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Motivating Example [Shirky, 2008]

Small protests began in Leipzig,
Germany in 1989 with few activists
challenging the German Democratic
Republic

Slowly the numbers started rising,
and by September 1989, they
become too big to be quashed by
the government

The number of protestors grew to
100,000 by October 1989 and to
400,000 by first Monday of
November 1989
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Small protests began in Leipzig,
Germany in 1989 with few activists
challenging the German Democratic
Republic

Slowly the numbers started rising,
and by September 1989, they
become too big to be quashed by
the government

The number of protestors grew to
100,000 by October 1989 and to
400,000 by first Monday of
November 1989

Two days later, Berlin wall was
dismantled

Source:bloomberg.com
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Motivating Example [Beal et al., 1957]

Source:cshl.edu

During great depression and till mid 1930s, it was observed that adoption
rate of drought-resistant hybrid corn was low

This was despite the fact that the seeds from newer technology faired
significantly better

After conducting surveys, it was found that farmers valued opinions of their
neighbors more than the sales person’s word and thus the group as a whole
did not adopt the new technology despite it being better.
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Background

Classical Bayesian learning: single decision maker ; makes noisy
observations of the state of the system; eventually learns the true state.

More interesting scenario is learning over a social network: multiple
decision makers; act strategically based on their own private information and
actions of previous users;1.

Occurrences of informational cascades: users discard their private
information and follow majority action of users before them

An informational cascade could be good or bad for the team/society

1[Bikhchandani et al., 1992, Smith and Sørensen, 2000, Acemoglu et al., 2011,
Smith and Sørensen, 2013, Le et al., 2014]
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[Bikhchandani et al., 1992]’s sequential model
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Informational cascades in random trees

Goal: Understand cascading behavior in large random networks

Locally such networks behave like trees

Model: Myopic players appear on a random tree, observe a private signal and
actions of their ancestors

Using the theory of Multi-type Galton Watson branching process,
characterize herding behavior
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Model

Let there be a product whose value is V ∈ {0, 1} such that P(V = 0) = 1/2

Infinite myopic selfish players appear sequentially on nodes of a tree with
random degree with given probability generating function (PGF) φD .

Notation: We denote k th player at stage t of the tree by pk
t

Player pk
t privately observes xk

t ∼ Q(·|V = v)

Equivalently she observes qk
t := P(V = 1|xk

t ) where qk
t has CDF

F v , v = 1, 2, supp(F v ) = [b, b̄] ⊆ [0, 1], and 0 ≤ b < 1/2 < b̄ ≤ 1.

She observes actions of her ancestors, denoted by aP(pk
t ), and her own private

observation, xk
t or qk

t

She takes an action ak
t ∈ {0, 1} to either buy the product (ak

t = 1) or not buy
the product (ak

t = 0) and then she leaves the system

She gets a reward Rk
t (ak

t , v) =

 1 if ak
t = 1, v = 1,

−1 if ak
t = 1, v = 0,

0 if ak
t = 0
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Perfect Bayesian Equilibrium

Decision strategy:

E{Rk
t |aP(pk

t ), xk
t , a

k
t } =

{
2P(V = 1|aP(pk

t ), xk
t )− 1 if ak

t = 1
0 if ak

t = 0.
(1)

User pk
t takes action ak

t = 1 if P(V = 1|aP(pk
t ), xk

t ) > 1/2. 2

Let common belief πk
t := P(V = 1|aP(pk

t )) and private belief
qk

t := P(V = 1|xk
t ). Then 3

P(V = 1|aP(pk
t ), xk

t ) > 1/2 ⇐⇒ πk
t + qk

t > 1 (2)

Then the equilibrium policy (PBE), g , is

ak
t =

{
1 if qk

t > 1− πk
t or qk

t = 1− πk
t and qk

t ≥ 1/2
0 if qk

t < 1− πk
t or qk

t = 1− πk
t and qk

t < 1/2.
(3)

2where ties are broken in favor of user’s private information.
3 [Smith and Sörensen, 2000, Acemoglu et al., 2011]
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Common belief update

Lemma

Under the equilibrium policy g, common belief πk
t is updated as

π′t+1 =

{
ψ0(πk

t ) if ak
t = 0

ψ1(πk
t ) if ak

t = 1.
(4)

Proof: Bayes’ Rule

Note: For (1− πk
t ) outside the support of F v , then the update of πk

t for both
actions leads to same belief i.e.

π′t+1 = ψa(πk
t ) = πk

t if (1− πk
t ) /∈ [b, b̄] (5)
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Preliminaries: Single type Galton-Watson Process

A Galton-Watson process is defined as a branching process which starts with
one node and each node of the tree independently gives birth to D children,
where D is a discrete random variable with known probability generating
function (PGF) φD i.e. φD(s) = E[sD ].

Proposition The probability of extinction is the smallest nonnegative root t
of the fixed-point (FP) equation

φD(t) = t (6)

If E[D] > 1, then the FP equation has a unique root less than 1. If E[D] ≤ 1,
then the only root is 1.
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Preliminaries: Multi-Type Galton-Watson Process

A multi-type Galton-Watson process is defined as a branching process where
each node of the tree could be of multiple type (finite, countable or
uncountable) and gives birth to children of any of the types with a given PGF.

Suppose every node has a type x ∈ [0, 1] and it gives birth to n children of

types (y1, . . . , yn) with probability P
(n)
1 (dy n|x), where yi ∈ [0, 1].

Define probability generating functional

G1(ξ|x) :=
∞∑

n=0

∫
X n

ξ(y1) . . . ξ(yn)P
(n)
1 (dy n|x) (7)

Then the asymptotic extinction probability, q(x), is given by the minimal
non-negative solution of the functional equation [Moyal, 1962]

∀x , ξ(x) = G1(ξ|x) (8)
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Information cascades as extinction probability in a
branching process

Let πk
t be type of player pk

t

A player of type m, where 1−m ∈ [b, b̄], has D children of type ψ0(m) with
probability F 1(1−m), or D children of type ψ1(m) with probability
(1− F 1(1−m))

For 1−m < b, player pk
t has D children of type of type ψ1(m) with

probability 1, and for 1−m > b̄, player pk
t has D children of type of type

ψ0(m) with probability 1

We define types 1−m /∈ [b, b̄] as “extinct” from the point of view of the
branching process

Lemma

Informational cascades are equivalent to extinction probability in the branching
process defined above.

Deepanshu Vasal (UT-Austin) 12 / 22



Probability of falling into cascade

Using multi-type Galton-Watson branching process theory the probability of
falling into a cascade is given by q(1/2), where q(·) is given by the minimal
non-negative solution of the functional equation

ξ(x) = G1(ξ|x) (9)

where

G1(ξ|x) =
∞∑

n=0

∫
X n

ξ(y1) . . . ξ(yn)P
(n)
1 (dy n|x) (10a)

= F 1(1− x)φD(ξ(ψ0(x))) + (1− F 1(1− x))φD(ξ(ψ1(x))). (10b)
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Special case:BSC with erroneous actions

Users read actions of their ancestors erroneously through a binary symmetric
channel with error probability ε ∈ [0, 0.5]

Each user observes ok
t instead of ak

t where P(Ok
t 6= Ak

t ) = ε.

It is shown in [Le et al., 2014] that zn := (#1′s −#′0s) (instead of πt !) is a
sufficient statistics for common observation history

It is also shown that a positive (or negative) cascade occurs when zn becomes
greater (smaller) than k0 (−k0), k0 := b log 1−a

a
αc+ 1

Corollary

Let q := [−qk , . . . , qk ] where qi represent the probabilities of falling into a
cascade starting from type i . Using (9) the minimal solution of the following
fixed-point represents this probability, for i = {−k + 1, . . . , k − 1},

qi = aφD(qi−1) + āφD(qi+1) (11)

and q−k = qk = 1, a = ε(1− p) + (1− ε)p, α = 1−p
p
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Probability of falling into cascades for BSC with erroneous
actions: d-regular tree
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Figure : Probability of tree falling into cascade for d-regular tree with d=1 and d=2
where 0.5 < p < 1 and 0 < ε < 0.5. Notice for smaller values of the channel and
observation noise, the tree cascades with a higher probability.
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Probability of falling into cascades for BSC with erroneous
actions: Poisson tree
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Figure : Probability of tree falling into cascade for tree with degree distribution Poisson
(0.2) and Poisson(2)
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Special case: BSC with perfectly observed actions

Actions are perfectly observed

There exist 5 possible states {−2,−1, 0, 1, 2}, where ±2 are absorbing states

The probability of cascades is given by q0, where (q−2, q−1, q0, q1, q2) is the
minimal solution of the fixed-point equation

q−2 = q2 = 1 (12)

q−1 = p + p̄φD(q0) (13)

q0 = pφD(q−1) + p̄φD(q1) (14)

q1 = pφD(q0) + p̄. (15)

the probability of occurrence of an information cascades is given by the
smallest non-negative solution of the fixed-point equation

y = pφD(p + p̄φD(y)) + p̄φD(pφD(y) + p̄) (16)
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Special case: BSC with perfectly observed actions

Corollary

The tree cascades with probability 1 if and only if E[D] ≤ 1√
2p(1−p)

.

Special Case: D=1 a.s. The above condition is satisfied and thus the tree
cascades with probability 1. This is an alternate proof of occurrence of
informational cascades of [Bikhchandani et al., 1992] for the BSC channel.

Special Case: D=2 a.s. The tree cascades with probability 1 if 2+
√

3
4 < p ≤ 1. For

1
2 < p < 2+

√
3

4 , the probability of occurrence of informational cascades is the
smallest fixed-point of the following equation,

y = p(p + p̄y 2)2 + p̄(py 2 + p̄)2. (17)
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Concluding Remarks

We study occurrence of information cascades on random trees which serve as
approximation of large random graphs such as Erdös Rényi graph.

Using multi-type Galton-Watson branching process, we characterize the
probability of tree falling into a cascade

Our model is a special case of [Acemoglu et al., 2011]. They provide
sufficient conditions for “asymptotic learning” whereas we study probability
of falling into a cascade.

Our analysis confirms the observation of [Le et al., 2014] that there is no
monotonicity of probability of cascades in channel noise.

Our results indicate that groups that are less tightly knit, (i.e. have smaller
E[D]) (and as a result have lesser diversity of thought) tend to herd more
than the groups that have more social connections.
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Thank you
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