
1

Decentralized Bayesian learning in dynamic

games

Deepanshu Vasal and Achilleas Anastasopoulos

Abstract

We study the problem of decentralized Bayesian learning in a dynamical system involving strategic

agents with asymmetric information. In a series of seminal papers in the literature, this problem has

been studied under a simplifying model where selfish players appear sequentially and act once in the

game, based on private noisy observations of the system state and public observation of past players’

actions. It is shown that there exist information cascades where users discard their private information

and mimic the action of their predecessor. In this paper, we provide a framework for studying Bayesian

learning dynamics in a more general setting than the one described above. In particular, our model

incorporates cases where players participate for the whole duration of the game, and cases where

an endogenous process selects which subset of players will act at each time instance. The proposed

methodology hinges on a sequential decomposition for finding perfect Bayesian equilibria (PBE) of

a general class of dynamic games with asymmetric information, where user-specific states evolve as

conditionally independent Markov process and users make independent noisy observations of their states.

Using our methodology, we study a specific dynamic learning model where players make decisions about

investing in the team, based on their estimates of everyone’s types. We characterize a set of informational

cascades for this problem where learning stops for the team as a whole.

I. INTRODUCTION

In today’s world, there are many scenarios where strategic agents with different observations

(i.e. information sets) interact among themselves to learn about each other, and take actions

that affect their reward and further spread of information in the system. One such scenario was
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studied in the seminal papers [1], [2] where the authors investigated the occurrence of fads in

a social network, which was later generalized in [3]. The authors in [1], [2] and [3] study the

problem of learning over a social network where there is a product which is either good or bad.

There are countably many buyers, i.e. different decision makers, that are chosen exogenously and

act exactly once in the process. They make noisy observation about the value of the product and

sequentially act strategically to either buy or not buy the product. Their actions are based on

their own private observation and the actions of the previous users. It is shown that herding can

occur in such a case where a user discards its own private information and follows the majority

action of its predecessors (characterizing fads in social networks). As a result, the users’ action

does not reveal any new information and all future users repeat this behavior. This phenomenon

is defined as an informational cascade where learning stops for the group as a whole. While a

good cascade is desirable, there’s a positive probability of a bad cascade that hurts all future

users in the community. There is a growing body of literature on alternative learning models

that aim at avoiding bad cascades (for example see [4], [5]).

There are however more general scenarios, such as cases where players participate in the game

more than once, deterministically or randomly, through an exogenous or even an endogenous

process. Furthermore, there are practical scenarios where players may be adversarial to each

others’ learning (e.g. dynamic zero-sum games). Studying such scenarios may reveal more

interesting and richer equilibrium behaviors including cascading phenomena, not manifested

in the models considered in the current literature. An indispensable tool for studying cascades is

a framework for finding equilibria for these dynamical systems involving strategic players with

different information sets, which are modeled as dynamic games with asymmetric information.

Appropriate equilibrium concepts for such games include perfect Bayesian equilibrium (PBE),

sequential equilibrium, trembling hand equilibrium [6], [7]. Each of these notions of equilibrium

consists of a strategy and a belief profile of all players where the equilibrium strategies are

optimal given the beliefs and the beliefs are derived from the equilibrium strategy profile using

Bayes’ rule (whenever possible). For the games considered in the current literature including [2]–

[5], since every buyer participates only for one time period and thus acts myopically, finding

PBE reduces to solving a straightforward, one-shot optimization problem. However, for general

dynamic games with asymmetric information, finding PBE is hard, since it requires solving a

fixed point equation in the space of strategy and belief profiles across all users and all time periods
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(for a more elaborate discussion, see [7, Ch. 8]). There is no known sequential decomposition

methodology for finding PBE for such games.

Recently we presented a methodology in [8] for finding PBE for a general class of dynamic

games where a finite number of players have different states associated to them that evolve as

conditionally independent Markov processes, and are observed perfectly by the corresponding

players. In this paper, we start by generalizing that model to the case when players’ do not

perfectly observe their states; rather they make independent, noisy observations. Unlike other

scenarios in the cascades literature discussed before, the proposed general framework can in-

corporate, as special cases, scenarios where players participate in the game more than once,

deterministically or randomly through an exogenous or endogenous process, and/or scenarios

where players may be adversarial to each others’ learning. For a dynamic game with asymmetric

information and a given PBE, we define informational cascades as those histories of the game

where players’ actions do not depend on their private information from that point on, and thus

the system dynamics are governed only through the common information. We then consider a

specific dynamic learning model where each player makes a decision to invest (or not invest) in

the team, depending on its estimate of the average of all players’ types. Thus learning players

types is important aspect of the problem. Using the methodology presented, we characterize a

set of informational cascades for this model where learning stops for the team. Limited as it is,

this example provides analysis and intuition on the learning dynamics in decentralized games,

and also serves as motivation for exploring a vast landscape of the scenarios that can be studied

through the proposed methodology.

The paper is structured as follows. In section III, we provide a general methodology to find

a class of PBEs for such games. In Section IV, we formally define informational cascades and

specialize our methodology to study a specific Bayesian learning game, for which we characterize

its informational cascades. We conclude in Section V.

II. NOTATION

We use uppercase letters for random variables and lowercase for their realizations. For any

variable, subscripts represent time indices and superscripts represent player identities. We use

notation −i to represent all players other than player i i.e. −i = {1, 2, . . . i−1, i+1, . . . , N}. We

use notation at:t′ to represent vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector if t′ < t.
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We use a−it to mean (a1
t , a

2
t , . . . , a

i−1
t , ai+1

t . . . , aNt ) . We remove superscripts or subscripts if we

want to represent the whole vector, for example at represents (a1
t , . . . , a

N
t ). In a similar vein, for

any collection of finite sets (X i)i∈N , we denote ×Ni=1X i by X . We denote the indicator function

of any set A by IA(·). For any finite set S, P(S) represents space of probability measures on S

and |S| represents its cardinality. We denote by P g (or Eg) the probability measure generated

by (or expectation with respect to) strategy profile g. We denote the set of real numbers by R.

For a probabilistic strategy profile of players (βit)i∈N where probability of action ait conditioned

on a1:t−1x
i
1:t is given by βit(a

i
t|a1:t−1, x

i
1:t), we use the short hand notation β−it (a−it |a1:t−1, x

−i
1:t)

to represent
∏

j 6=i β
j
t (a

j
t |a1:t−1, x

j
1:t). All equalities and inequalities involving random variables

are to be interpreted in a.s. sense.

III. GENERAL MODEL

A. Model

We consider a discrete-time dynamical system with N strategic players in the set N :=

{1, 2, . . . N}, over a finite time horizon T := {1, 2, . . . T} and with perfect recall. The system

state is xt := (x1
t , x

2
t , . . . x

N
t ), where xit ∈ X i is the state of player i at time t. Players’ states

evolve as conditionally independent, controlled Markov processes such that

P (xt|x1:t−1, a1:t−1) = P (xt|xt−1, at−1) (1a)

=
N∏
i=1

Qi
x(x

i
t|xit−1, at−1), (1b)

where at = (a1
t , . . . , a

N
t ) and ait is the action taken by player i at time t. Player i does not

observe its state perfectly, rather it makes a private observation wit ∈ W i at time t, where all

observations are conditionally independent across time and across players given xt and at−1, in

the following way, ∀t ∈ 1, . . . T ,

P (w1:t|x1:t, a1:t−1) =
t∏

n=1

N∏
i=1

Qi
w(win|xin, an−1). (2)

Player i takes action ait ∈ Ai at time t upon observing a1:t−1, which is common information

among players, and wi1:t, which is player i’s private information. The sets Ai,X i,W i are assumed

to be finite. Let gi = (git)t be a probabilistic strategy of player i where git : (×Nj=1Aj)t−1 ×

(W i)t → P(Ai) such that player i plays action ait according to Ait ∼ git(·|a1:t−1, w
i
1:t). Let

g := (gi)i∈N be a strategy profile of all players. At the end of interval t, player i gets an
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instantaneous reward Ri(xt, at). The objective of player i is to maximize its total expected

reward

J i,g := Eg
[

T∑
t=1

Ri(Xt, At)

]
. (3)

With all players being strategic, this problem is modeled as a dynamic game D with imperfect

and asymmetric information, and with simultaneous moves. Although this model considers all

N players acting at all times, it can accommodate cases where at each time t, players are

chosen through an endogenously defined (controlled) Markov process. This can be done by

introducing a nature player 0, who perfectly observes its state process (X0
t )t, has reward function

zero, and plays actions a0
t = w0

t = x0
t . Equivalently, all players publicly observe a controlled

Markov process (X0
t−1)t, and a player selection process could be defined through this process. For

instance, let X 0 = A0 = N , ∀i, Ri
t(xt, at) = 0 if i 6= a0

t , and Q(xit+1|xit, at) = Q(xit+1|xit, a
a0t
t ).

Here, in each period only one player acts in the game who is selected through an internal,

controlled Markov process.

B. Solution concept: PBE

In this section, we introduce PBE as an appropriate equilibrium concept for the game consid-

ered. Any history of this game at which players take action is of the form ht = (a1:t−1, x1:t, w1:t).

Let Ht be the set of such histories at time t and H := ∪Tt=0Ht be the set of all possible such

histories. At any time t player i observes hit = (a1:t−1, w
i
1:t) and all players together observe

hct = a1:t−1 as common history. Let Hi
t be the set of observed histories of player i at time t and

Hc
t be the set of common histories at time t. An appropriate concept of equilibrium for such

games is the PBE [7] which consists of a pair (β∗, µ∗) of strategy profile β∗ = (β∗,it )t∈T ,i∈N

where β∗,it : Hi
t → P(Ai) and a belief profile µ∗ = (iµ∗t )t∈T ,i∈N where iµ∗t : Hi

t → P(Ht) that

satisfy sequential rationality so that ∀i ∈ N , t ∈ T , hit ∈ Hi
t, β

i

E(β∗,iβ∗,−i, µ∗)

{
T∑
n=t

Ri(Xn, An)
∣∣∣hit
}
≥ E(βiβ∗,−i, µ∗)

{
T∑
n=t

Ri(Xn, An)
∣∣∣hit
}
, (4)

and the beliefs satisfy consistency conditions as described in [7, p. 331].

In general, iµ∗t is defined as the belief of player i at time t on the history ht = (a1:t−1, x1:t, w1:t),

conditioned on its private history hit = (a1:t−1, w
i
1:t). In our model, due to independence of types

and observations, player i’s private observations wi1:t do not provide any information about
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(x−i1:t, w
−i
1:t), as will be shown later. For this reason we consider beliefs that are functions of each

agent’s history hit only through the common history hct = a1:t−1. Moreover, player i’s relevant

uncertainty, as required to compute its expected reward-to-go, can be sufficiently represented

by beliefs on players’ private beliefs ξt (which are defined later). Hence, instead of iµ∗t [h
i
t](ht),

every agent uses a common belief µ∗t [a1:t−1](ξt) derived from the common history hct = a1:t−1,

where µ∗t [a1:t−1](ξt) itself factorizes into a product of marginals
∏

j∈N µ
∗,j
t [a1:t−1](ξit).

C. PBE of the game D

In this section, we provide a methodology to find PBE of the game D that consists of strategies

whose domain is time-invariant (while there may exist other equilibria that can not be found using

this methodology). Specifically, we seek equilibrium strategies that are structured in the sense that

they depend on players’ common and private information through belief states. In order to achieve

this, at any time t, we summarize player i’s private information, wi1:t, in the belief ξit , and its

common information, a1:t−1, in the belief πt, where ξit and πt are defined as follows. For a strategy

profile g, let ξit(x
i
t) := P g(xit|a1:t−1, w

i
1:t) be the belief of player i on its current state conditioned

on its information, where ξit ∈ P(X i). Also we define πit(ξ
i
t) := P g(ξit|a1:t−1) as common belief

on ξit based on the common information of the players, a1:t−1, where πit ∈ P(P(X i)). As it will

be shown later, due to the independence of states and their evolution as independent controlled

Markov processes, for any strategy profile of the players, joint beliefs on states can be factorized

as product of their marginals i.e. πt(ξt) =
∏N

i=1 π
i
t(ξ

i
t). To accentuate this independence structure,

we define πt ∈ ×i∈NP(X i) as vector of marginal beliefs where πt := (πit)i∈N .

Inspired by the common agent approach in decentralized team problems [9], we now generate

players’ structured strategies as follows: player i at time t observes a common belief vector

πt and takes action γit , where γit : P(X i) → P(Ai) is a partial (stochastic) function from its

private belief ξit to ait of the form γit(a
i
t|ξit). These actions are generated through some policy

θi = (θit)t∈T , θit : ×i∈NP(P(X i)) → {P(X i)→ P(Ai)}, that operates on the common belief

vector πt so that γit = θit[πt]. Then, the generated policy of the form Ait ∼ θit[πt](·|ξit) is also

a policy of the form Ait ∼ git(·|a1:t−1, w
i
1:t) for an appropriately defined g. Although this is not

relevant to our proofs, it can be shown that these structured policies form a sufficiently large,

rich set of policies, which provides a good motivation for restricting attention to such equilibria.

Specifically, it can be shown that policies g are outcome equivalent to policies of state θ, i.e., any
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expected total reward profile of the players that can be generated through a general policy profile

g can also be generated through some policy profile θ. In the following lemma, we present the

update functions of the private belief ξit and the public belief πit.

Lemma 1: There exist update functions F i, independent of players’ strategies g, such that

ξit+1 = F i(ξit, w
i
t+1, at) (5)

and update functions F̄ i, independent of θ, such that

πit+1 = F̄ i(πit, γ
i
t, at). (6)

Thus πt+1 = F̄ (πt, γt, at) where F̄ is appropriately defined through (6).

Proof: The proofs are straightforward using Bayes’ rule and the fact that players’ state and

observation histories, X i
1:t,W

i
1:t, are conditionally independent across players given the action

history a1:t−1, and are provided in Appendix A.

Based on (5), we define an update kernel of ξit in (34) as Qi(ξit+1|ξit, at) := P (ξit+1|ξit, at). We

now present the backward-forward algorithm to find PBE of the game D, where strategies of

the players are of state θ. The algorithm resembles the one presented in [8] by the same authors

for perfectly observable states.

1) Backward Recursion: In this section, we define an equilibrium generating function θ =

(θit)i∈N ,t∈T and a sequence of functions

(V i
t )i∈N ,t∈{1,2,...T+1}, where V i

t : ×i∈NP(P(X i)) × P(X i) → R, in a backward recursive way,

as follows.

1. Initialize ∀πT+1 ∈ ×i∈NP(P(X i)), ξiT+1 ∈ P(X i),

V i
T+1(πT+1, ξ

i
T+1) := 0. (7)

2. For t = T, T − 1, . . . 1, ∀πt ∈ ×i∈NP(P(X i)), let θt[πt] be generated as follows. Set

γ̃t = θt[πt], where γ̃t is the solution, if it exists1,, of the following fixed point equation,

∀i ∈ N , ξit ∈ P(X i),

γ̃it(·|ξit) ∈ arg max
γit(·|ξit)

Eγit(·|ξit)γ̃
−i
t , πt

{
Ri(Xt, At) + V i

t+1(F̄ (πt, γ̃t, At),Ξ
i
t+1)
∣∣∣ξit} , (8)

1Similar to the existence results shown in [10], it can be shown that in the special case where agent i’s instantaneous reward

does not depend on its private state xit, and for uncontrolled states and observations, the fixed point equation always has a

state-independent, myopic solution γ̃it(·), since it degenerates to a Bayesian-Nash like best-response equation.
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where expectation in (8) is with respect to random variables (Xt, At,Ξ
i
t+1) through the

measure

ξt(xt)π
−i
t (ξ−it )γit(a

i
t|ξit)γ̃−it (a−it |ξ−it )Qi(ξit+1|ξit, at), F is defined in Lemma 3 and Qi is de-

fined in (34). Furthermore, set

V i
t (πt, ξ

i
t) := Eγ̃it(·|ξit)γ̃

−i
t , πt

{
Ri(Xt, At) + V i

t+1(F̄ (πt, γ̃t, At),Ξ
i
t+1)

∣∣∣ξit} . (9)

It should be noted that (8) is a fixed point equation where the maximizer γ̃it appears in both,

the left-hand-side and the right-hand-side of the equation. However, it is not the outcome of

the maximization operation as in a best response equation, similar to that of a Bayesian Nash

equilibrium.

2) Forward Recursion: Based on θ defined above in (7)–(9), we now construct a set of

strategies β∗ and beliefs µ∗ for the game D in a forward recursive way, as follows. As before,

we will use the notation µ∗
t
[a1:t−1] := (µ∗,it [a1:t−1])i∈N and µ∗t [a1:t−1] can be constructed from

µ∗
t
[a1:t−1] as µ∗t [a1:t−1](ξt) =

∏N
i=1 µ

∗,i
t [a1:t−1](ξit), where µ∗,it [a1:t−1] is a belief on ξit .

1. Initialize at time t = 0,

µ∗,i0 [φ](ξ0) := δQix(ξ
i
0). (10)

2. For t = 1, 2 . . . T, i ∈ N ,∀a1:t, w
i
1:t

β∗,it (ait|a1:t−1, w
i
1:t) := θit[µ

∗
t
[a1:t−1]](ait|ξit) (11a)

µ∗,it+1[a1:t] := F̄ (µ∗,it [a1:t−1], θit[µ
∗
t
[a1:t−1]], at) (11b)

where F̄ is defined in Lemma 3.

Theorem 1: A strategy and belief profile (β∗, µ∗), constructed through backward/forward

recursive algorithm is a PBE of the game, i.e. ∀i ∈ N , t ∈ T , (a1:t−1, w
i
1:t), β

i,

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
≥

Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
. (12)

Proof: The proof relies crucially on the specific fixed point construction in (8) and the

conditional independence structure of states and observations, and is provided in Appendix B.
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IV. INFORMATIONAL CASCADES

In the following definition, we define informational cascades for a dynamic game with asym-

metric information, and for a given PBE of that game, as those public histories of the game at

which the future actions of the players are predictable2.

Definition 1: For a given strategy and belief profile (β∗, µ∗) that constitute a PBE of the game3,

and for any time t and a sequence of action profile at:T , informational cascades can be defined

as set of public histories hct of the game such that at hct and under (β∗, µ∗), actions at:T are

played almost surely, irrespective of players’ future private history realizations, i.e. for a PBE

(β∗, µ∗) and time t and actions at:T , cascades are defined by

Cat:Tt := {hct ∈ Hc
t | ∀i,∀n ≥ t,∀hin that are consistent with

hct , and occur with non-zero probability, β∗,in (ain|hin) = 1}. (13)

We also call an informational cascade a constant informational cascade if action profiles in the

cascade are constant across time, i.e. for time t and action profile a, constant cascades are defined

by

Cat := {hct ∈ Hc
t | ∀i, ∀n ≥ t,∀hin that are consistent with

hct , and occur with non-zero probability, β∗,in (ai|hin) = 1}. (14)

For the general games considered in this section, which are dynamic game with asymmetric

information and independent states, a more useful definition of cascades is the following.

Definition 2: For a given equilibrium generating function θ, and for time t and actions at:T ,

informational cascades are defined by the sets {C̃at:Tt }t=1,...T+1, which are defined as follows.

For t = T, T − 1, . . . 1,

C̃T+1 :=
{

All possible common beliefs πT+1

}
(15)

C̃at:Tt :=
{
πt | ∀i, ∀ξit ∈ supp(πit), θit[πt](ait|ξit) = 1

and F̄ (πt, θt[πt], at) ∈ C̃
at+1:T

t+1

}
. (16)

2More generally, informational cascades can be thought as those histories of the game at which the system dynamics, from

that point on, only depend on the common information.
3A stronger notion of informational cascade could be defined for all PBEs of the game.
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A constant informational cascade for time t and actions profile a is defined as,

C̃T+1 :=
{

All possible common beliefs πT+1

}
(17)

C̃at :=
{
πt | ∀i, ∀ξit ∈ supp(πit), θit[πt](ai|ξit) = 1

and F̄ (πt, θt[πt], a) ∈ C̃at+1

}
. (18)

In the following lemma, we show the connection between the two definitions.

Lemma 2: Let (β∗, µ∗) be an SPBE of a dynamic game with asymmetric information and

independent states, generated by an equilibrium generating function θ. Then ∀t, at:T ,

(µ∗t )
−1(C̃at:Tt ) = Cat:Tt . (19)

Proof: See Appendix D.

Corollary 1: Let (β∗, µ∗) be an SPBE of a dynamic game with asymmetric information and

independent states, generated by an equilibrium generating function θ. Then ∀t, a,

(µ∗t )
−1(C̃at ) = Cat . (20)

A. Specific learning model

We now consider a specific model that captures the learning aspect in a dynamic setting

with strategic agents and decentralized information. The model is similar in spirit to the model

considered in [2], [3] except we consider a finite number of players who take action in every

epoch and participate during the entire duration of the game. We assume that players’ states are

uncontrollable and static i.e. Qi
x(x

i
t+1|xit, at) = δxit(x

i
t+1), where X i = {−1, 1}. Since the set of

states, X i is has cardinality 2, the measure ξit can be sufficiently described by ξit(1). Henceforth, in

this section and in Appendix E, with slight abuse of notation, we also denote ξit(1) by ξit ∈ [0, 1],

and reference is clear from context. In each epoch t, player i makes independent observation wit
about its state where W i = {−1, 1}, through an observation kernel of the form Qi

w(wit|xit, ait−1)

which does not depend on a−it−1. Based on its information, it takes action ait, where Ai = {0, 1},

and earns an instantaneous reward given by

Ri(x, ait) = ait

(
λxi + λ̄

∑
j 6=i x

j

N − 1

)
, (21)

where λ ∈ [0, 1], λ̄ = 1−λ. This scenario can thought of the case when players’ states represent

their talent, capabilities or popularity, and a player makes a decision to either invest (action =
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1) or not invest (action = 0) in these players, where its instantaneous reward depends on some

combination of the capabilities of all the players. We note that the instantaneous reward does

not depend on other players’ actions but on their states, and thus learning players’ states is an

important aspect of the problem.

1) Partially controlled observations: We consider the case where observations of the player

i do depend on other players’ actions, i.e. the observation kernel is of the form Qi
w(wit|xit, ait−1).

These observations are made through a binary symmetric channel such that Qi
w(−1|1, ai) =

Qi
w(1|−1, ai) = pai , where p1 ≤ p0 < 1/2. This model implies that taking action 1 can improve

the quality of a player’s future private belief. In this case, the update functions of ξit and πit in

(5), (6) reduce to

ξit+1 = F i(ξit, w
i
t+1, a

i
t) (22a)

πit+1 = F̄ i(πit, γ
i
t, a

i
t). (22b)

and (8) in the backward recursion reduces to

γ̃it(·|ξit) ∈ arg max
γit(·|ξit)

∑
ait

aitγ
i
t(a

i
t|ξit)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))

+ Eγit(·|ξit)γ̃
−i
t , πt

{
V i
t+1(F̄ (πt, γ̃t, At),Ξ

i
t+1)

∣∣∣ξit} , (23)

For the learning model considered in Section IV-A, we characterize constant informational

cascades through a time invariant set Ĉa of common beliefs π, defined as follows. Let

Ĉa :=

{
π | ∀i, 1

2
− λ̄

λ
(ξ̂−i − 1

2
) ≥ 1 if ai = 0,

1

2
− λ̄

λ
(ξ̂−i − 1

2
) ≤ 0 if ai = 1

}
, (24)

where

ξ̂−i :=
1

N − 1

∑
j 6=i

Eπj [Ξj]. (25)

In the following theorem we show that the set Ĉa defined in (24) characterizes a set of constant

informational cascades for this problem. Specifically, we show that Ĉa ⊂ C̃a.

Theorem 2: If for some time t0 and action profile a, πt0 ∈ Ĉ
a, then ∀t ≥ t0, πt ∈ Ĉa and

solutions of (23) satisfy γ̃it(a
i|ξit) = 1 ∀ξit ∈ [0, 1]. Moreover, for t0 ≤ t ≤ T , V i

t is given by,
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∀πt ∈ Ĉa,

V i
t (πt, ξ

i
t) = (T − t+ 1)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))ai. (26)

Proof: See Appendix E.

As is the case in (26), for any πt in a cascading set C̃at:Tt , V i
t (πt, ·) represents reward to go

for open loop control policy at:T .

B. Discussion

We characterize informational cascades by those histories of the game where learning stops

for the players as a whole. Conceptually, they could be thought of as absorbing states of the

system. It begets questions regarding the dynamics of the process that could lead to those states,

for example hitting times of such sets and absorption probabilities. For the simplified problem

considered in [2], cascades can be characterized as the fixed points of common belief update

function, so that the common belief gets “stuck” once it reaches that state. It was shown that

cascades eventually occur with probability 1 for that model. For the learning model considered

in this section, common beliefs πt still evolve in a cascade, although uninformatively, i.e., their

evolution is directed by the primitives of the process and not on the new random variables being

generated, namely, players’ private observations. Also, if players’ observations are informative,

they asymptotically learn their true states, i.e., their private beliefs converge to dirac delta function

on their true states. One trivial case when cascades could occur for this model is if the system

was born in a cascade, i.e., the initial common belief, based on the prior distributions, is in

cascades, π1 ∈ Ĉa. In general, a cascade could occur as in the following case. Suppose all

players have low states (i.e. xi = −1), but they get atypical observations initially, which lead

them into believing that their states are high (xi = 1). This information is conveyed through

their actions, which leads the public belief into a cascade. Now, even though players eventually

learn their true states, yet they remain in a (bad) cascade, each player believing that others have

high states on average.

V. CONCLUSION

In this chapter we studied Bayesian learning dynamics of a specific class of dynamic games

with asymmetric information. In the literature, as simplifying model is considered where herding
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behavior by selfish players is shown in a ergodic sequential buyers’ game where a countable

number of strategic buyers buy a product exactly once in the game. In this paper, we considered

a more general scenario where players could participate in the game throughout the duration of

the game. Players’ states evolved as conditionally independent controlled Markov processes and

players made noisy observations of their states. We first presented a sequential decomposition

methodology to find SPBE of the game. We then studied a specific learning model and char-

acterized information cascades using the general methodology described before. In general, the

methodology presented serves as a framework for studying learning dynamics of decentralized

systems with strategic agents. Some important research directions include characterization of

cascades for specific classes of models, studying convergent learning behavior in such games

including the probability and the rate of “falling” into a cascade, and incentive or mechanism

design to avoid bad cascades.

APPENDIX A

Proof: We first prove the following claim on conditional independence of x1:t, w1:t given

a1:t−1.

Claim 1: For any policy profile g and ∀t,

P g(x1:t, w1:t|a1:t−1) =
N∏
i=1

P gi(xi1:t, w
i
1:t|a1:t−1) (27)

Proof:

P g(x1:t, w1:t|a1:t−1)

=
P g(x1:t, w1:t, a1:t−1)∑

x1:t,w1:t
P g(x1:t, w1:t, a1:t−1)

(28a)

=

∏N
i=1Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)Qi

w(win+1|xin+1, an)∑
x1:t,w1:t

∏N
i=1 Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, wi1:n−1)Qi

x(x
i
n+1|an, xin)Qi

w(win+1|xin+1, an)

(28b)

=

∏N
i=1Q

i
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, w

i
1:n−1)Qi

x(x
i
n+1|an, xin)Qi

w(win+1|xin+1, an)∏N
i=1

∑
xi1:t,w

i
1:t
Qi
x(x

i
1)Qi

w(wi1|xi1)
∏t−1

n=1 g
i
n(ain|a1:n−1, wi1:n−1)Qi

x(x
i
n+1|an, xin)Qi

w(win+1|xin+1, an)

(28c)
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and thus

P g(x1:t, w1:t|a1:t−1) =
N∏
i=1

P gi(xi1:t, w
i
1:t|a1:t−1) (28d)

Now for any g we have,

ξit+1(xit+1)
4
= P g(xit+1|a1:t, w

i
1:t+1) (29a)

=

∑
xit
P g(xit, at, x

i
t+1, w

i
t+1|a1:t−1, w

i
1:t)∑

x̃it+1x̃
i
t
P g(x̃it, at, w

i
t+1, x̃

i
t+1|a1:t−1, wi1:t)

(29b)

=

∑
xit
ξit(x

i
t)P

g(a−it |a1:t−1, w
i
1:t, x

i
t)Q

i
x(x

i
t+1|at, xit)Qi

w(wit+1|xit+1, at)∑
x̃it+1

x̃it

ξit(x̃
i
t)P

g(a−it |a1:t−1, wi1:t, x̃
i
t)Q

i
x(x̃

i
t+1|at, x̃it)Qi

w(wit+1|x̃it+1, at)
, (29c)

where (29c) is true because ait is a function of (a1:t−1, w
i
1:t) and thus term involving can be

cancelled in numerator and denominator. We now consider the quantity P g(a−it |a1:t−1, w
i
1:t, x

i
t)

P g(a−it |a1:t−1, w
i
1:t, x

i
t) =

∑
w−i1:t

P g(a−it , w
−i
1:t|a1:t−1, w

i
1:t, x

i
t) (30a)

=
∑
w−i1:t

P g(w−i1:t|a1:t−1, w
i
1:t, x

i
t)
∏
j 6=i

gjt (a
j
t |a1:t−1, w

j
1:t) (30b)

=
∑
w−i1:t

P g−i(w−i1:t|a1:t−1)
∏
j 6=i

gjt (a
j
t |a1:t−1, w

j
1:t) (30c)

= P g−i(a−it |a1:t−1) (30d)

where (30c) follows from Claim 1 in Appendix A since w−i1:t is conditionally independent of

(wi1:t, x
i
t) given a1:t−1 and is only a function of g−i. Since this term does not depend on xit, it

gets cancelled in the final expression of ξit+1

ξit+1(xit+1) =

∑
xit
ξit(x

i
t)Q

i
x(x

i
t+1|xit, at)Qi

w(wit+1|xit+1, at)∑
x̃it+1

∑
xit
ξit(x

i
t)Q

i
x(x̃

i
t+1|xit, at)Qi

w(wit+1|x̃it+1, at)
. (31)

Thus the claim of the Lemma follows. Based on this claim, we can conclude that

ξit(x
i
t) = P g(xit|a1:t−1, w

i
1:t) = P (xit|a1:t−1, w

i
1:t). (32)
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Also, based on the update of ξit in (5), we define an update kernel

Qi(ξit+1|ξit, at) := P (ξit+1|ξit, at) (33)

=
∑

xit,x
i
t+1,w

i
t+1

ξit(x
i
t)Q

i
x(x

i
t+1|xit, at)Qi

w(wit+1|xit+1, at)IF (ξit,w
i
t+1,a

i
t
)(ξit+1) (34)

Lemma 3: There exists an update function F̄ of πt, independent of ψ

πit+1 = F̄ (πit, γ
i
t, at) (35)

Proof:

πt+1(ξt+1)

= Pψ(ξt+1|a1:t, γ1:t+1) (36a)

= Pψ(ξt+1|a1:t, γ1:t) (36b)

=

∑
ξt,xt,

xt+1,wt+1

Pψ(ξt, xt, at, xt+1, wt+1, ξt+1|a1:t−1, γ1:t)∑
ξt
Pψ(ξt, at|a1:t−1, γ1:t)

(36c)

=

∑
ξt,xt,

xt+1,wt+1

∏N
i=1 π

i
t(ξ

i
t)ξ

i
t(x

i
t)γ

i
t(a

i
t|ξit)Qi

x(x
i
t+1|xit, at)Qi

w(wit+1|xit+1, at)IF i(ξit,wit+1,at)
(ξit+1)∑

ξt

∏N
i=1 π

i
t(ξ

i
t)γ

i
t(a

i
t|ξit)

(36d)

=

∏N
i=1

∑
ξit,x

i
t,

xit+1,w
i
t+1

πit(ξ
i
t)ξ

i
t(x

i
t)γ

i
t(a

i
t|ξit)Qi

x(x
i
t+1|xit, at)Qi

w(wit+1|xit+1, at)IF i(ξit,wit+1,at)
(ξit+1)∑

ξt

∏N
i=1 π

i
t(ξ

i
t)γ

i
t(a

i
t|ξit)

(36e)

=

∏N
i=1

∑
ξit,x

i
t,

xit+1,w
i
t+1

πit(ξ
i
t)ξ

i
t(x

i
t)γ

i
t(a

i
t|ξit)Qi

x(x
i
t+1|xit, at)Qi

w(wit+1|xit+1, at)IF i(ξit,wit+1,at)
(ξit+1)∏N

i=1

∑
ξit
πit(ξ

i
t)γ

i
t(a

i
t|ξit)

(36f)

Thus we have,

πt+1 =
N∏
i=1

F̄ (πit, γ
i
t, at) (36g)
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APPENDIX B

(PROOF OF THEOREM 1)

Proof: We prove (12) using induction and from results in Lemma 4, 5 and 6 proved in

Appendix C. For base case at t = T , ∀i ∈ N , (a1:T−1, w
i
1:T ) ∈ Hi

T , β
i

Eβ
∗,i
T β∗,−iT , µ∗T [a1:T−1]

{
Ri(XT , AT )

∣∣∣a1:T−1, w
i
1:T

}
= V i

T (µ∗
T

[a1:T−1], ξiT ) (37a)

≥ EβiT β
∗,−i
T , µ∗T [a1:T−1]

{
Ri(XT , AT )

∣∣∣a1:T−1, w
i
1:T

}
(37b)

where (37a) follows from Lemma 6 and (37b) follows from Lemma 4 in Appendix C.

Let the induction hypothesis be that for t+ 1, ∀i ∈ N , (a1:t, w
i
1:t+1) ∈ Hi

t+1, β
i,

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t, w

i
1:t+1

}
≥

Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t, w

i
1:t+1

}
. (38a)

Then ∀i ∈ N , (a1:t−1, w
i
1:t) ∈ Hi

t, β
i, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
= V i

t (µ∗
t
[a1:t−1], ξit) (39a)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)
∣∣∣a1:t−1, w

i
1:t

}
(39b)

= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t−1, At, w

i
1:tW

i
t+1

}∣∣∣a1:t−1, w
i
1:t

}
(39c)

≥ Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβit+1:T β
∗,−i
t+1:Tµ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣∣a1:t−1, w
i
1:t

}
(39d)
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= Eβitβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)

+Eβit:T β
∗,−i
t:T µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣∣a1:t−1, w
i
1:t

}
(39e)

= Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
, (39f)

where (39a) follows from Lemma 6, (39b) follows from Lemma 4, (39c) follows from Lemma 6,

(39d) follows from induction hypothesis in (38a) and (39e) follows from Lemma 5. Moreover,

construction of θ in (8), and consequently definition of β∗ in (11a) are pivotal for (39e) to follow

from (39d).

We note that µ∗ satisfies the consistency condition of [7, p. 331] from the fact that (a) for

all t and for every common history a1:t−1, all players use the same belief µ∗t [a1:t−1] on xt and

(b) the belief µ∗t can be factorized as µ∗t [a1:t−1] =
∏N

i=1 µ
∗,i
t [a1:t−1] ∀a1:t−1 ∈ Hc

t where µ∗,it is

updated through Bayes’ rule (F̄ ) as in Lemma 3 in Appendix A.

APPENDIX C

Lemma 4: ∀t ∈ T , i ∈ N , (a1:t−1, w
i
1:t) ∈ Hi

t, β
i
t

V i
t (µ∗

t
[a1:t−1], ξit) ≥Eβ

i
tβ
∗,−i
t , µ∗t [a1:t−1]

{
Ri(Xt, At)+ (40)

V i
t+1(F (µ∗

t
[a1:t−1], β∗t (·|a1:t−1, ·), At),Ξi

t+1)
∣∣∣a1:t−1, w

i
1:t

}
. (41)

Proof: We prove this Lemma by contradiction.

Suppose the claim is not true for t. This implies ∃i, β̂it , â1:t−1, ŵ
i
1:t such that

Eβ̂itβ
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣∣â1:t−1, ŵ

i
1:t

}
> V i

t (µ∗
t
[â1:t−1], ξ̂it). (42)

We will show that this contradicts the definition of V i
t in (9).

Construct γ̂it(a
i
t|ξit) =

 β̂it(a
i
t|â1:t−1, ŵ

i
1:t) ξit = ξ̂it

arbitrary otherwise.
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Then for â1:t−1, ŵ
i
1:t, we have

V i
t (µ∗

t
[â1:t−1], ξ̂it)

= max
γit(·|ξ̂it)

Eγit(·|ξ̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣∣ξ̂it} ,

(43a)

≥ Eγ̂it(·|ξ̂it)β
∗,−i
t , µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At),Ξi

t+1)
∣∣∣ξ̂it} (43b)

=
∑

xt,ξ
−i
t ,at,ξt+1

{
Ri(xt, at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), ξit+1)

}
×

ξ̂it(x
i
t)ξ
−i
t (x−it )µ∗,−it [â1:t−1](ξ−it )γ̂it(a

i
t|ξ̂it)β

∗,−i
t (a−it |â1:t−1, ξ

−i
t )Qi(ξit+1|ξ̂it, at) (43c)

=
∑
xt,ξ
−i
t ,

at,ξt+1

{
Ri(xt, at) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), at), ξit+1)

}
×

ξ̂it(x
i
t)ξ
−i
t (x−it )µ∗,−it [â1:t−1](ξ−it )β̂it(a

i
t|â1:t−1, ŵ

i
1:t)β

∗,−i
t (a−it |â1:t−1, ξ

−i
t )Qi(ξit+1|ξ̂it, at) (43d)

= Eβ̂itβ
∗,−i
t ,µ∗t [â1:t−1]

{
Ri(Xt, At) + V i

t+1(F (µ∗
t
[â1:t−1], β∗t (·|â1:t−1, ·), At), X i

t+1)
∣∣∣â1:t−1, ŵ

i
1:t

}
(43e)

> V i
t (µ∗

t
[â1:t−1], ξ̂it) (43f)

where (43a) follows from the definition of V i
t in (9), (43d) follows from definition of γ̂it and

(43f) follows from (42). However this leads to a contradiction.

Lemma 5: ∀i ∈ N , t ∈ T , (a1:t, w
i
1:t+1) ∈ Hi

t+1 and βit

Eβit:T β
∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t, w

i
1:t+1

}
=

Eβit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t, w

i
1:t+1

}
. (44)

Thus the above quantities do not depend on βit .

Proof: Essentially this claim stands on the fact that µ∗,−it+1 [a1:t] can be updated from µ∗,−it [a1:t−1], β∗,−it

and at, as µ∗,−it+1 [a1:t] =
∏

j 6=i F̄ (µ∗,−it [a1:t−1], β∗,−it , at) as in Lemma 3. Since the above expecta-

tions involve random variables Xt+1:T , At+1:T ,, we consider P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](xt+1:T , at+1:T

∣∣∣a1:t, w
i
1:t+1).
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P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](xt+1:T , at+1:T

∣∣∣a1:t, w
i
1:t+1) =

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at, xt+1, w

i
t+1, at+1:T , xt+2:T

∣∣∣a1:t−1, w
i
1:t)

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at, wit+1

∣∣∣a1:t−1, wi1:t)
(45a)

We consider the numerator and the denominator separately. The numerator in (45a) is given by

Nr =
∑
xt,ξ
−i
t

P βit:T β
∗,−i
t:T , µ∗t [a1:t−1](xt, ξ

−i
t

∣∣∣a1:t−1, w
i
1:t)β

i
t(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ

−i
t )Qx(xt+1|xt, at)

Qi
w(wit+1|xit+1, at)P

βit:T β
∗,−i
t:T , µ∗t [a1:t−1](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt:t+1) (45b)

=
∑
xt,ξ
−i
t

ξt(xt)µ
∗,−i
t [a1:t−1](ξ−it )βit(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ

−i
t )Qx(xt+1|xt, at)

Qi
w(wit+1|xit+1, at)P

βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt+1) (45c)

where (45c) follows from the fact that probability on (at+1:T , x2+t:T ) given a1:t, w
i
1:t+1, xt:t+1, µ

∗
t [a1:t−1]

depends on a1:t, w
i
1:t+1, xt+1, µ

∗
t+1[a1:t] through βit+1:Tβ

∗,−i
t+1:T . Similarly, the denominator in (45a)

is given by

Dr =
∑

x̃t,ξ̃
−i
t ,x̃it+1

P βit:T β
∗,−i
t:T , µ∗t (x̃t, ξ

−i
t |a1:t−1, w

i
1:t)β

i
t(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ̃

−i
t )Qi

x(x̃
i
t+1|x̃it, at)

Qi
w(wit+1|x̃it+1, at) (45d)

=
∑

x̃t,ξ̃
−i
t ,x̃it+1

ξit(x̃
i
t)ξ̃
−i
t (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )βit(a

i
t|a1:t−1, w

i
1:t)β

∗,−i
t (a−it |a1:t−1, ξ̃

−i
t )Qi

x(x̃
i
t+1|x̃it, at)

Qi
w(wit+1|x̃it+1, at) (45e)

By canceling the terms βit(·) in the numerator and the denominator, (45a) is given by

Nr

Dr
P βit+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t+1, xt+1) (45f)
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where

Nr =
∑
xt,ξ
−i
t

ξt(xt)µ
∗,−i
t [a1:t−1](ξ−it )β∗,−it (a−it |a1:t−1, ξ

−i
t )Qx(xt+1|xt, at)Qi

w(wit+1|xit+1, at) (45g)

=
∑
xit

ξit(x
i
t)Q

i
x(x

i
t+1|xit, ait)Qi

w(wit+1|xit+1, at)

∑
x−it ,ξ−it

ξ−it (x−it )µ∗,−it [a1:t−1](ξ−it )β∗,−it (a−it |a1:t−1, ξ
−i
t )Q−ix (x−it+1|x−it , at) (45h)

and

Dr =
∑

x̃t,ξ̃
−i
t ,x̃it+1

ξit(x̃
i
t)ξ̃
−i
t (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )β∗,−it (a−it |a1:t−1, ξ̃

−i
t )Qi

x(x̃
i
t+1|x̃it, at)Qw(wit+1|x̃it+1, at)

(45i)

=
∑
x̃it,x̃

i
t+1

ξit(x̃
i
t)Q

i
x(x̃

i
t+1|x̃it, at)Qw(wit+1|x̃it+1, at)

∑
x̃−it ,ξ̃−it

ξ̃−it (x̃−it )µ∗,−it [a1:t−1](ξ̃−it )β∗,−it (a−it |a1:t−1, ξ̃
−i
t )

(45j)

Thus (45a) is given by

= ξt+1(xt+1)µ∗,−it+1 [a1:t](ξ
−i
t+1)P βit+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t](at+1:T , xt+2:T |a1:t, w

i
1:t, xt+1) (45k)

= P βit+1:T β
∗,−i
t+1:T , µ

∗
t+1[a1:t](xt+1, at+1:T , xt+2:T |a1:t, w

i
1:t+1). (45l)

Lemma 6: ∀i ∈ N , t ∈ T , a1:t−1 ∈ Hc
t , w

i
1:t ∈ (W i)t

V i
t (µ∗

t
[a1:t−1], ξit) = Eβ

∗,i
t:T β

∗,−i
t:T ,µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
. (46)

Proof:

We prove the Lemma by induction. For t = T ,

Eβ
∗,i
T β∗,−iT , µ∗T [a1:T−1]

{
Ri(XT , AT )

∣∣∣a1:T−1, w
i
1:T

}
=
∑
x−iT aT

Ri(xT , aT )ξT (xT )µ∗T [a1:T−1](ξ−iT )β∗,iT (aiT |a1:T−1, ξ
i
T )β∗,−iT (a−iT |a1:T−1, ξ

−i
T ) (47a)

= V i
T (µ∗

T
[a1:T−1], ξiT ), (47b)

where (47b) follows from the definition of V i
t in (9) and the definition of β∗T in the forward

recursion in (11a).
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Suppose the claim is true for t+ 1, i.e., ∀i ∈ N , t ∈ T , (a1:t, w
i
1:t+1) ∈ Hi

t+1

V i
t+1(µ∗

t+1
[a1:t], ξ

i
t+1) = Eβ

∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t, w

i
1:t+1

}
. (48)

Then ∀i ∈ N , t ∈ T , (a1:t−1, w
i
1:t) ∈ Hi

t, we have

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑
n=t

Ri(Xn, An)
∣∣∣a1:t−1, w

i
1:t

}
= Eβ

∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣∣a1:t−1, w
i
1:t

}
(49a)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At)+

Eβ
∗,i
t+1:T β

∗,−i
t+1:T , µ

∗
t+1[a1:t−1,At]

{
T∑

n=t+1

Ri(Xn, An)
∣∣∣a1:t−1, At, w

i
1:t,W

i
t+1

}∣∣∣a1:t−1, w
i
1:t

}
(49b)

= Eβ
∗,i
t:T β

∗,−i
t:T , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)
∣∣∣a1:t−1, w

i
1:t

}
(49c)

= Eβ
∗,i
t β∗,−it , µ∗t [a1:t−1]

{
Ri(Xt, At) + V i

t+1(µ∗
t+1

[a1:t−1At],Ξ
i
t+1)
∣∣∣a1:t−1, w

i
1:t

}
(49d)

= V i
t (µ∗

t
[a1:t−1], ξit), (49e)

where (49b) follows from Lemma 5 in Appendix C, (49c) follows from the induction hypothesis

in (48), (49d) follows because the random variables involved in expectation, X−it , At, X
i
t+1 do

not depend on β∗,it+1:Tβ
∗,−i
t+1:T and (49e) follows from the definition of β∗t in the forward recursion

in (11a), the definition of µ∗t+1 in (11b) and the definition of V i
t in (9).

APPENDIX D

Proof: We will prove the result by induction on t. The result is vacuously true for T + 1.

Suppose it is also true for t+ 1, i.e.

(µ∗t+1)−1(C̃at+1:T

t+1 ) = Cat+1:T

t+1 . (50)

We show that the result holds true for t. In the following two cases, we show that if there exists

an element in one set, it also belongs to the other. From the contrapositive of the statement, if

one is empty, so is the other.

Case 1. We prove (µ∗t )
−1(C̃at:Tt ) ⊂ Cat:Tt
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Let hct ∈ (µ∗t )
−1(C̃at:Tt ). We will show that hct ∈ C

at:T
t .

Since hct ∈ (µ∗t )
−1(C̃at:Tt ), this implies µ∗t [h

c
t ] ∈ C̃

at:T
t . Then by the definition of C̃at:Tt , ∀i, ∀ξit ∈

supp(µ∗,it [hct ]), θ
i
t[µ
∗
t [h

c
t ]](a

i
t|ξit) = 1. Since ξit(x

i
t) = P (xit|hit) ∀xit,

µ∗,it [hct ](ξ
i
t) = P θ(ξit|hct) ∀ξit and β∗,it (ait|hit) = θit[µ

∗
t [h

c
t ]](a

i
t|ξit) by the definition of β∗, this implies

∀i, β∗,it (ait|hit) = 1, ∀hit that are consistent with hct and occur with non-zero probability.

Also since µ∗t [h
c
t ] ∈ C̃

at:T
t , this implies F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at) ∈ C̃

at+1:T

t+1 by definition of C̃at:Tt .

Thus µ∗t+1[hct , at] ∈ C̃
at+1:T

t+1 , since µ∗t+1[hct , at] =

F̄ ([µ∗t [h
c
t ], θt[µ

∗
t [h

c
t ]], at) by definition. Using the induction hypothesis, (hct , at) ∈ C

at+1:T

t+1 , which

implies ∀i, β∗,in (ain|hin) = 1, ∀n ≥ t + 1,∀hin that are consistent with (hct , at) and occur with

non-zero probability.

The above two facts conclude that ∀i, β∗,in (ain|hin) = 1, ∀n ≥ t, ∀hin that are consistent with

hct and occur with non-zero probability, which implies hct ∈ C
at:T
t by the definition of Cat:Tt .

Case 2. We prove (µ∗t )
−1(C̃at:Tt ) ⊃ Cat:Tt .

Let hct ∈ C
at:T
t . We will show that µ∗t [h

c
t ] ∈ C̃

at:T
t .

Since hct ∈ C
at:T
t , this implies ∀i, β∗,it (ait|hit) = 1, ∀hit that are consistent with hct and oc-

cur with non-zero probability. Since β∗,it (ait|hit) = θit[µ
∗
t [h

c
t ]](a

i
t|ξit), by the definition of β∗,

where ξit(x
i
t) = P (xit|hit) ∀xit, this implies ∀i, θit[µ∗t [hct ]](ait|ξit) = 1,∀ξit ∈ supp(µ

∗,i
t [hct ]), where

µ∗,it [hct ](ξ
i
t) = P θ(ξit|hct) ∀ξit .

Also, since hct ∈ C
at:T
t , it is implied by the definition of Cat:Tt that (hct , at) ∈ C

at+1:T

t+1 . This

implies µ∗t+1[hct , at] ∈ C̃
at+1:T

t+1 by the induction hypothesis. Since, by definition, µ∗t+1[hct , at] =

F̄ ([µ∗t [h
c
t ], θt[µ

∗
t [h

c
t ]], at), this implies F̄ ([µ∗t [h

c
t ], θt[µ

∗
t [h

c
t ]], at) ∈ C̃

at+1:T

t+1 .

Since we have shown that ∀i, θit[µ∗t [hct ]](ait|ξit) = 1,∀ξit ∈ supp(µ∗t [hct ]) and

F̄ ([µ∗t [h
c
t ], θt[µ

∗
t [h

c
t ]], at) ∈ C̃

at+1:T

t+1 , this implies µ∗t [h
c
t ] ∈ C̃

at:T
t by the definition of C̃at:Tt .

The above two cases complete the induction step.

APPENDIX E

Proof: We prove this by induction on t0. For t0 = T , (23) reduces to

γ̃iT (·|ξiT ) ∈ arg max
γiT (·|ξiT )

∑
aiT

aiTγ
i
T (aiT |ξiT )(λ(2ξiT − 1) + λ̄(2ξ̂−iT − 1)), (51)
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and since πT ∈ Ĉa, it is easy to verify that γ̃iT (ai|ξiT ) = 1, ∀ξiT ∈ [0, 1] and thus V i
T (π−iT , ξ

i
T ) =

(λ(2ξiT − 1) + λ̄(2ξ̂−iT − 1))ai. This establishes the base case.

Now, suppose the claim is true for t0 = τ + 1 i.e. if πτ+1 ∈ Ĉa, then ∀t ≥ τ + 1, πt ∈ Ĉa and

γ̃it(a
i|ξit) = 1 ∀ξit ∈ [0, 1]. Moreover, for τ + 1 ≤ t ≤ T , V i

t is given by, ∀πt ∈ Ĉa,

V i
t (π−it , ξ

i
t) = (T − t+ 1)(λ(2ξit − 1) + λ̄(2ξ̂−it − 1))ai. (52)

Then if πτ ∈ Ĉa, then γ̃iτ (a
i|ξiτ ) = 1 ∀ξiτ ∈ [0, 1] satisfies (23) since,

γ̃iτ (·|ξiτ ) ∈ arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ Eγiτ (·|ξiτ )γ̃−iτ , πτ
{
V i
τ+1(F (π−iτ , γ̃

−i
τ , A

−i
τ ),Ξi

τ+1)
∣∣∣ξiτ} (53)

= arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ Eγiτ (·|ξiτ )γ̃−iτ , πτ
{

(T − τ)(λ(2Ξi
τ+1 − 1) + λ̄(2Ξ̂−iτ+1 − 1))ai|ξiτ

}
(54)

= arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))

+ (T − τ)(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))ai (55)

= arg max
γiτ (·|ξiτ )

∑
aiτ

aiτγ
i
τ (a

i
τ |ξiτ )(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1)), (56)

where (54) follows from the fact that F (πτ , γ̃τ , aτ ) ∈ Ca, ∀aτ , as shown in Claim 2, and

induction hypothesis, (55) follows from Claim 2 and Claim 3 and (56) follows from the fact

that the second term does not depend on γiτ (·|ξiτ ). This also shows that, ∀πt ∈ Ĉa,

V i
τ (πτ , ξ

i
τ ) = (T − τ + 1)(λ(2ξiτ − 1) + λ̄(2ξ̂−iτ − 1))ai, (57)

which completes the induction step.

Claim 2: Expectation of πit+1 under non-informative γ̃it of the form γ̃it(a
i|ξit) = 1 ∀ξit ∈ [0, 1],

remains the same as mean of πit, i.e.,

E{Ξi
t+1(1)|πit, γ̃it, ai} = E{Ξi

t(1)|πit} (58)
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Proof:

E{Ξi
t+1(1)|πit, γ̃it, ai}

=
∑
ξit+1(1)

ξit+1(1)F̄ i(πit, γ̃
i
t, a

i)(ξit+1(1)) (59)

=

∑
ξit,x

i,ξit+1(1) ξ
i
t+1(1)πit(ξ

i
t)ξ

i
t(x

i)γ̃it(a
i
t|ξit)Qi

w(wit+1|xi, at)IF i(ξit,wit+1,at)(1)(ξ
i
t+1(1))∑

ξit,x
i,wit+1

πit(ξ
i
t)ξ

i
t(x

i)γ̃it(a
i
t|ξit)

(60)

=

∑
ξit,x

i,wit+1,ξ
i
t+1(1) ξ

i
t+1(1)πit(ξ

i
t)ξ

i
t(x

i)Qi
w(wit+1|xi, ai)IF i(ξit,wit+1,a

i)(1)(ξ
i
t+1(1))∑

ξit,x
i πit(ξ

i
t)ξ

i
t(x

i)
(61)

=
∑

ξit,x
i,wit+1

F i(ξit, w
i
t+1, a

i)(1)πit(ξ
i
t)ξ

i
t(x

i)Qi
w(wit+1|xi, ai) (62)

=
∑
ξit,w

i
t+1

ξit(1)Qi
w(wit+1|1, ai)∑

x̃i ξ
i
t(x̃

i)Qi
w(wit+1|x̃i, ai)

πit(ξ
i
t)
∑
xi

ξit(x
i)Qi

w(wit+1|xi, ai) (63)

=
∑
ξit

ξit(1)πit(ξ
i
t(1)) (64)

= E{Ξi
t(1)|πit} (65)

Claim 3: For any γit ,

E{Ξi
t+1(1)|ξit, γit} = ξit(1) (66)

Proof:

E{Ξi
t+1(1)|ξit, γit}

=
∑

xi,wit+1,a
i
t,ξ
i
t+1(1)

ξit+1(1)IF̄ i(ξit,wit+1,a
i
t)(1)(ξ

i
t+1(1))ξit(x

i)Qi
w(wit+1|xi, ait)γit(ait|ξit) (67)

=
∑

xi,wit+1,a
i
t

F̄ i(ξit, w
i
t+1, a

i
t)(1)ξit(x

i)Qi
w(wit+1|xi, ait)γit(ait|ξit) (68)

=
∑

ait,w
i
t+1

ξit(1)Qi
w(wit+1|1, ait)∑

x̃i ξ
i
t(x̃

i)Qi
w(wit+1|x̃i, ait)

γit(a
i
t|ξit)

∑
xi

ξit(x
i)Qi

w(wit+1|xi, ait) (69)

=
∑

ait,w
i
t+1

ξit(1)Qi
w(wit+1|1, ait)γit(ait|ξit) (70)

= ξit(1) (71)
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