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Sequential decomposition of repeated games with asymmetric information
and dependent states

Deepanshu Vasal

Abstract— We consider a finite horizon repeated game with
N selfish players who observe their types privately and take
actions, which are publicly observed. Their actions and types
jointly determine their instantaneous rewards. In each period,
players jointly observe actions of each other with delay 1, and
private observations of the state of the system, and get an
instantaneous reward which is a function of the state and every-
one’s actions. The players’ types are static and are potentially
correlated among players. An appropriate notion of equilibrium
for such games is Perfect Bayesian Equilibrium (PBE) which
consists of a strategy and a belief profile of the players which
is coupled across time and as a result, the complexity of finding
such equilibria grows double-exponentially in time. We present
a sequential decomposition methodology to compute structured
perfect Bayesian equilibria (SPBE) of this game, introduced
in [1], where equilibrium policy of a player is a function of a
common and a private belief state. This methodology computes
SPBE in linear time. In general, the SPBE of the game problem
exhibit signaling behavior, i.e. players’ actions reveal part of
their private information that is payoff relevant to other players.

I. INTRODUCTION

Information asymmetry among strategic agents is an important
topic, which has seen some very influential works such as [2]
and [3]. Akerlof in [2] and Spence in [3] modeled a market of
cars and a job market, respectively, as instances of information
asymmetry in a game, and show interesting behavior of strategic
agents derived from these models. Specifically, Akerlof in [2]
showed that in a market of cars, where the quality of car is
known only to the seller, lower prices can drive out good cars
from the market. Spence in [3] showed that in equilibrium in a
job market, a candidate can ‘signal’ her higher productivity to a
potential employer by opting for higher education credentials. While
these works showed very interesting and relevant phenomena for
static information asymmetry, in the real world however, there exists
many such, and even more complicated decision making scenarios
which involves strategic decision makers with dynamically evolving
information asymmetry. Some instances of such systems include:
(a) in cyber-physical systems, many cyber and physical devices
are connected to each other which have different information and
they make a decision to optimize their performance objectives; (b)
in a wind energy market a wind energy producer observes its own
wind production privately and publicly observes the output of other
producers which also determine the prices, and its objective is to
generate output that maximizes its revenue; (c) in a social network,
people have private opinions about a topic and also publicly observe
actions of others, based on which they make a decision to maximize
their utility. All such scenarios can be modeled as a dynamic game
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of asymmetric information1 [4]. Such problems are gaining more
interest with applications such as alpha-go by Deepmind [5] for
the symmetric information game Go, and for asymmetric/imperfect
information games such as Texas Hold’em in [6].

Dynamical systems with strategic players are modeled as dy-
namic stochastic games, introduced by Shapley in [7]. Discrete-
time dynamic games with Markovian structure have been studied
extensively to model many practical applications, in engineering
as well as economics literature [8], [9]. In dynamic games with
perfect and symmetric information, subgame perfect equilibrium
(SPE) is an appropriate equilibrium concept and there exists a
backward recursive methodology to find all the SPEs of these games
(see [10]–[12] for a more elaborate discussion). Maskin and Tirole
in [13] introduced the concept of Markov perfect equilibrium (MPE)
for dynamic games with symmetric information, where equilibrium
strategies are dependent on some payoff relevant Markovian state of
the system, rather than on the entire history. In dynamic games of
asymmetric information, there are strategic players who are affected
by an underlying process that is dynamically evolving, and the
players make asymmetric observations about that process. In such
games and more generally in any dynamic multi-agent decision
problem with asymmetric information, a player’s action not just
either explore or exploit the system2, as it happens in a single agent
problem, but also signal i.e. reveal part of its private information to
the other players that is payoff relevant to them.3 Some appropriate
notions of equilibrium for such games is Perfect Bayesian Equilib-
rium (PBE) or Sequential Equilibrium (SE) [4], [10] which involve
an equilibrium strategy profile and an equilibrium belief profile of
all the players, among other refinements. In these equilibria, the
equilibrium strategies and beliefs are coupled together through a
joint fixed-point equation in the space of strategies and beliefs for all
players and for all histories of the game.4 Since the history of such
games grows exponentially, the complexity of finding equilibria
of such game grows double exponentially in time, rendering such
problems intractable. We refer the reader to the Introduction section
of [14] for a thorough introduction and a brief literature survey on
dynamic games with asymmetric information.

Recently, there have been a number of results on finding an in-
formation state for different classes of such games that decomposes
these games across time (in an analogous way a dynamic program
decomposes a dynamic optimization problem), and thus reduces
the complexity of finding these equilibria from double-exponential
to linear in time. Authors in [14], [15], and independently, au-
thors in [16], [17], presented such a sequential decomposition for
games to find structured perfect Bayesian equilibrium (SPBE) and
common information based perfect Bayesian equilibrium (CIB-

1Sometimes also referred to as dynamic games of incomplete/imperfect
information.

2Exploitation refers to making a decision based on whereas exploration
refers to taking action that improves the current estimate of the state of the
system even at some cost in the present, but that improves future reward.

3Equivalently, signaling occurs in such decision problems if players’
beliefs on a payoff relevant state are strategy dependent i.e. they depend
on the strategies of one or more players.

4In comparison, Nash equilibrium for a static game is a fixed-point
equation in the space of probability measures on possible actions of the
players [10]
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PBE), respectively, where each player has a type or a state that
evolves (conditionally) independently of other players’ types in a
Markovian way. Authors in [18] extended those results to LQG
games (i.e. with linear state update, quadratic instantaneous costs
and Gaussian random variables), and to games with conditionally
independent hidden Markovian types in [19], where instead of
perfectly observing its own type, each player makes independent
noisy observations about it, respectively. Authors in [20] considered
such dynamic game with a system state and delayed information
sharing pattern where each players learns every agents private
observations and actions with delay of d−steps. Authors in [17, ch.
5] generalized that dynamic game with a Markovian state where
players make a common and private observations of the state of
the system, where these observations are conditionally independent
among players, conditioned on the current state and previous action.
In this paper, we consider a model that adds to this literature, where
there exists players’ types that are static and arbitrary correlated
among the players.

In this paper, similar to [14], we present a backward-forward
methodology to compute SPBE of the game, where each player’s
strategy is a function of the same common information belief state
and private state. These equilibria of the game are analogous to
Markov Perfect equilibria (MPE) [13] of symmetric information
games.

The paper is structured as follows. In Section II, we present the
general model. In Section III, we define information belief states,
which act as the motivation for the structure of the equilibrium
policies. In Section IV, present the backward-forward methodology
to compute SPBE of the game in linear time. We discuss some
remarks in Section V. We conclude in section VI.

A. Notation
We use uppercase letters for random variables and lowercase

for their realizations. For any variable, subscripts represent time
indices and superscripts represent player identities. We use no-
tation −i to represent all players other than player i i.e. −i =
{1, 2, . . . i − 1, i + 1, . . . , N}. We use notation at:t′ to represent
vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector if t′ < t.
We use a−it to mean (a1t , a

2
t , . . . , a

i−1
t , ai+1

t . . . , aNt ) . We remove
superscripts or subscripts if we want to represent the whole vector,
for example at represents (a1t , . . . , a

N
t ). In a similar vein, for any

collection of finite sets (X i)i∈N , we denote ×Ni=1X i by X . We
denote the indicator function of any set A by IA(·). For any finite
set S, ∆(S) represents space of probability measures on S and |S|
represents its cardinality. We denote by P g (or Eg) the probability
measure generated by (or expectation with respect to) strategy
profile g. We denote the set of real numbers by R. For a probabilistic
strategy profile of players (βit)i∈N where probability of action
ait conditioned on (a1:t−1, x

i) is given by βit(a
i
t|a1:t−1, x

i), we
use the short hand notation β−it (a−it |a1:t−1, x

−i) to represent∏
j 6=i β

j
t (a

j
t |a1:t−1, x

j). All equalities and inequalities involving
random variables are to be interpreted in a.s. sense.

II. GENERAL MODEL

We consider a discrete-time dynamical system with N selfish
players in the set N 4

= {1, 2, . . . N}. We consider finite horizon
T 4

= {1, 2, . . . T} with perfect recall. The system state is x =
(x1, . . . , xN ), where x ∈ X is distributed as

P (x) = Qx(x) (1)

where at = (a1t , . . . , a
N
t ), and ait is the action taken by player i at

time t. At start of period t, players jointly observe at−1, and make
private observations x, where xi ∈ X i is the private observation of
player i.∀t ∈ 1, . . . T ,

Player i takes action ait ∈ Ai at time t upon observing a1:t−1

which is common information among players, and xi which is
player i’s private information. The sets Ai,X i are assumed to be

finite. Let gi = (git)t be a probabilistic strategy of player i where
git : At−1 × (X i) → ∆(Ai) such that player i plays action ait
according to Ait ∼ git(·|a1:t−1, x

i). Let g := (gi)i∈N be a strategy
profile of all players. At the end of interval t, player i gets an
instantaneous reward Rit(X,At). The objective of player i is to
maximize its total expected reward in a perfect sense

J i,g := Eg
[
T∑
t=1

Rit(X,At)

]
. (2)

III. STRUCTURAL RESULTS

The problem described in previous section is a repeated game
with asymmetric information where a player’s strategy is of the
form ait ∼ git(·|a1:t−1, x

i). Equivalent of such decentralized
problems when players are cooperative and have the same objective
can not be solved using classical tools from the theory of Markov
Decision Processes (MDP) [21]. However, there exists some key
ideas in the literature such as agent-by-agent approach [22] and
common information approach [23] that present structural results of
the optimum policies for a class of such systems with non-classical
information structure and cooperative players. Such techniques have
been used in dynamic team problems such as [24]–[26]. For the
problem described in previous section, we use an approach inspired
by [23].

For every agent i ∈ N and any policy profile g, let πt ∈ ∆(X )
be a common belief on x conditioned on the common information
a1:t−1, defined as follows.

πt(x) := P g(x = x|a1:t−1) (3)

A. Common agent approach
An alternative way to view the problem is as follows. As is

done in common information approach [23], at time t, a fictitious
common agent observes the common information a1:t−1 and gen-
erates prescription functions γt = (γit)i∈N = ψt[a1:t−1]. Player
i uses these prescription functions γit to operate on its private
information xi to produce its action ait, i.e. γit : xi → ∆(Ai)
and ait ∼ γit(·|xi) = ψ[a1:t−1](·|xi). It is easy to see that for any
g policy profile of the players there exists an equivalent ψ profile of
the common agent (and vice versa) that generates the same control
actions for every realization of the information of the players.

We define a special type of common agent’s policy as follows.
We call a common agent’s policy be of type θ if the common
agent observes the common belief πt derived from the common
observation a1:t−1, and generates prescription functions γt =
(γit)i∈N = θt[πt]. Player i uses these prescription function γit to
operates on its private type xi to produce its action ait, i.e. γit :
∆(X ) → ∆(Ai) and ait ∼ γit(·|xi) = θ[πt](·|xi). Equivalently,
we call a common agent’s policy be of type θ if for all i ∈ N
and for all time t, player i’s action ait depends on its information
(a1:t−1, x

i) through the belief states πt(x) = P θ(x = x|a1:t−1)
and xi.

In the next lemma we show that for any given θ policy, the
belief states πt can be updated recursively as follows. Let π1(x) :=
Qx(x).

Lemma 1: For any given policy of type θ, there exists update
functions Ft, independent of θ, such that

πt+1 = Ft(πt, γt, at). (4)

Proof: Please see Appendix I.

IV. REPEATED GAMES WITH ASYMMETRIC INFORMATION

A. Solution concept: PBE
We introduce perfect Bayesian equilibrium (PBE) as an appropri-

ate equilibrium concept for the game considered. Any history of this
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game at which players take action is of the form ht = (x, a1:t−1).
Let Ht be the set of such histories at time t. At any time t
player i observes hit = (xi, a1:t−1) and all players together observe
hct = (a1:t−1) as common history. Let Hit be the set of observed
histories of player i at time t andHct be the set of common histories
at time t. An appropriate concept of equilibrium for such games
is PBE [11] which consists of a pair (β∗, µ∗) of strategy profile
β∗ = (β∗,it )t∈T ,i∈N where β∗,it : Hit → ∆(Ai) and a belief
profile µ∗ = (iµ∗t )t∈T ,i∈N where iµ∗t : Hit → ∆(Ht) that satisfy
sequential rationality so that ∀i ∈ N , t ∈ T , hit ∈ Hit, βi

E(β∗,iβ∗,−i, µ∗)

{
T∑
n=t

Rin(X,An)
∣∣hit
}

≥ E(βiβ∗,−i, µ∗)

{
T∑
n=t

Rin(X,An)
∣∣hit
}
, (5)

and the beliefs are updated using Bayes’ rule, whenever possible.
In this paper, we first define a common belief π∗t as a belief

on x. Then player i derives its equilibrium belief iµ∗t on (x−i) by
conditioning π∗t on its private type xi i.e. iµ∗t (x−i) = π∗t (x−i|xi).
We define structured perfect Bayesian equilibrium as follows.

Definition 1 (SPBE): A structured perfect Bayesian equilibrium
(SPBE) is a PBE of the considered dynamic game where at any
time t, for any agent i, its equilibrium strategy β∗,it depends on
player i’s information (a1:t−1, x

i) through the common belief and
its private type xi.
We conjecture that as in [14], such structured strategies form a rich
class where any expected reward profile of the players that can be
generated from any general strategy profile can also be generated
using such structured strategy profile.

In the following we present a backward-forward methodology to
compute SPBE of this game.

1) Backward Recursion: In this section, we define an equi-
librium generating function θ = (θit)i∈N ,t∈T and a sequence of
functions (V it )i∈N ,t∈{1,2,...T+1}, where V it : ∆(X )×X i → R, in
a backward recursive way, as follows.

1. Initialize ∀πT+1 ∈ ∆(X ), xi ∈ X i,

V iT+1(πT+1, x
i) := 0. (6)

2. For t = T, T − 1, . . . 1, ∀πt ∈ ∆(X ), let θt[πt] be generated
as follows. Set γ̃t = θt[πt], where γ̃t is the solution, if it
exists5, of the following fixed-point equation, ∀i ∈ N , xi ∈
X i,

γ̃it(·|xi) ∈ arg max
γit(·|xi)

Eγ
i
t(·|x

i)γ̃−i
t , πt

{
Rit(X,At)+

V it+1(Ft(πt, γ̃t, At), x
i)
∣∣xi} , (7)

where expectation in (7) is with respect to
random variables (X,At) through the measure∑
x−i,x πt(x

−i|xi)γit(ait|xi)γ̃−it (a−it |x−i), Ft is defined in
Lemma 1. Furthermore, set

V it (πt, x
i) := Eγ̃

i
t(·|x

i)γ̃−i
t , πt

{
Rt

i(x,At)+

V it+1(Ft(πt, γ̃t, At), x
i)
∣∣xi} . (8)

It should be noted that (7) is a fixed-point equation where the
solution of the above fixed-point equation γ̃it appears in both, the
left-hand-side and the right-hand-side of the equation. However,
it is not the outcome of the maximization operation as in a best
response equation similar to that of a Bayesian Nash equilibrium.

5Existence of general solution of this per stage fixed-point equation is
discussed in Remark 4.

2) Forward Recursion: Based on θ defined above in (6)–(8),
we now construct a set of strategies β∗ and beliefs µ∗ for the game
D in a forward recursive way, as follows, where βi,∗t : At−1 ×
X i → ∆(Ai) and iµ∗t : At−1 × X i → ∆(X ). We first define
the update function of equilibrium common belief π∗t : At−1 →
∆(X ), where for every private history (a1:t−1, x

i) of player i,
it’s equilibrium belief iµ∗t is constructed by conditioning common
belief π∗t on its private belief xi.

1. Initialize at time t = 0, ∀i ∈ N ,

π∗1 [φ](x) := Qx(x) (9)

2. For t = 1, 2 . . . T, i ∈ N , ∀a1:t−1, x
i

β∗,it (ait|a1:t−1, x
i) := θit[π

∗
t [a1:t−1]](ait|xi) (10a)

iµ∗t (x
−i|a1:t−1, x

i) := π∗t [a1:t−1](x−i|xi) (10b)
π∗t+1[a1:t] := Ft(π

∗
t [a1:t−1], θt[π

∗
t [a1:t−1]], At) (10c)

where Ft is defined in Lemma 1.
In the following theorem, we show that the equilibrium strategy

and belief profile (β∗, µ∗) defined above constitute a PBE of the
game considered.

Theorem 1: A strategy and belief profile (β∗, µ∗), constructed
through backward/forward recursive methodology is a PBE of the
game, i.e. ∀i ∈ N , t ∈ T , (a1:t−1, x

i), βit:T ,

Eβ
∗,i
t:T

β
∗,−i
t:T

, µ∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
≥

Eβ
i
t:T β

∗,−i
t:T

, µ∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
. (11)

Proof: The proof is provided in Appendix II.

V. REMARKS

A few remarks are in order.
Remark 1: We note that in Step-2 in Backward Recursion, a

fixed-point equation is solved in (γ̃it , V
i
t )i∈N for each πt ∈ ∆(X )

and for each t ∈ T, T − 1, . . . 1. Since Backward recursion
dominates the computational complexity, the complexity of our
methodology is linear in time. However, we do not make any
claim about the complexity of solving the fixed-point in each
instant, which, together with its existence as discussed below, is
an important open question for future research.

Remark 2: We emphasize that even though the backward-
forward methodology presented above finds a class of equilibrium
strategies that are structured i.e. depend on the common belief
and private state, the unilateral deviations of players in (11) are
considered in the space of general strategies, i.e., the methodology
does not make any bounded rationality assumptions.

Remark 3: Intuition of the proof: In such games, one could use
the one-shot deviation principle [27] to argue that sequential ratio-
nality reduces to showing that no player wants to deviate unilaterally
in βit at any time t, keeping the rest of the strategy βi,∗t+1:T as the
equilibrium strategy. We argue that this is equivalent to (7) i.e.
for a given (π∗t , x

i), a player’s unilateral deviation in its strategy
βi,∗t is the same as unilaterally deviation in its measure γit(·|xi)
on its action ait (and not on the whole function γit(·|·)). This is
because under such unilateral deviations, a player uses the same
future information states (π∗t+1, x

i) as it would have done under
an equilibrium strategy, whose update depends on equilibrium γ̃t.
This is so because player uses the same equilibrium π∗t+1 to predict
other player’s actions, and update of its equilibrium private belief
xi does not depend on γit .

Remark 4: While it is known that for any finite dynamic game
with asymmetric information and perfect recall, there always exists
a PBE [10, Prop. 249.1], existence of SPBE is not always guaran-
teed. It is clear from our methodology that existence of SPBE boils
down to existence of a solution to the fixed-point equation (7) at
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every stage. Specifically, at each time t given the functions V it+1

for all i ∈ N from the previous round (in the backwards recursion)
equation (7) must have a solution γ̃it for all i ∈ N . Generally,
existence of equilibria is shown through Kakutani’s fixed point
theorem, as is done by proving existence of a mixed strategy Nash
equilibrium of a finite game [10], [28]. This is done by showing
existence of fixed point of the best-response correspondences of the
game. Among other conditions, it requires the closed graph property
of the correspondences, which is usually implied by the continuity
property of the utility functions involved. For (7) establishing
existence is not straightforward due to: (a) potential discontinuity
of the πt update function Ft when the denominator in the Bayesian
update is 0 and (b) potential discontinuity of the value functions,
V it+1. It is noted in [17, ch. 5] through [29] that for dynamic zero-
sum games with asymmetric information, the value function is a
continuous function, on the basis of which and the above mentioned
arguments, the existence of equilibria in sequential decomposition
fir such games is established. Furthermore, authors in [18] consider
an LQG dynamic game with asymmetric information (with linear
state update, quadratic costs and Gaussian noise), where they
present sufficient algorithmic conditions for such an equilibrium to
exist. Authors in [30] study a public goods game for which signaling
equilibria were found numerically using such methodology where
agents have independent types which are perfectly observed by them
and agents observe each others’ actions in each time-period. Having
said this, existence of the fixed-point equation for a more general
class of problems remain an open question.

Remark 5: This model also allows to incorporate many bounded
rationality models. Some examples include using a discount factor
δ or by restricting the search for optimum γit(·|xi) in (7) in the
space of functions that are linear in private information variables.

Remark 6: In this paper, we considered a model with static types
of the players. If the types of the players were also dynamic,
say in a Markovian or a controlled Markovian way, we believe
such a decomposition is not possible. The reason is that there is
no consistent set of sufficient belief statistics that summarizes the
observed history of the players in such a way that does not lead to
infinite regress of beliefs. We pose it as an open problem if there
exists any special structure of dynamic evolution of private beliefs
with correlated types that allows for sequential decomposition in
dynamic games with asymmetric information.

VI. CONCLUSION

In this paper, we considered a model of repeated game where
there is an underlying state of the system that is static and players
jointly observe actions of other players with delay 1 and correlated
private observations of the state of the system. Each player receives
a reward that is a function of the state and actions of all the
players. We define a common information belief state and private
information belief states of the players. We then presented a
backward-forward methodology similar to the one presented in [1]
to compute its structured perfect Bayesian equilibria (SPBE). Future
work includes proving such a methodology for discounted infinite-
horizon case and specializing results to many practical settings such
as games on graph, where players who are connected on the graph
have correlated private information. Some practical applications
of interest include security games for cyber-physical systems and
Bayesian learning games in a social network with fully rational and
potentially adversarial agents. An important future direction would
to be investigate if this new result in the theory of such games can
facilitate more efficient way of computing equilibria in [6] which
can have significant implications in developing a software to solve
real-world strategic problems.
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APPENDIX I
Lemma 2: There exists an update function Ft of πt, independent

of θ

πt+1 = Ft(πt, γt, at) (12)
Proof:

πt+1(x) = P θ(x|a1:t, γ1:t+1) (13a)

= P θ(x|a1:t, γ1:t) (13b)

=
P θ(x, at|a1:t−1, γ1:t)∑
x,at

P θ(x, at|a1:t−1, γ1:t)
(13c)

=
πt(x)

(∏N
i=1 γ

i
t(a

i
t|xi)

)
∑
x πt(x)

∏N
i=1 γ

i
t(a

i
t|xi)

(13d)

if the denominator is not 0 and

πt+1(x) = πt(x) (13e)

otherwise. Thus we have,

πt+1 = Ft(πt, γt, at) (13f)

APPENDIX II
(PROOF OF THEOREM 1)

In the following theorem, we will assume that the equilibrium
strategies and beliefs (β∗, µ∗) are generated using an equilibrium
function θ. Moreover, we will also use π∗t map corresponding to
iµ∗t as defined in (10). With slight abuse of notation, we use both
beliefs and belief functions as superscripts on expectations, where
the reference is clear from the context. These functions when used
as superscripts in expectation denote the belief functions, which
when applied on the conditioned random variables, define beliefs
on the random variables of interest inside the expectation.

Proof: We prove (11) using induction and from results in
Lemma 3, 4 and 5 proved in Appendix III. For base case at t = T ,
∀i ∈ N , (a1:t−1, x

i) ∈ HiT , βi

Eβ
∗,i
T
β
∗,−i
T

, π∗T
{
Rit(X,At)

∣∣a1:t−1, x
i
}

= V iT (π∗T [a1:t−1], xi) (14a)

≥ Eβ
i
T β
∗,−i
T

, π∗T
{
Rit(X,At)

∣∣a1:t−1, x
i
}

(14b)

where (14a) follows from Lemma 5 and (14b) follows from
Lemma 3 in Appendix III.

Let the induction hypothesis be that for t + 1, ∀i ∈
N , (a1:t, xi) ∈ Hit+1, β

i,

Eβ
∗,i
t+1:T

β
∗,−i
t+1:T

, π∗t+1

{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, x

i

}
≥

Eβ
i
t+1:T β

∗,−i
t+1:T

, π∗t+1

{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, x

i

}
. (15a)

Then ∀i ∈ N , (a1:t−1, x
i) ∈ Hit, βi, we have

Eβ
∗,i
t:T

β
∗,−i
t:T

, π∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
= V it (π∗t [a1:t−1], xi) (16a)

≥ Eβ
i
tβ
∗,−i
t , π∗t

{
Rit(X,At)+

V it+1(π∗t+1[a1:t−1, At], x
i)
∣∣a1:t−1, x

i
}

(16b)

= Eβ
i
tβ
∗,−i
t , π∗t

{
Rit(X,At) + Eβ

∗,i
t+1:T

β
∗,−i
t+1:T

, π∗t+1{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, At, x

i

}∣∣a1:t−1, x
i

}
(16c)
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≥ Eβ
i
tβ
∗,−i
t , π∗t

{
Rit(X,At) + Eβ

i
t+1:T β

∗,−i
t+1:T

π∗t+1{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, At, x

i

}∣∣a1:t−1, x
i

}
(16d)

= Eβ
i
tβ
∗,−i
t , π∗t

{
Rit(X,At) + Eβ

i
t:T β

∗,−i
t:T

π∗t{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, At, x

i

}∣∣a1:t−1, x
i

}
(16e)

= Eβ
i
t:T β

∗,−i
t:T

, π∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
, (16f)

where (16a) follows from Lemma 5, (16b) follows from Lemma 3,
(16c) follows from Lemma 5, (16d) follows from induction hypoth-
esis in (15a) and (16e) follows from Lemma 4.

APPENDIX III
As we did in the previous theorem, in the following lemmas, we

would assume that the equilibrium strategies and beliefs (β∗, µ∗)
are generated using an equilibrium function θ. We also use π∗t
corresponding to iµ∗t as defined in (10).

Lemma 3: This lemma states that the reward that player i would
get on playing equilibrium strategy will be greater or equal to the
reward it would get if it deviates only at time t, keeping the rest of
its strategy as equilibrium strategy. ∀t ∈ T , i ∈ N , (a1:t−1, x

i) ∈
Hit, βit

V it (π∗t [a1:t−1], xi) ≥ Eβ
i
tβ
∗,−i
t , π∗t

{
Rit(X,At)+

V it+1(π∗t+1[a1:t−1, At])
∣∣a1:t−1, x

i
}

(17)
Proof: We prove this lemma by contradiction.

Suppose the claim is not true for t. This implies ∃i, β̂it , â1:t−1, x
i

such that

Eβ̂
i
tβ
∗,−i
t , π∗t

{
Rit(X,At) + V it+1(π∗t+1[â1:t−1, At])

∣∣â1:t−1, x
i
}

> V it (π∗t [â1:t−1]). (18)

We will show that this contradicts the definition of V it in (8).
Construct γ̂it(ait|xi) = β̂it(a

i
t|â1:t−1, x

i)
Then for â1:t−1, x

i, we have

V it (π∗t [â1:t−1])

< Eβ̂
i
t,β
∗,−i
t ,π∗t ,x

i
{
Rit(X,At) + V it+1(π∗t+1[â1:t−1, At])

∣∣â1:t−1, x
i
}

(19a)

=
∑

x,at,at,

xi,x−i

[
Rit(X,At) + V it+1(πt+1[â1:t−1, at])

]
π∗t [â1:t−1](x−i|xi)

β̂it(a
i
t|â1:t−1, x

i)β∗,−it (a−it |π∗t [â1:t−1], x−i) (19b)

=
∑

x,at,xi,x−i

[
Rit(X,At) + V it+1(πt+1[â1:t−1, at])

]
π∗t [â1:t−1](x−i|xi)γ̂it(ait|xi)β∗,−it (a−it |π∗t [â1:t−1], x−i) (19c)

= Eγ̂
i
t(·|x

i)β
∗,−i
t , π∗t [â1:t−1]

{
Rit(X,At)+

V it+1(π∗t+1[â1:t−1, At])
∣∣xi} (19d)

≤ max
γit(·|xi)

Eγ
i
t(·|x

i)β
∗,−i
t , π∗t [â1:t−1]

{
Rit(X,At)+

V it+1(π∗t+1[â1:t−1, At])
∣∣xi} (19e)

= V it (π∗t [â1:t−1]) (19f)

where (19a) follows from (18), (19c) follows from the definition of
γ̂it , and (19f) follows from the definition of V it in (8).

Lemma 4: ∀i ∈ N , t ∈ T , (a1:t, xi) ∈ Hit+1 and βit

Eβ
i
t:T β

∗,−i
t:T

, π∗t

{
T∑

n=t+1

Rin(X,An)
∣∣a1:t, xi} =

Eβ
i
t+1:T β

∗,−i
t+1:T

, π∗t+1

{
T∑

n=t+1

Rin(X,An)
∣∣a1:t, xi} . (20)

Proof: Since the above expectations involve random variables
X−i, At+1:T , we consider P β

i
t:T β

∗,−i
t:T

, π∗t (x, at+1:T

∣∣a1:t, xi).

P β
i
t:T β

∗,−i
t:T

, π∗t (x, at+1:T

∣∣a1:t, xi)
= P β

i
t:T β

∗,−i
t:T

, π∗t (x
∣∣a1:t, xi)P βi

t:T β
∗,−i
t:T

, π∗t (at+1:T

∣∣x, a1:t)()
(21a)

We first note that

P β
i
t:T β

∗,−i
t:T

, π∗t (at+1:T

∣∣x, a1:t)
= βit+1(ait+1|a1:t−1, x

i)
(
β∗,−it+1 (a−it+1|a1:t−1, x

−i)
)

P β
i
t:T β

∗,−i
t:T

, π∗t (at+2:T

∣∣a1:t, x) (21b)

= P β
i
t+1:T β

∗,−i
t+1:T

, π∗t+1(at+1:T |a1:t, x) (21c)

Thus using the above equation, (21a) is given by

P β
i
t+1:T β

∗,−i
t+1:T

, π∗t+1(x, at+1:T |a1:t−1, x
i) (21d)

= P β
i
t+1:T β

∗,−i
t+1:T

, π∗t+1(x, at+1:T |a1:t−1, x
i). (21e)

Lemma 5: ∀i ∈ N , t ∈ T , a1:t−1 ∈ Hct , xi ∈ (X i)

V it (π∗t [a1:t−1], xi)

= Eβ
∗,i
t:T

β
∗,−i
t:T

,π∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
. (22)

Proof:
We prove the lemma by induction. For t = T ,

Eβ
∗,i
T
β
∗,−i
T

, π∗T
{
Rit(X,At)

∣∣a1:t−1, x
i
}

=∑
x−i,aT ,x

−i

Rit(X,At)π
∗
T [a1:t−1](x−i|xi)

β∗,iT (aiT |a1:t−1, x
i)β∗,−iT (a−iT |a1:t−1, x

−i) (23a)

= V iT (π∗t [a1:t−1], xi), (23b)

where (23b) follows from the definition of V it in (8) and the
definition of β∗T in the forward recursion in (10). Suppose the claim
is true for t+ 1, i.e., ∀i ∈ N , t ∈ T , (a1:t−1, x

i) ∈ Hit+1

V it+1(π∗t+1[a1:t], x
i) =

Eβ
∗,i
t+1:T

β
∗,−i
t+1:T

, π∗t+1

{
T∑

n=t+1

Rin(X,An)
∣∣a1:t, xi} . (24)

Then ∀i ∈ N , t ∈ T , (a1:t−1, x
i) ∈ Hit, we have

Eβ
∗,i
t:T

β
∗,−i
t:T

, π∗t

{
T∑
n=t

Rin(X,An)
∣∣a1:t−1, x

i

}
= Eβ

∗,i
t:T

β
∗,−i
t:T

, π∗t
{
Rit(X,At) + Eβ

∗,i
t:T

β
∗,−i
t:T

, π∗t ,x
i{

T∑
n=t+1

Rin(X,An)
∣∣a1:t−1, At, x

i

}∣∣a1:t−1, x
i

}
(25a)

= Eβ
∗,i
t:T

β
∗,−i
t:T

, π∗t
{
Rit(X,At) + Eβ

∗,i
t+1:T

β
∗,−i
t+1:T

, π∗t+1{
T∑

n=t+1

Rin(X,An)
∣∣a1:t−1, At, x

i

}∣∣a1:t−1, x
i

}
(25b)
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= Eβ
∗,i
t:T

β
∗,−i
t:T

, π∗t
{
Rit(X,At)+

V it+1(π∗t+1[a1:t−1, At], x
i)
∣∣a1:t−1, x

i
}

(25c)

= Eβ
∗,i
t β

∗,−i
t , π∗t

{
Rit(X,At)+

V it+1(π∗t+1[a1:t−1, At], x
i)
∣∣a1:t−1, x

i
}

(25d)

= V it (π∗t [a1:t−1], xi) (25e)

where (25b) follows from Lemma 4 in Appendix III, (25c) follows
from the induction hypothesis in (24), (25d) follows because the
random variables involved in expectation, X,At do not depend on
β∗,it+1:Tβ

∗,−i
t+1:T and (25e) follows from the definition of V it in (8).
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