Impact of Social Connectivity on Herding Behavior

Deepanshu Vasal
University of Texas, Austin
dvasal@umich.edu

Motivating Example [Shirky, 2008]

- Small protests began in Leipzig, Germany in 1989 with few activists challenging the German Democratic Republic
- Slowly the numbers started rising, and by September 1989, they become too big to be quashed by the government
- The number of protestors grew to 100,000 by October 1989 and to 400,000 by first Monday of November 1989

Motivating Example [Shirky, 2008]

- Small protests began in Leipzig, Germany in 1989 with few activists challenging the German Democratic Republic
- Slowly the numbers started rising, and by September 1989, they become too big to be quashed by the government
- The number of protestors grew to

Source:bloomberg.com 100,000 by October 1989 and to 400,000 by first Monday of November 1989

- Two days later, Berlin wall was dismantled

Motivating Example [Beal et al., 1957]

Source:cshl.edu

- During great depression and till mid 1930s, it was observed that adoption rate of drought-resistant hybrid corn was low
- This was despite the fact that the seeds from newer technology faired significantly better
- After conducting surveys, it was found that farmers valued opinions of their neighbors more than the sales person's word and thus the group as a whole did not adopt the new technology despite it being better.

Background

- Classical Bayesian learning: single decision maker; makes noisy observations of the state of the system; eventually learns the true state.

[^0]
Background

- Classical Bayesian learning: single decision maker; makes noisy observations of the state of the system; eventually learns the true state.
- More interesting scenario is learning over a social network: multiple decision makers; act strategically based on their own private information and actions of previous users, ${ }^{1}$.

[^1]
Background

- Classical Bayesian learning: single decision maker; makes noisy observations of the state of the system; eventually learns the true state.
- More interesting scenario is learning over a social network: multiple decision makers; act strategically based on their own private information and actions of previous users; ${ }^{1}$.
- Occurrences of informational cascades: users discard their private information and follow majority action of users before them

[^2]
Background

- Classical Bayesian learning: single decision maker; makes noisy observations of the state of the system; eventually learns the true state.
- More interesting scenario is learning over a social network: multiple decision makers; act strategically based on their own private information and actions of previous users; ${ }^{1}$.
- Occurrences of informational cascades: users discard their private information and follow majority action of users before them
- An informational cascade could be good or bad for the team/society

[^3]
[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

[Bikhchandani et al., 1992]'s sequential model

Informational cascades in random trees

- Goal: Understand cascading behavior in large random networks
- Locally such networks behave like trees
- Model: Myopic players appear on a random tree, observe a private signal and actions of their ancestors
- Using the theory of Multi-type Galton Watson branching process, characterize herding behavior

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{\text {th }}$ player at stage t of the tree by p_{t}^{k}

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{\text {th }}$ player at stage t of the tree by p_{t}^{k}
- Player p_{t}^{k} privately observes $x_{t}^{k} \sim Q(\cdot \mid V=v)$

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{t h}$ player at stage t of the tree by p_{t}^{k}
- Player p_{t}^{k} privately observes $x_{t}^{k} \sim Q(\cdot \mid V=v)$
- Equivalently she observes $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$ where q_{t}^{k} has CDF $F^{\vee}, v=1,2, \operatorname{supp}\left(F^{\vee}\right)=[\underline{b}, \bar{b}] \subseteq[0,1]$, and $0 \leq \underline{b}<1 / 2<\bar{b} \leq 1$.

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{t h}$ player at stage t of the tree by p_{t}^{k}
- Player p_{t}^{k} privately observes $x_{t}^{k} \sim Q(\cdot \mid V=v)$
- Equivalently she observes $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$ where q_{t}^{k} has CDF $F^{\vee}, v=1,2, \operatorname{supp}\left(F^{\vee}\right)=[\underline{b}, \bar{b}] \subseteq[0,1]$, and $0 \leq \underline{b}<1 / 2<\bar{b} \leq 1$.
- She observes actions of her ancestors, denoted by $a^{\mathcal{P}\left(\rho_{t}^{k}\right)}$, and her own private observation, x_{t}^{k} or q_{t}^{k}

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{\text {th }}$ player at stage t of the tree by p_{t}^{k}
- Player p_{t}^{k} privately observes $x_{t}^{k} \sim Q(\cdot \mid V=v)$
- Equivalently she observes $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$ where q_{t}^{k} has CDF $F^{\vee}, v=1,2, \operatorname{supp}\left(F^{\vee}\right)=[\underline{b}, \bar{b}] \subseteq[0,1]$, and $0 \leq \underline{b}<1 / 2<\bar{b} \leq 1$.
- She observes actions of her ancestors, denoted by $a^{\mathcal{P}\left(p_{t}^{k}\right)}$, and her own private observation, x_{t}^{k} or q_{t}^{k}
- She takes an action $a_{t}^{k} \in\{0,1\}$ to either buy the product $\left(a_{t}^{k}=1\right)$ or not buy the product $\left(a_{t}^{k}=0\right)$ and then she leaves the system

Model

- Let there be a product whose value is $V \in\{0,1\}$ such that $P(V=0)=1 / 2$
- Infinite myopic selfish players appear sequentially on nodes of a tree with random degree with given probability generating function (PGF) ϕ_{D}.
- Notation: We denote $k^{t h}$ player at stage t of the tree by p_{t}^{k}
- Player p_{t}^{k} privately observes $x_{t}^{k} \sim Q(\cdot \mid V=v)$
- Equivalently she observes $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$ where q_{t}^{k} has CDF $F^{\vee}, v=1,2, \operatorname{supp}\left(F^{\vee}\right)=[\underline{b}, \bar{b}] \subseteq[0,1]$, and $0 \leq \underline{b}<1 / 2<\bar{b} \leq 1$.
- She observes actions of her ancestors, denoted by $a^{\mathcal{P}\left(p_{t}^{k}\right)}$, and her own private observation, x_{t}^{k} or q_{t}^{k}
- She takes an action $a_{t}^{k} \in\{0,1\}$ to either buy the product ($a_{t}^{k}=1$) or not buy the product $\left(a_{t}^{k}=0\right)$ and then she leaves the system
- She gets a reward $R_{t}^{k}\left(a_{t}^{k}, v\right)=\left\{\begin{array}{r}1 \text { if } a_{t}^{k}=1, v=1, \\ -1 \text { if } a_{t}^{k}=1, v=0, \\ 0 \text { if } a_{t}^{k}=0\end{array}\right.$

Perfect Bayesian Equilibrium

- Decision strategy:

$$
\mathbb{E}\left\{R_{t}^{k} \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}, a_{t}^{k}\right\}=\left\{\begin{array}{l}
2 P\left(V=1 \mid a^{\mathcal{P}}\left(p_{t}^{k}\right), x_{t}^{k}\right)-1 \text { if } a_{t}^{k}=1 \tag{1}\\
0 \text { if } a_{t}^{k}=0 .
\end{array}\right.
$$

${ }^{2}$ where ties are broken in favor of user's private information.
3 [Smith and Sörensen, 2000, Acemoglu et al., 2011]

Perfect Bayesian Equilibrium

- Decision strategy:

$$
\mathbb{E}\left\{R_{t}^{k} \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}, a_{t}^{k}\right\}=\left\{\begin{array}{l}
2 P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}\right)-1 \text { if } a_{t}^{k}=1 \tag{1}\\
0 \text { if } a_{t}^{k}=0 .
\end{array}\right.
$$

- User p_{t}^{k} takes action $a_{t}^{k}=1$ if $P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}\right)>1 / 2 .^{2}$
${ }^{2}$ where ties are broken in favor of user's private information.
3 [Smith and Sörensen, 2000, Acemoglu et al., 2011]

Perfect Bayesian Equilibrium

- Decision strategy:

$$
\mathbb{E}\left\{R_{t}^{k} \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}, a_{t}^{k}\right\}=\left\{\begin{array}{l}
2 P\left(V=1 \mid a^{\mathcal{P}}\left(p_{t}^{k}\right), x_{t}^{k}\right)-1 \text { if } a_{t}^{k}=1 \tag{1}\\
0 \text { if } a_{t}^{k}=0 .
\end{array}\right.
$$

- User p_{t}^{k} takes action $a_{t}^{k}=1$ if $P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}\right)>1 / 2$. 2
- Let common belief $\pi_{t}^{k}:=P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}\right)$ and private belief $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$. Then ${ }^{3}$

$$
\begin{equation*}
P\left(V=1 \mid a^{\mathcal{P}\left(\rho_{t}^{k}\right)}, x_{t}^{k}\right)>1 / 2 \Longleftrightarrow \pi_{t}^{k}+q_{t}^{k}>1 \tag{2}
\end{equation*}
$$

${ }^{2}$ where ties are broken in favor of user's private information.
${ }^{3}$ [Smith and Sörensen, 2000, Acemoglu et al., 2011]

Perfect Bayesian Equilibrium

- Decision strategy:

$$
\mathbb{E}\left\{R_{t}^{k} \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}, a_{t}^{k}\right\}=\left\{\begin{array}{l}
2 P\left(V=1 \mid a^{\mathcal{P}}\left(p_{t}^{k}\right), x_{t}^{k}\right)-1 \text { if } a_{t}^{k}=1 \tag{1}\\
0 \text { if } a_{t}^{k}=0 .
\end{array}\right.
$$

- User p_{t}^{k} takes action $a_{t}^{k}=1$ if $P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}, x_{t}^{k}\right)>1 / 2$. 2
- Let common belief $\pi_{t}^{k}:=P\left(V=1 \mid a^{\mathcal{P}\left(p_{t}^{k}\right)}\right)$ and private belief $q_{t}^{k}:=P\left(V=1 \mid x_{t}^{k}\right)$. Then ${ }^{3}$

$$
\begin{equation*}
P\left(V=1 \mid a^{\mathcal{P}\left(\rho_{t}^{k}\right)}, x_{t}^{k}\right)>1 / 2 \Longleftrightarrow \pi_{t}^{k}+q_{t}^{k}>1 \tag{2}
\end{equation*}
$$

- Then the equilibrium policy (PBE), g, is

$$
a_{t}^{k}=\left\{\begin{array}{l}
1 \text { if } q_{t}^{k}>1-\pi_{t}^{k} \text { or } q_{t}^{k}=1-\pi_{t}^{k} \text { and } q_{t}^{k} \geq 1 / 2 \tag{3}\\
0 \text { if } q_{t}^{k}<1-\pi_{t}^{k} \text { or } q_{t}^{k}=1-\pi_{t}^{k} \text { and } q_{t}^{k}<1 / 2 .
\end{array}\right.
$$

[^4]${ }^{3}$ [Smith and Sörensen, 2000, Acemoglu et al., 2011]

Common belief update

Lemma

Under the equilibrium policy g, common belief π_{t}^{k} is updated as

$$
\pi_{t+1}^{\prime}= \begin{cases}\psi_{0}\left(\pi_{t}^{k}\right) & \text { if } a_{t}^{k}=0 \tag{4}\\ \psi_{1}\left(\pi_{t}^{k}\right) & \text { if } a_{t}^{k}=1 .\end{cases}
$$

Proof: Bayes' Rule
Note: For $\left(1-\pi_{t}^{k}\right)$ outside the support of F^{\vee}, then the update of π_{t}^{k} for both actions leads to same belief i.e.

$$
\begin{equation*}
\pi_{t+1}^{\prime}=\psi_{a}\left(\pi_{t}^{k}\right)=\pi_{t}^{k} \quad \text { if }\left(1-\pi_{t}^{k}\right) \notin[\underline{b}, \bar{b}] \tag{5}
\end{equation*}
$$

Preliminaries: Single type Galton-Watson Process

- A Galton-Watson process is defined as a branching process which starts with one node and each node of the tree independently gives birth to D children, where D is a discrete random variable with known probability generating function (PGF) ϕ_{D} i.e. $\phi_{D}(s)=\mathbb{E}\left[s^{D}\right]$.
- Proposition The probability of extinction is the smallest nonnegative root t of the fixed-point (FP) equation

$$
\begin{equation*}
\phi_{D}(t)=t \tag{6}
\end{equation*}
$$

- If $\mathbb{E}[D]>1$, then the $F P$ equation has a unique root less than 1 . If $\mathbb{E}[D] \leq 1$, then the only root is 1 .

Preliminaries: Multi-Type Galton-Watson Process

- A multi-type Galton-Watson process is defined as a branching process where each node of the tree could be of multiple type (finite, countable or uncountable) and gives birth to children of any of the types with a given PGF.
- Suppose every node has a type $x \in[0,1]$ and it gives birth to n children of types $\left(y_{1}, \ldots, y_{n}\right)$ with probability $P_{1}^{(n)}\left(d y^{n} \mid x\right)$, where $y_{i} \in[0,1]$.
- Define probability generating functional

$$
\begin{equation*}
G_{1}(\xi \mid x):=\sum_{n=0}^{\infty} \int_{X^{n}} \xi\left(y_{1}\right) \ldots \xi\left(y_{n}\right) P_{1}^{(n)}\left(d y^{n} \mid x\right) \tag{7}
\end{equation*}
$$

- Then the asymptotic extinction probability, $q(x)$, is given by the minimal non-negative solution of the functional equation [Moyal, 1962]

$$
\begin{equation*}
\forall x, \quad \xi(x)=G_{1}(\xi \mid x) \tag{8}
\end{equation*}
$$

Information cascades as extinction probability in a branching process

- Let π_{t}^{k} be type of player p_{t}^{k}
- A player of type m, where $1-m \in[\underline{b}, \bar{b}]$, has D children of type $\psi_{0}(m)$ with probability $F^{1}(1-m)$, or D children of type $\psi_{1}(m)$ with probability $\left(1-F^{1}(1-m)\right)$
- For $1-m<\underline{b}$, player p_{t}^{k} has D children of type of type $\psi_{1}(m)$ with probability 1 , and for $1-m>\bar{b}$, player p_{t}^{k} has D children of type of type $\psi_{0}(m)$ with probability 1
- We define types $1-m \notin[\underline{b}, \bar{b}]$ as "extinct" from the point of view of the branching process

Lemma

Informational cascades are equivalent to extinction probability in the branching process defined above.

Probability of falling into cascade

- Using multi-type Galton-Watson branching process theory the probability of falling into a cascade is given by $q(1 / 2)$, where $q(\cdot)$ is given by the minimal non-negative solution of the functional equation

$$
\begin{equation*}
\xi(x)=G_{1}(\xi \mid x) \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
G_{1}(\xi \mid x) & =\sum_{n=0}^{\infty} \int_{X^{n}} \xi\left(y_{1}\right) \ldots \xi\left(y_{n}\right) P_{1}^{(n)}\left(d y^{n} \mid x\right) \tag{10a}\\
& =F^{1}(1-x) \phi_{D}\left(\xi\left(\psi_{0}(x)\right)\right)+\left(1-F^{1}(1-x)\right) \phi_{D}\left(\xi\left(\psi_{1}(x)\right)\right) \tag{10b}
\end{align*}
$$

Special case:BSC with erroneous actions

- Users read actions of their ancestors erroneously through a binary symmetric channel with error probability $\epsilon \in[0,0.5]$
- Each user observes o_{t}^{k} instead of a_{t}^{k} where $P\left(O_{t}^{k} \neq A_{t}^{k}\right)=\epsilon$.
- It is shown in [Le et al., 2014] that $z_{n}:=\left(\# 1^{\prime} s-\#^{\prime} 0 s\right)$ (instead of $\pi_{t}!$) is a sufficient statistics for common observation history
- It is also shown that a positive (or negative) cascade occurs when z_{n} becomes greater (smaller) than $k_{0}\left(-k_{0}\right), k_{0}:=\left\lfloor\log _{\frac{1-a}{a}} \alpha\right\rfloor+1$

Corollary

Let $q:=\left[-q_{k}, \ldots, q_{k}\right]$ where q_{i} represent the probabilities of falling into a cascade starting from type i. Using (9) the minimal solution of the following fixed-point represents this probability, for $i=\{-k+1, \ldots, k-1\}$,

$$
\begin{equation*}
q_{i}=a \phi_{D}\left(q_{i-1}\right)+\bar{a} \phi_{D}\left(q_{i+1}\right) \tag{11}
\end{equation*}
$$

and $q_{-k}=q_{k}=1, a=\epsilon(1-p)+(1-\epsilon) p, \alpha=\frac{1-p}{p}$

Probability of falling into cascades for BSC with erroneous actions: d-regular tree

Figure : Probability of tree falling into cascade for d -regular tree with $\mathrm{d}=1$ and $\mathrm{d}=2$ where $0.5<p<1$ and $0<\epsilon<0.5$. Notice for smaller values of the channel and observation noise, the tree cascades with a higher probability.

Probability of falling into cascades for BSC with erroneous actions: Poisson tree

Figure : Probability of tree falling into cascade for tree with degree distribution Poisson (0.2) and Poisson(2)

Special case: BSC with perfectly observed actions

- Actions are perfectly observed
- There exist 5 possible states $\{-2,-1,0,1,2\}$, where ± 2 are absorbing states
- The probability of cascades is given by q_{0}, where $\left(q_{-2}, q_{-1}, q_{0}, q_{1}, q_{2}\right)$ is the minimal solution of the fixed-point equation

$$
\begin{align*}
q_{-2} & =q_{2}=1 \tag{12}\\
q_{-1} & =p+\bar{p} \phi_{D}\left(q_{0}\right) \tag{13}\\
q_{0} & =p \phi_{D}\left(q_{-1}\right)+\bar{p} \phi_{D}\left(q_{1}\right) \tag{14}\\
q_{1} & =p \phi_{D}\left(q_{0}\right)+\bar{p} . \tag{15}
\end{align*}
$$

- the probability of occurrence of an information cascades is given by the smallest non-negative solution of the fixed-point equation

$$
\begin{equation*}
y=p \phi_{D}\left(p+\bar{p} \phi_{D}(y)\right)+\bar{p} \phi_{D}\left(p \phi_{D}(y)+\bar{p}\right) \tag{16}
\end{equation*}
$$

Special case: BSC with perfectly observed actions

Corollary

The tree cascades with probability 1 if and only if $\mathbb{E}[D] \leq \frac{1}{\sqrt{2 p(1-p)}}$.
Special Case: $\mathrm{D}=1$ a.s. The above condition is satisfied and thus the tree cascades with probability 1 . This is an alternate proof of occurrence of informational cascades of [Bikhchandani et al., 1992] for the BSC channel.

Special Case: $\mathrm{D}=2$ a.s. The tree cascades with probability 1 if $\frac{2+\sqrt{3}}{4}<p \leq 1$. For $\frac{1}{2}<p<\frac{2+\sqrt{3}}{4}$, the probability of occurrence of informational cascades is the smallest fixed-point of the following equation,

$$
\begin{equation*}
y=p\left(p+\bar{p} y^{2}\right)^{2}+\bar{p}\left(p y^{2}+\bar{p}\right)^{2} . \tag{17}
\end{equation*}
$$

Concluding Remarks

- We study occurrence of information cascades on random trees which serve as approximation of large random graphs such as Erdös Rényi graph.
- Using multi-type Galton-Watson branching process, we characterize the probability of tree falling into a cascade
- Our model is a special case of [Acemoglu et al., 2011]. They provide sufficient conditions for "asymptotic learning" whereas we study probability of falling into a cascade.
- Our analysis confirms the observation of [Le et al., 2014] that there is no monotonicity of probability of cascades in channel noise.
- Our results indicate that groups that are less tightly knit, (i.e. have smaller $\mathbb{E}[D])$ (and as a result have lesser diversity of thought) tend to herd more than the groups that have more social connections.

Thank you

References I

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2011). Bayesian learning in social networks.
The Review of Economic Studies, 78(4):1201-1236.
Beal, G. M., Bohlen, J. M., et al. (1957).
The diffusion process.
Agricultural Experiment Station, Iowa State College.
Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992).
A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5):pp. 992-1026.

Le, T. N., Subramanian, V., and Berry, R. (2014).
The impact of observation and action errors on informational cascades.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 1917-1922.
Moyal, J. (1962).
Multiplicative population chains.
In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 266, pages 518-526. The Royal Society.

References II

Shirky, C. (2008).
Here Comes Everybody: The Power of Organizing Without Organizations.
New York: Penguin Press.Smith, L. and Sørensen, P. (2000).
Pathological outcomes of observational learning.
Econometrica, 68(2):371-398.Smith, L. and Sörensen, P. (2000).
Pathological outcomes of observational learning.
Econometrica, 68(2):371-398.Smith, L. and Sørensen, P. N. (2013).
Rational social learning by random sampling.
Available at SSRN 1138095.

[^0]: ${ }^{1}$ [Bikhchandani et al., 1992, Smith and Sørensen, 2000, Acemoglu et al., 2011, Smith and Sørensen, 2013, Le et al., 2014]

[^1]: ${ }^{1}$ [Bikhchandani et al., 1992, Smith and Sørensen, 2000, Acemoglu et al., 2011, Smith and Sørensen, 2013, Le et al., 2014]

[^2]: ${ }^{1}$ [Bikhchandani et al., 1992, Smith and Sørensen, 2000, Acemoglu et al., 2011, Smith and Sørensen, 2013, Le et al., 2014]

[^3]: ${ }^{1}$ [Bikhchandani et al., 1992, Smith and Sørensen, 2000, Acemoglu et al., 2011, Smith and Sørensen, 2013, Le et al., 2014]

[^4]: ${ }^{2}$ where ties are broken in favor of user's private information.

