂t, at)+

V ft+1(F (µt[â1:t−1], σt(·|â1:t−1, ·), At), Xt+1)
∣∣â1:t−1, x̂1:t} (41d)

> V ft (µt[â1:t−1], x̂t) (41e)

where (41b) follows from definition of V ft in (24), (41d) follows from definition of γ̂ft
and (41e) follows from (40). However this leads to a contradiction.

Lemma 4. ∀t ∈ [T ], (a1:t, x1:t+1) ∈ Hft+1 and σft

Eσ
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑

n=t+1

Rft (Xn, An)
∣∣a1:t, x1:t+1

}
=

Eσ
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t, x1:t+1

}
. (42)

Proof. Since the above expectations involve random variablesAt+1:T , Xt+2:T , we con-
sider, Pσ

f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t, x1:t+1).

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t, x1:t+1) (43a)

= σ̃ft+1(aft+1|a1:t, xt+1)σ̃lt+1(alt+1|a1:t)Q(xt+2|xt+1, at+1)

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+2:T , xt+3:T

∣∣a1:t+1, x1:t+2) (43b)

By definition, σ̃ft , σ̃
l
t depend on a1:t through the common equilibrium belief µt+1[a1:t],

as defined in (28). Moreover, the probability on (at+2:T , xt+3:T ) given a1:t+1, xt:t+2

depend on a1:t+1, xt:t+2, µt+1[a1:t] through σft+2:T σ̃
l
t+2:T .

Thus,

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t, x1:t+1) (43c)

= Pσ
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t](at+1:T , xt+2:T

∣∣a1:t, x1:t+1) (43d)

Lemma 5. ∀t ∈ [T ], (a1:t−1, x1:t) ∈ Hft

V ft (µt[a1:t−1], xt) = Eσ̃
f
t:T σ̃

l
t:T ,µt[a1:t−1]

{
T∑
n=t

Rfn(Xn, An)
∣∣a1:t−1, x1:t} . (44)

Proof. We prove the lemma by induction. For t = T ,

Eσ̃
f
T σ̃

l
T , µT [a1:T−1]

{
RfT (XT , AT )

∣∣a1:T−1, x1:T}
=
∑
xl
T aT

RfT (xT , aT )σ̃fT (afT |a1:T−1, xT )σ̃lT (alT |a1:T−1) (45a)

= V fT (µT [a1:T−1], xT ), (45b)
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where (45b) follows from the definition of V ft in (24) and the definition of σ̃T in the
forward recursion in (28).

Suppose the claim is true for t+ 1, i.e. ∀t ∈ [T ], (a1:t, x1:t+1) ∈ Hft+1

V ft+1(µt+1[a1:t], xt+1) = Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t, x1:t+1

}
.

(46)

Then ∀t ∈ [T ], (a1:t−1, x1:t) ∈ Hft , we have

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑
n=t

Rfn(Xn, An)
∣∣a1:t−1, x1:t}

= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rft (Xt, At)+

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t−1, At, x1:t, Xt+1

} ∣∣a1:t−1, x1:t}
(47a)

= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rft (Xt, At)+

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t−1,At]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t−1, At, x1:t, Xt+1

} ∣∣a1:t−1, x1:t}
(47b)

= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rft (Xt, At) + V ft+1(µt+1[a1:t−1At], Xt+1)

∣∣a1:t−1, x1:t}
(47c)

= Eσ̃
f
T σ̃

l
T , µt[a1:t−1]

{
Rft (Xt, At) + V ft+1(µt+1[a1:t−1At], Xt+1)

∣∣a1:t−1, x1:t}
(47d)

= V ft (µt[a1:t−1], xt), (47e)

where (47b) follows from Lemma 4 in Appendix C, (47c) follows from the induction
hypothesis in (46), (47d) follows because the random variables involved in expectation,
X l
t, At, Xt+1 do not depend on σ̃ft+1:T σ̃

l
t+1:T and (47e) follows from the definition of

σ̃t in the forward recursion in (28), the definition of µt+1 in (29) and the definition of
V ft in (24).

D Part 2: Leader

In the following we will show that

Eσ̃
l,σ̃f ,µt

{
T∑
n=t

δn−tRln(Xn, An)|hct

}
≥ Eσ

l,BRf (σl),µt

{
T∑
n=t

δn−tRln(Xn, An)|hct

}
,

(48)
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where σ̃f ∈ BRf (σ̃l), as shown in Part 1.

Proof. We prove the above result using induction and from results in Lemma 6, 7 and
8 proved in Appendix E.

For base case at t = T , ∀(a1:T−1) ∈ HlT , σl

Eσ̃
f
T σ̃

l
T , µT [a1:T−1]

{
RfT (XT , AT )

∣∣a1:T−1}
= V fT (µt[a1:T−1]) (49a)

≥ EBR
f (σl)σl

T , µT [a1:T−1]
{
RfT (XT , AT )

∣∣a1:T−1} . (49b)

where (49a) follows from Lemma 8 and (49b) follows from Lemma 6 in Appendix E.
Let the induction hypothesis be that for t+ 1, ∀(a1:t) ∈ Hlt+1, σ

l,

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t}

≥ EBR
f (σl)σl

t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rfn(Xn, An)
∣∣a1:t} (50a)

Then ∀(a1:t−1) ∈ HlT , σl, we have

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑
n=t

Rln(Xn, An)
∣∣a1:t−1}

= V lt (µt[a1:t−1]) (51a)

≥ EBR
f (σl)σl

t, µt[a1:t−1]
{
Rft (Xt, At) + V ft+1(µt+1[a1:t−1At])

∣∣a1:t−1} (51b)

= EBR
f (σl)σl

t, µt[a1:t−1]
{
Rft (Xt, At)+

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t−1,At]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t−1, At} ∣∣a1:t−1} (51c)

≥ EBR
f (σl)σl

t, µt[a1:t−1]
{
Rft (Xt, At)+

EBR
f (σl)σl

t+1:Tµt+1[a1:t−1,At]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t−1, At} ∣∣a1:t−1} (51d)

= EBR
f (σl)σl

t, µt[a1:t−1]
{
Rft (Xt, At)+

EBR
f (σl)σl

t:Tµt[a1:t−1]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t−1, At} ∣∣a1:t−1} (51e)

= EBR
f (σl)σl

t:T µt[a1:t−1]

{
T∑
n=t

Rln(Xn, An)
∣∣a1:t−1} , (51f)
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where (51a) follows from Lemma 8, (51b) follows from Lemma 6, (51c) follows from
Lemma 8, (51d) follows from induction hypothesis in (50a) and (51e) follows from
Lemma 7.

E

Lemma 6. ∀t ∈ [T ], (a1:t−1) ∈ Hlt, σlt

V ft (µt[a1:t−1], xt) ≥ EBR
f (σl

t)σ
l
t µt[a1:t−1]

{
Rft (Xt, At)+

V lt+1(F (µt[a1:t−1], BRf (σlt)(·|a1:t−1, ·), At))
∣∣a1:t−1} (52)

Proof. We prove this lemma by contradiction. Suppose the claim is not true for t. This
implies ∃σ̂lt, â1:t−1 such that

EBR
f (σ̂l

t)σ̂
l
t, µt[â1:t−1]

{
Rft (Xt, At) + V ft+1(F (µt[â1:t−1], BRf (σ̂lt)(·|â1:t−1, ·), At))

∣∣â1:t−1}
> V ft (µt[â1:t−1]). (53)

We will show that this leads to a contradiction.
Construct γ̂lt(a

l
t) = σ̂lt(a

l
t|â1:t−1)

Then for â1:t−1, we have

V lt (µt[â1:t−1]) (54a)

= max
γl
t

Eγ
l
tBR

f (γl
t)µt[â1:t−1]

{
Rlt(Xt, At) + V lt+1(F (µt[â1:t−1], BRf (γlt), A

f
t ))
∣∣â1:t−1}
(54b)

≥ Eγ̂
l
t(·|x̂t)BR

f (γ̂l
t), µt[â1:t−1]

{
Rlt(Xt, At) + V lt+1(F (µt[â1:t−1], BRf (γ̂lt), At))

∣∣â1:t−1}
(54c)

= Eσ̂
l
tBR

f (σ̂l
t)µt[â1:t−1]

{
Rlt(Xt, At)+

V lt+1(F (µt[â1:t−1], BRf (σ̂lt)(·|â1:t−1, ·), At))
∣∣â1:t−1} (54d)

> V lt (µt[â1:t−1]) (54e)

where (54b) follows from definition of V lt in (24), (54d) follows from definition of γ̂lt
and (54e) follows from (53). However this leads to a contradiction.

Lemma 7. ∀t ∈ [T ], (a1:t) ∈ Hlt+1 and σft

Eσ
l
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑

n=t+1

Rlt(Xn, An)
∣∣a1:t} =

Eσ
l
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t} . (55)



18 D. Vasal

Proof. Since the above expectations involve random variablesAt+1:T , Xt+2:T , we con-
sider, Pσ

f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t).

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t) (56a)

=
∑
xt+1

µt+1[a1:t](xt+1)σ̃ft+1(aft+1|a1:t, xt+1)σ̃lt+1(alt+1|a1:t)Q(xt+2|xt+1, at+1)

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+2:T , xt+3:T

∣∣a1:t+1, xt+2) (56b)

By definition, σ̃ft , σ̃
l
t depend on a1:t through the common equilibrium belief µt+1[a1:t],

as defined in (28). Moreover, the probability on (at+2:T , xt+3:T ) given a1:t+1, xt:t+2

depend on a1:t+1, xt:t+2, µt+1[a1:t] through σft+2:T σ̃
l
t+2:T .

Thus,

Pσ
f
t:T σ̃

l
t:T , µt[a1:t−1](at+1:T , xt+2:T

∣∣a1:t) (56c)

= Pσ
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t](at+1:T , xt+2:T

∣∣a1:t) (56d)

Lemma 8. ∀t ∈ [T ], (a1:t−1) ∈ HcT

V lt (µt[a1:t−1]) = Eσ̃
f
t:T σ̃

l
t:T ,µt[a1:t−1]

{
T∑
n=t

Rln(Xn, An)
∣∣a1:t−1} . (57)

Proof. We prove the lemma by induction. For t = T ,

Eσ̃
f
T σ̃

l
T , µT [a1:T−1]

{
RlT (XT , AT )

∣∣a1:T−1}
=
∑
xT ,aT

µt[a1:t−1](xT )RlT (xT , aT )σ̃fT (alT |a1:T−1, xT )σ̃lT (alT |a1:T−1) (58a)

= V lT (µT [a1:T−1]), (58b)

where (58b) follows from the definition of V lt in (24) and the definition of σ̃T in the
forward recursion in (28).

Suppose the claim is true for t+ 1, i.e., ∀t ∈ [T ], (a1:t) ∈ Hct+1

V lt+1(µt+1[a1:t]) = Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t} . (59)

Then ∀t ∈ [T ], (a1:t−1) ∈ Hct , we have

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑
n=t

Rln(Xn, An)
∣∣a1:t−1}

= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rlt(Xt, At)+

Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t−1, At} ∣∣a1:t−1} (60a)
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= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rlt(Xt, At)+

Eσ̃
f
t+1:T σ̃

l
t+1:T , µt+1[a1:t−1,At]

{
T∑

n=t+1

Rln(Xn, An)
∣∣a1:t−1, At} ∣∣a1:t−1} (60b)

= Eσ̃
f
t:T σ̃

l
t:T , µt[a1:t−1]

{
Rlt(Xt, At) + V lt+1(µt+1[a1:t−1At])

∣∣a1:t−1} (60c)

= Eσ̃
f
T σ̃

l
T , µt[a1:t−1]

{
Rlt(Xt, At) + V lt+1(µt+1[a1:t−1At])

∣∣a1:t−1} (60d)

= V lt (µt[a1:t−1]), (60e)

where (60b) follows from Lemma 7 in Appendix E, (60c) follows from the induction
hypothesis in (59), (60d) follows because the random variables involved in expectation,
X l
t, At, Xt+1 do not depend on σ̃ft+1:T σ̃

l
t+1:T and (60e) follows from the definition of

σ̃t in the forward recursion in (28), the definition of µt+1 in (29) and the definition of
V lt in (24).

F

Lemma 9. For all πt,γlt, BR
f
t (γlt) as defined in (21) is non-empty.

Proof.

BRft (γlt) =

{
γ̂ft : ∀xt ∈ X , γ̂ft (·|xt) ∈ arg max

γf
t (·|xt)

Eγ
f
t (·|xt)γ

l
t, πt

{
Rft (xt, At) + δV ft+1(F (πt, γ̂

f
t , At), Xt+1)

∣∣xt}} (61)

(i) Let G be the space of γ, where γ : X → P(A). Clearly B is convex since it is a
space of probability measures, and compact which is implied by the finiteness of
X ,A.

(ii) Fix γlt. For all γ̂ft , define a correspondence B : G ⇒ G as follows

B(γ̄ft ) :=

{
γ̂ft : ∀xt ∈ X : γ̂ft (·|xt) ∈ arg max

γf
t (·|xt)∑

at,xt+1

[
Rft (xt, At) + δV ft+1(F (πt, γ̄

f
t , At), Xt+1)

∣∣xt] γft (aft |xt)γlt(alt)Q(xt+1|xt, at)


(62)

Then B(γ̄ft ) is non-empty, closed and convex since the optimization in (62) is a
linear program in variables γft (·|xt), which lie in a compact space that is the prob-
ability simplex.

(iii) Since the optimization in (62) is linear and thus continuous in γft (·|xt), therefore
B has closed graph property (from Berge’s Maximum theorem [9]). Thus using
Kakutani’s fixed-point theorem [10][Lemma 20.1], there exists a fixed-point of
B(·) which also belongs to BRf (γlt). Thus BRf (γlt) is non-empty.
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