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Abstract— We consider the problem of how strategic users
with asymmetric information can learn an underlying time-
varying state in a user-recommendation system. Users who
observe private signals about the state, sequentially make a
decision about buying a product whose value varies with time
in an ergodic manner. We formulate the team problem as
an instance of decentralized stochastic control problem and
characterize its optimal policies. With strategic users, we design
incentives such that users reveal their true private signals, so
that the gap between the strategic and team objective is small
and the overall expected incentive payments are also small.

I. INTRODUCTION

In a classical Bayesian learning problem, there is a single
decision maker who makes noisy observations of the state
of nature and based on these observations eventually learns
the true state. It is well known that through the likelihood
ratio test, the probability of error converges exponentially
to zero as the number of observations increases and the
true state is learnt asymptotically. With the advent of the
internet, in today’s world, there are many scenarios where
strategic agents with different observations (i.e. information
sets) interact with each other to learn the state of the
system that in turn affects the spread of information in the
system. One such scenario was studied by the authors in
their seminal paper [1] where they studied the occurrence
of fads in a social network, which was later generalized by
authors in [2]. The authors in [1] and [2] study the problem
of learning over a social network where observations are
made sequentially by different decision makers (users) who
act strategically based on their own private information
and actions of previous users. It is shown that herding
(information cascade) can occur in such a case where a user
discards its own private information and follows the majority
action of its predecessors (fads in social networks). As a
result, all future users repeat this behavior and a cascade
occurs. While a good cascade is desirable, there’s a positive
probability of a bad cascade that hurts all the users in the
community. Thus from a social (i.e. team) perspective, it is
highly desirable to avoid such situations. Avoiding such bad
cascades is an active area of research, for example [3] and
[4] propose alternative learning models that aim at avoiding
such bad cascades. In this paper, our goal is to analyze this
model and design incentives to avoid bad cascades.

Most of the literature for this problem assumes time-
invariant state of the nature. However, there are situations
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where the state of the nature, for e.g. popularity of a product,
could change over time, as a consequence of endogenous or
exogenous factors (for e.g., owing to the entering of a new
competitor product or improvement/drop in quality of the
product). In this paper we consider a simple scenario where
users want to buy a product online. The product is either
good or bad (popular or unpopular) and the value of the
product (state of the system) is represented by Xt, which
is changing exogenously via a Markov chain. The state is
not directly observed by the users but each user receives
a private noisy observation of the current state. Each user
makes a decision to either buy or not buy the product, based
on its private observation and action profile of all the users
before its.

The strategic user wants to maximize its expected value
of the product. But its optimal action could be misaligned
with the team objective of maximizing the expected average
reward of the users. Thus the question we seek to address is
whether it is possible to incentivize the users to align them
with the team objective. To incentivize users to contribute
in the learning, we assume that users can also send reports
(at some cost) about their private observations after deciding
to buy or to not buy the product. The idea is similar to
leaving a review of the product. Thus users could be paid
to report their observations to enrich the information of
the future participants. Our objective is to use principles
of mechanism design to construct the appropriate payment
transfers (taxes/subsidies). Although, our approach deviates
from general principles of mechanism design for solution of
the game problem to exactly coincide with the team problem.
However, this analysis could provide the bounds on the gap
and an acceptable practical design.

We use uppercase letters for random variables and lower-
case for their realizations. We use notation at:t′ to represent
vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector
if t′ < t. We denote the indicator function of any set A
by IA(·). For any finite set S , P(S) represents space of
probability measures on S and |S| represents its cardinality.
We represent the set of real numbers by R. We denote by P g

(or Eg) the probability measure generated by (or expectation
with respect to) strategy profile g. All equalities and inequal-
ities involving random variables are to be interpreted in a.s.
sense. We use the terms users and buyers interchangeably.

The paper is structured as follows. In section II, we
present the model. In section III, we formulate the team
problem as an instance of decentralized stochastic control
and characterize its optimal policies. In section IV, we
consider the case with strategic users and design incentives



for the users to align their objective with team objective. We
conclude in section V.

II. MODEL

We consider a discrete-time dynamical system over infinite
horizon. There is a product whose value varies over time as (a
slowly varying) discrete time Markov process (Xt)t, where
Xt takes value in the set {0, 1}; 0 represents that product was
bad (has low intrinsic value) and 1 represents and product is
good (has high intrinsic value).

P (x1) = Q̂(x1) (1a)
P (xt|x1:t−1) = Qx(xt|xt−1), (1b)

such that Qx(xt|xt−1) = ε if xt 6= xt−1, for 0 < ε < 1.
There are countably infinite number of exogenously se-

lected, selfish buyers that act sequentially and exactly once
in the process. Buyer t makes a noisy observation of the
value of the product at time t, vt ∈ V

4
= {0, 1}, through

a binary symmetric channel with crossover probability p
such that these observations are conditionally independent
across users given the system state (i.e. noise is i.i.d.) i.e.
P (vt|x1:tv1:t−1) = Qv(vt|xt) = p if vt 6= xt. Based on
actions of previous buyers and its private observation buyer
t takes two actions: at ∈ A

4
= {0, 1}, which correspond

to either buying or not buying the good, and bt ∈ B
4
=

{∗, 1} where * represents not reporting its observation and
1 represent reporting truthfully. Based on these actions and
the state of the system, the buyer gets reward R(xt, at, bt)
where

R(xt, at, bt)

= −c · I(bt = 1) +


1/2, xt = 1, at = 1

−1/2, xt = 0, at = 1

0, at = 0

, (2)

where c is cost of reporting its observation truthfully. The
actions are publicly observed by future buyers whereas the
observations (vt)t are private information of the buyers.

III. TEAM PROBLEM

In this section we study the team problem where the buyers
are cooperative and want to maximize the expected average
reward per unit time for the team. At time t, buyer t’s
information consists of its private information vt and publicly
available information a1:t−1, b1:t−1. It takes action at, bt
though a (deterministic) policy gt : At−1×Bt−1×V → A×B
as

(at, bt) = gt(a1:t−1, b1:t−1, vt). (3)

The objective as a team (or for a social planner) is to
maximize the expected average reward per unit time for all
the users i.e.

J
4
= sup

g
lim sup
τ→∞

1

τ

τ∑
t=1

Eg{R(Xt, At, Bt)}. (4)

Since the decision makers (i.e. the buyers) have differ-
ent information sets, this is an instance of a decentralized

stochastic control problem. We use techniques developed
in [5] to find structural properties of the optimal policies.
Specifically, we equivalently view the system through the
perspective of a common agent that observes at time t, the
common information a1:t−1, b1:t−1 and takes action γt :
V → A×B, which is a partial function that, when acted upon
buyer’s private information vt, generates its action (at, bt).
The common agent’s actions (γt)t are taken through common
agent’s strategy ψ = (ψ)t as γt = ψt[a1:t−1, b1:t−1] where
ψt : At−1 × ×Bt−1 → (V → A× B). The corresponding
common agent’s problem is

Jc
4
= sup

ψ
lim sup
τ→∞

1

τ

τ∑
t=1

Eψ{R(Xt, At, Bt)}. (5)

This procedure transforms the original decentralized stochas-
tic control problem of buyers to a centralized stochastic
control problem of the common agent. Thus an optimal
policy of common agent can be translated to optimal policy
for the buyers. In order to characterize common agent’s op-
timal policies, we find an information state for the common
agent’s problem. We define a belief state πt at time t as a
probability measure on current state of the system given the
common information i.e. πt(xt)

4
= Pψ(xt|a1:t−1b1:t−1γ1:t).

The following lemma shows that the common agent faces a
Markov decision problem (MDP).

Lemma 1: (Πt,Γt)t is a controlled Markov process with
state Πt and action Γt such that

Pψ(πt+1|π1:tγ1:t) = P (πt+1|πtγt) (6a)

Eψ{R(Xt, At, Bt)|a1:t−1b1:t−1γ1:t}
=E{R(Xt, At, Bt)|πtγt} (6b)

=:R̂(πt, γt) (6c)

and there exists an update function F , independent of ψ such
that πt+1 = F (πt, γt, at, bt).

Proof: See Appendinx.
Lemma 1 implies that for common agent’s problem, it

can summarize the common information a1:t−1, b1:t−1 in the
belief state πt. Furthermore there exists an optimal policy for
the common agent of the form θt : P(X ) → (V → A× B)
that can be found as solution of the following dynamic
programming equation in the space of public beliefs πt as,
∀π, γ∗ = θ[π] is the maximizer in the following equation

ρ+ V (π) = max
γ

R̂(π, γ) + E{V (Π′)|πγ}, (7)

where the distribution of π′ is given through the kernel
P (·|πγ) in (6a) and ρ ∈ R, V : P(X ) → R are solution of
the above fixed point equation. Based on this public belief
πt and its private information xt, each user t takes actions
as

(at, bt) = mt(πt, vt) = θt[πt](vt). (8)

We note that since states, actions and observations belong
to a binary set, there are sixteen partial functions γ possible

that are shown in Table I below where γ =

[
γ(vt = 0)

γ(vt = 1)

]
=



[
at, bt(vt = 0)

at, bt(vt = 1)

]
. Since the common belief is updated as

πt+1 = F (πt, γ, γ(vt)) and vt is binary valued, there exist
two types of γ functions: learning (γL) and non-learning
(γNL). γL leads to update of belief through F (·) in (6a)
that is informative of the private observation vt, whereas
γNL leads to uninformative update of belief. Eight of them
are dominated in reward for example vt need not be reported
if it is revealed through at, or if it can be revealed indirectly
by absence of reporting.

TABLE I
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[
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1, ∗
0, ∗
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1, 1

1, ∗
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0, 1

]
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[
1, 1

1, 1

]
γNL

[
0, ∗
0, ∗

] [
1, ∗
1, ∗

]

IV. GAME PROBLEM

We now consider the case when the buyers are strategic.
As before, buyer t observes public history a1:t−1, b1:t−1
and its private observation vt and thus takes its actions as
(at, bt) = gt(a1:t−1, b1:t−1, vt). Its objective is to maximize
its expected reward

Jt = max
gt

Eg{R(Xt, At, Bt)}. (9)

Since all buyers have different information, this defines a
dynamic game with asymmetric information. An appropriate
solution concept is Perfect Bayesian Equilibrium (PBE) [6]
that requires specification of an assessment (g∗t , µ

∗
t )t of

strategy and belief profile where g∗t is the strategy of buyer
t, g∗t : At−1 × Bt−1 × V → P(A × B), and µ∗t is a belief
as a function of buyer t’s history on the random variables
not observed by it till time t i.e. µ∗t : At−1 × Bt−1 × V →
P(X t × Vt). In general, finding a PBE is hard [6] since
it involves solving a fixed point equation in strategies and
beliefs that are function of histories although there are few
cases where there exists an algorithm to find them [7],
[8]. For this problem, since users act exactly once in the
game and are thus myopic, it can be found easily in a
forward inductive way, as in [1], [2]. Moreover, a belief
on Xt, µ∗t (x)

4
= P g

∗
(Xt = x|at−1, bt−1, vt), x ∈ {0, 1}

is sufficient and any joint belief consistent with µ∗t (x) along
with equilibrium strategy profile g∗ constitute a PBE. For
any history, users compute a belief equilibrium strategy
depending on vt and πt as

γ∗t = φ[πt] = arg max
γt

R̂(πt, γt) (10)

With φ[·] defined through (10), for every history
(a1:t−1, b1:t−1, vt), πt is updated using forward recursion
through πt+1 = F (πt, φ(πt), at, bt) and equilibrium
strategies are generated as g∗t (a1:t−1, b1:t−1, vt) = φ[πt](vt).

Finally the beliefs µ∗t can be easily derived from πt and
private information vt through Bayes rule.

We numerically solve (7) using value iteration to find
team optimal policy, shown in Figure 1, for parameters
p = 0.2, ε = 0.001 and c = 0.05. For the same parameters,
Figure 2 shows optimal policy for a strategic user that solves
(10).
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Fig. 1: Decentralized team optimal policy
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Fig. 2: Strategic optimal policy

A. Incentive design for strategic users

Our goal is to align each buyers’ objective with the team
objective. In order to do so, we introduce incentives (tax or
subsidy) for user t, t : P(X ) × A × B → R such that its
effective reward is given by R̂(πt, γt)− t(πt, at, bt).

We first note that a user can not internalize social reward
through incentives as is done in a pivot mechanism [9]–[12],
i.e. there does not exist an incentive mechanism such that
the following equation could be true

R̂(π, γ)− t(π, a, b) = R̂(π, γ) + E{V (Π′)|πγ} (11)
i.e. t(π, a, b) = −E{V (Π′)|πγ} (12)

for V (·) defined in (7) and the distribution of π′ is given
through the kernel P (·|πγ) in (6a). The left side of (11) is



buyers’ effective reward and right side is the objective of the
team problem as in (7). Such a design is not feasible because
while t(·) can depend only on public observations (π, a, b),
the second term in the RHS of (11) depends on γ as well
which is not observed by the designer.

We observe in Figures 1, 2 that team optimal policy
coincides with the strategic optimal policy for a significant
range of π(1). Let S be the set consisting of π(1) where
the team optimal policy coincides with the strategic optimal
policy and Sc be the complement set. In order to align the
two policies, we consider the following incentive design such
that a user is paid c units by the system planner whenever
the public belief π(1) belongs to the set Sc and user reports
its observation,

t(π, at, bt) = −c · I(π(1) ∈ S)I(bt = 1). (13)

These payments are made after any report for enforcement
purposes. This is agreed upon, i.e., system planner commits
to this. With these incentives, the optimal policy of the
strategic user is shown in Figure 3. Figure 4 compares the
time average reward achieved through these policies, found
through numerical results. This shows that the gap between
the team objective and the one with incentives is small.
Intuitively, this occurs because the buyers learn the true
state of the system relatively quickly (exponentially fast)
compared to the expected time spent by the Markov process
Xt in any state. Equivalently, the time spent by the process
(Πt(1))t in the set Sc is small. Yet it is crucial for the social
objective that learning occurs in this region. Also in Figure 4,
the gap between the mechanism (including incentives) and
the mechanism where incentives are subtracted signifies the
expected average payment made by the designer, which is
relatively small.
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Fig. 3: Strategic optimal policy with incentives

V. CONCLUSION

We considered a sequential buyers game where a countable
number of strategic buyers buy a product exactly once in the
game. The value of the product is modeled as a Markov
process and buyers privately make noisy observation of the
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Fig. 4: Expected time average cost comparison for different
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value. We model the team problem as an instance of decen-
tralized stochastic control problem and characterize structure
of optimum policies. When users are strategic, it is modeled
as a dynamic game with asymmetric information. We show
that for some set πt ∈ S that occurs with high probability,
the strategic optimal policy coincides with the team optimal
policy. Thus only outside this set, i.e., when πt ∈ Sc,
buyers need to be incentivized to report their observations so
that higher average rewards can be achieved for the whole
team. Since numerically Sc occurs with low probability, the
expected incentive payments are low. However, even though
infrequent, these incentives help in the learning for the team
as a whole, specifically for the future users. This suggests
that using such a mechanism for the more general case could
be a useful way to bridge the gap between strategic and team
objectives.

Future work involves characterizing team-optimum poli-
cies analytically and studying the resulting social utility
through approximations or bounds on the induced Markov
chain statistics. This would also characterize the gain from
introducing “structured” incentives. Finally, incentives de-
signs could be studied that minimize total expected incentives
and guarantee voluntary participation.

APPENDIX

Claim 1: There exists an update function F , independent
of ψ such that πt+1 = F (πt, γt, at, bt).

Proof: Fix ψ

πt+1(xt+1) =Pψ(xt+1|a1:tb1:tγ1:t) (14a)

=
∑
xt

Pψ(xt+1, xt|a1:tb1:tγ1:t) (14b)

=
∑
xt

Pψ(xt|a1:tb1:tγ1:t)Q̂(xt+1|xt) (14c)



Now,

Pψ(xt|a1:tb1:tγ1:t)

=
Pψ(xt, at, bt|a1:t−1b1:t−1, γ1:t)∑
x̂t
Pψ(x̂t, at, bt|a1:t−1b1:t−1, γ1:t)

(15a)

= Pψ(xt|a1:t−1b1:t−1, γ1:t)×∑
vt
Pψ(at, btvt|a1:t−1b1:t−1, γ1:t, xt)∑
x̂t
P (x̂t, at, bt|a1:t−1b1:t−1, γ1:t)

(15b)

=
Pψ(xt|a1:t−1b1:t−1, γ1:t−1)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|xt)∑

x̂t
Pψ(x̂t|a1:t−1b1:t−1, γ1:t−1)∑
vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

(15c)

where first part in numerator in (15c) is true since given
policy ψ, γt can be computed as γt = ψt(a1:t−1b1:t−1).

We conclude that

P (xt|a1:t, γ1:t)

=
πt(xt)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|xt)∑

x̂t
πt(x̂t)

∑
vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

, (16)

thus,

πt+1 = F (πt, γt, at, bt) (17)

where F is independent of policy ψ.
Claim 2: (Πt,Γt)t is a controlled Markov process with

state Πt and action Γt such that

Pψ(πt+1|π1:tγ1:t) = P (πt+1|πtγt) (18)

Eψ{R(Xt, At, Bt)|γ1:ta1:t−1b1:t−1}
= E{R(Xt, At, Bt)|γtπt} (19)

=: R̂(πt, γt) (20)
Proof:

Pψ(πt+1|π1:t, γ1:t)

=
∑
at,bt

Pψ(πt+1, at, bt|π1:t, γ1:t) (21a)

=
∑
at,bt

1{F (πt,γt,at,bt)}(πt+1)
∑
vt

Pψ(at, btvt|π1:t, γ1:t)

(21b)

=
∑

at,bt,xt

1{F (πt,γt,at,bt)}(πt+1)Pψ(xt|π1:t, γ1:t)∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt) (21c)

=
∑

at,bt,xt

πt(xt)1{F (πt,γt,at,bt)}(πt+1)∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt) (21d)

= P (πt+1|πt, γt) (21e)

E(R(Xt, At, Bt)|π1:t, γ1:t)

=
∑

xt,at,btvt

R(xt, at, bt)P (xt, at, bt, vt|π1:t, γ1:t) (22a)

=
∑

xt,at,bt

R(xt, at, bt)P (xt|π1:t, γ1:t)∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt) (22b)

=
∑

xt,at,bt

R(xt, at, bt)πt(xt)∑
vt

I{γt(vt)}(at, bt)Qv(vt|xt) (22c)

= R̂(πt, γt) (22d)
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