An Autosegmental Analysis of Tone in Four Tibetan Languages*
San Duanmu
University of Michigan
October 1991

0. Introduction This paper applies an autosegmental analysis to tone in four Tibetan languages: Lhasa Tibetan (LS), Gar Tibetan (GR), Gêrzê Tibetan (GZ), and Zedang Tibetan (ZD). I will discuss the representations of underlying tones on monosyllables, and the derivation of tonal patterns in multisyllabic expressions. Our discussion is intended to make three points. First, autosegmental phonology can be successfully applied to Tibetan tone. Second, an autosegmental analysis is superior to a non-autosegmental approach. Third, an autosegmental analysis brings out important similarities between Tibetan tone and tone in other parts of the world, such as Africa and east China, while the traditional approach misses these similarities. In addition, we will discuss what Tibetan tone tells us about the generality of the Association Conventions, rules that govern the linking between tones and segments.

This paper is organized as follows. In section 1, I provide a background of the autosegmental phonology of tone. In section 2, I analyze LS, GR, GZ, and ZD respectively in an autosegmental framework, drawing data mostly from recent publications that appeared in the People's Republic of China in the past decade. In section 3, I compare the proposed analysis with the non-autosegmental approach. In section 4, I make a few concluding remarks.

1. Background Autosegmental phonology, first appeared in the early 1970s, has brought about many fruitful results. Of interest to the present discussion are two insights (Williams 1971/6, Yip 1980)

* A draft of this paper was written in 1989. I benefited from discussions with M. Halle, Z.M. Bao, and S. Meredith.
1 I follow the tradition in using the name of a place to call the language spoken in that place. In addition, many of the names will be spelled in the Pinyin system.
2 Tone in Tibetan languages is a recent phenomenon. In the seventh century, when Tibetan orthography was created, there was no marking for tone. In addition, one of the three modern Tibetan dialect families is still toneless (Hu 1980, Qu 1981, Zhang 1981). The emergence of tone in Tibetan is a result of the loss of contrasts in the consonants surrounding the vowel. Typically, a historical contract in onset voicing is replaced by a contrast in tone. Thus, historical [kʰo] 'he' and [go] 'hear', which were both toneless, have respectively become [kʰo] with a high tone and [kʰo] with a low rise in Lhasa Tibetan. This process, or tonogenesis, to borrow a term from Matisoff (1973), is widely observed in Southeast Asia. For an analysis of tonogenesis in a distinctive feature theory, cf. Duanmu (1991a).
(1) Tones lie on a tier separate from other segmental features, and may freely spread across segments.\(^3\)

(2) Contour tones are made of clusters of level tones. For example, a rising tone is made of LH (i.e. a low tone L followed by a high tone H), a falling tone is made of HL, a fall-rise is made of HLH, and so on.\(^4\)

For illustration, consider some classic examples from the African language Margi (Williams 1971/6, Hoffman 1963; \(\ddagger\) = rising tone, \(_\) = low tone, \(\hat{_}\) = high tone)

(3) a. vël b. ani c. vèlání
to jump causative to make jump

In isolation, the morpheme vël shows a rising tone. The morpheme ani has no tone. When the two morphemes are put together, the three syllables are respectively L, H, and H. Intuitively, we feel that the rising contour on vël in (3a) matches the overall rising contour on vèlání in (3c). In other words, the tones in vèlání must have come from the root vël. Specifically, the rising contour on vël must have split into a L on the first syllable and a H on the second and third syllables in vèlání. However, this intuitive relation cannot be captured in the framework of Chomsky & Halle (1968), since in that framework there is no easy way to allow distinctive features to freely move from one syllable to another. In addition, if 'rise' is a single feature, how can it split into two? And is 'rise' is made of two features, how can they both stay on the same vowel in vël in (3a) (assuming that tone is carried by the vowel)?

To solve the problem, Williams makes three proposals. First, a contour tone is made of level tones, following the idea of Woo (1969). Second, tones lie on a special tier, separate from the segments. Third, the relation between tones and segments are governed by a set of Mapping Rules. Below is Williams' analysis

\(^3\) In the theory of feature geometry, a segment has the structure of a tree, with nodes and branches. Features generally lie on terminal nodes. Each node is on an independent tier, with its own path of spreading. In this view, tone features should also lie on terminal nodes, just as other features do, as suggested by Clements (1985: 247). For exposition, we continue to use the notations of Williams, where tones are drawn away from segments.

The Mapping Rules:

a. Associate tones to syllables one-to-one, left to right
b. If there are more syllables, spread the last tone to excess syllables
c. If there are more tones, link excess tones to the last syllable.

Underlyingly, vel lies on the segmental tier; its tones LH lie on the tonal tier. When there is no suffix, both tones link to vel, which surfaces with a rising tone, as shown in (5a). When the suffix ani is added, then the tones are linked to the syllables one-to-one, from left to right. Finally, the last tone H spreads to the excess vowel [i], as shown in (5b).

The same analysis applies to more complicated cases, where tone spreading interacts with vowel reduction. In Margi, [i] changes to a glide [y] before [a] and ceases to be a tone bearer, as in

The morpheme fi has a rising tone in isolation. When the toneless suffix ani is added, [i] in fi becomes [y]. At the same time, the rising tone of fi appears as L and H on ani. The derivation can be accounted for if we assume that the Mapping Rules apply after [i]→[y], as shown below

As Williams argues, if the rising tones in (3a) and (6a) are an unanalyzable unit, then it is hard to account for the above patterns. Similarly, if tones do not lie

5 There is evidence that tones are associated with segments in the rime, instead of the syllable as a whole. For exposition, however, we will follow Williams in assuming that tones are associated with syllables.
on a separate tier, it is hard to explain how they can move across segments, e.g. how H from fi can move all the way to the last vowel in ani.

Autosegmental phonology has been successfully applied to many African tone languages. The Mapping Rules, however, may differ in each language. For example, in Tiv, (4c) does not apply, and excess toneless syllables will take on L as the default tone (Pulleyblank 1986). Autosegmental phonology has also been applied to Chinese languages, especially to the Wu dialect family, spoken in east China. For illustration, let us consider some data in New Shanghai, spoken by the younger generation in Shanghai City. Like many other Wu languages, New Shanghai has what may be called initial prominence, by which in a multisyllabic domain, the pitch pattern of the domain is solely determined by the tones from the initial syllable. Consider

$$\begin{array}{cccccc}
\text{small} & \text{fresh} & \text{yellow} & \text{big} & \text{fish} \\
\text{MH} & \text{HL} & \text{LH} & \text{LH} & \text{LH} \\
\end{array}$$

(8) $\text{ço} \quad \text{çi} \quad \text{wã} \quad \text{du} \quad \bar{\eta}$

(9) a. $\text{ço} + \bar{\eta} \rightarrow \text{ço} + \eta$

(10) a. $\text{ço} + \text{wã} + \bar{\eta} \rightarrow \text{ço} + \text{wã} + \eta$

According to Selkirk & Shen (1990), New Shanghai has three syllable tones, HL, MH, and LH, which surface as fall, high-rise, and low-rise

7 Since Chinese is a monosyllabic language, a syllable tone may also be considered a morpheme tone, in line with African tonology.

8 For exposition, I will follow Selkirk & Shen and omit the discussion of ‘register’ in New Shanghai.
respectively on monosyllables; some examples are shown in (8). From (9) and (10), we can make three observations. First, input tones on noninitial syllables have no effect on the output. Second, input tones from the initial syllable are taken one each by the first two syllables in the output. Third, excess syllables get L as the default tone. The above data can be derived by the following rules:

(11) New Shanghai Tone Rules:
 a. Delete tones from noninitial syllables.
 b. Associate tones to syllables one-to-one, left to right.
 c. If there are more tones, link excess tones to the last syllable.
 d. If there are more syllables, excess syllables get L as default.

(11a) reflects initial dominance in the Wu family. (11b,c), which are the same as (4a,c) in Margi, make sure that when there is just one syllable, it carries all its tones, but when there are more syllables, the initial syllable keeps just one tone and shifts the rest to others. (11d) says that, unlike (4b) in Margi, there is no automatic tone spreading to excess syllables in New Shanghai. Below we show two derivational examples:

(12) a. çö ---+ çö ---+ çö
 | | \ 'small'
 MH MH MH

 11a 11b
b. çö + wã + ŋ --> çö wã ŋ -->
 MH LH LH MH

 11d
çö wã ŋ --> çö wã ŋ
 | | | 'small yellow fish'
 M H M H L

To summarize, we have seen that there are striking similarities between African and Asian tone languages, namely, that a contour tone is made of level tones, and that tones lie on an independent tier and may spread across segments. We will now show that the above generalizations also hold for tone in Tibetan languages.

9 The phonetic values of the excess syllables are mid or low pitch, with a slight drop on the final syllable. One may suggest, as an alternative, that excess syllables remain toneless even at the surface level, along the lines of Keating (1988).
2. Tone in Tibetan Languages In this section we will apply autosegmental phonology to tone in four Tibetan languages. Before we proceed, a few comments are needed about Chao letters, a tone marking system created by Chao (1930). Chao letters are the most widely used system in Asian phonology, including most of my sources on Tibetan.

In Chao letters, a speaker’s pitch range is divided into five levels, from the highest 5 to the lowest 1.

(13) Chao Letters

<table>
<thead>
<tr>
<th>Highest Pitch</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest Pitch</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each syllable is usually given two or three letters for its tone. For example, 55 marks a high level tone, 11 a low level, 35 a mid-to-high rise, 13 a low-to-mid rise, 131 a low-mid-low rise-fall, and so on.

Chao letters have a graphic variety, which have been adopted by the International Phonetic Association (1989). In the graphic form, a tone is represented by a vertical bar, which shows the speaker’s pitch range, and a short line, which shows the pitch movement on a syllable. For example,

(14) Chao letters: 55 11 33 35 13 53

| Graphic: | | | | | |
|----------|---|---|---|---|
| | ↑ | ↓ | ↑ | ↑ |

<table>
<thead>
<tr>
<th>high level</th>
<th>low level</th>
<th>mid level</th>
<th>high level</th>
<th>low level</th>
<th>high level</th>
</tr>
</thead>
<tbody>
<tr>
<td>rise</td>
<td>rise-fall</td>
<td>fall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When one interprets Chao letters, it is crucial to keep two points in mind. First, Chao letters have a certain degree of flexibility, due partly to the relative nature of pitch height, and partly to the dubious question of whether Chao letters are a phonetic or a phonemic system.\(^{10}\) As Chao (1930) points out, a variation of one degree between two transcriptions (e.g. between 44 and 55, between 24 and 35, etc.) should not always be taken seriously. In fact, Chao himself transcribed the Mandarin (nonfinal) third tone as 11 in one analysis and 21 in another (Chao 1931, 1968).\(^{11}\) What is more, a transcriber will often modify the actual values of Chao letters for ‘visual clarity’ (especially when s/he is using the graphic

\(^{10}\) This dubious status haunts the International Phonetic Alphabet, too.

\(^{11}\) This is not due to a change in Mandarin.
variety) or for other purposes. For example, in transcribing Old Shanghai, Shen (1981: 132) says that

The real value of Yin Ping is 52; this paper marks it as 53. The real value of Yin Qu is 33 or 24; this paper marks it as 35. The real value of Yang Qu is 113 or 13; this paper marks it as 13. The real value of Yang Ru is a short tone 23, this paper marks it as 13.13

Similarly, in transcribing New Shanghai, Xu et al (1981: 145) say that

Yin Ping is 34; for visual clarity, this paper writes it as 24. Yang Ru is 12; for visual clarity, this paper writes it as 13.

And in transcribing Lhasa Tibetan, Hu (1980: 25) says that

(the high level tone) is 44. For visual clarity, it is written as 55.

The practice of modifying the actual values of Chao letters is extremely common, and often without acknowledgement.

The second point to keep in mind is that Chao letters are often used to record the phonetic pitch of a syllable, and not the phonemic nature of a tone. For example, phonemic LH will realize differently on a 'smooth' syllable (e.g. one with a sonorant coda) and a 'checked' syllable (e.g. one with a short vowel and a glottal stop coda). On the former, the pitch contour is a clear rise; on the latter the pitch may not rise as high, or the final pitch may even drop a little due to the glottal closure. Despite the fact that the two syllables may carry the same phonemic tones (which may be demonstrated by evidence from tone spreading, for example), a transcriber will normally give different Chao letters to the two syllables, for example 14 for the smooth syllable and 12 or 121 for the checked syllable. We will soon see this when we look at Tibetan tones below.

2.1. Lhasa Tibetan (LS)14 It has been debated whether LS has two, four, or six syllable tones. Sprigg (1981), among others, suggest that LS has two syllable tones (or word tones), which we may call high and low (not to be confused with the tone features H and L, as we will explain below). Qu & Tan (1983) suggest that there are two kinds of high tones and two kind of low tones, depending on the length of the syllable. Thus, Qu & Tan propose four syllable tones, A, B, C, and D

12 Old Shanghai is spoken by the older generation in Shanghai City and by people of all ages in some suburbs of Shanghai.

13 Yin Ping, Yin Qu, etc., are traditional names of the tones.

14 The variety of Lhasa Tibetan in my sources (Hu 1980, Hu et al 1982, Qu 1981, Qu & Tan 1983) is based on speakers from Lhasa City in late 1970s. It may differ in places from other varieties, such as the one described in Chang & Shefts (1964).
As is shown, A and B are in complementary distribution, so are C and D. A and B are high tones, and C and D are low tones. In addition, A and C occur on short syllables, while B and D occur on long syllables.

Based on an instrumental study, Hu et al (1982) further distinguish two kinds of short syllables and thus propose six syllable tones

\[
\begin{array}{ccc}
\text{High} & \text{Low} \\
\text{-VN} & 55 & 13 \\
\text{-VP} & 52 & 121 \\
\text{-V} & 54 & 12 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{ka:55} & \text{ka?52} & \text{ka53} & \text{ka:13} & \text{ka?121} & \text{ka12} \\
\text{column} & \text{prevent} & \text{order} & \text{install} & \text{clog} & \text{saddle} \\
\end{array}
\]

[-VN] represents a long syllable, whose rime either is a long vowel, or a short vowel followed by a sonorant segment. Both [-VP] and [-V] are short syllables. [-VP] represents a rime with a short vowel and a stop coda, including a glottal stop. [-V] represents an open rime with a short vowel. Again, [-VN], [-VP], and [-V] are in complementary distribution.

From a phonemic point of view, however, one would like to reduce the underlying syllable tones, as Sprigg points out. The question is how. In particular, we want to support the reduction with phonetic and phonological justifications. Comparing the system of Qu & Tan with that of Hu et al, we notice several differences. Some differences need not worry us. For example, the long low tone is 14 in the former and 13 in the latter, but this is within the intrinsic flexibility of Chao letters. Other differences need explanations. For example, [-VP] low is a rise-fall in (16), but this pattern is not found in (15). Let us look at those differences in detail.

Consider [-VP] first. Phonetically, a glottal coda is marked by a sharp drop in pitch, due probably to the sudden closure of the glottis and so reducing the vocal cord vibration to zero (cf. Zee & Maddieson 1979: 99-100). In addition, in Chinese languages, stop codas are glottalized. The same is probably true in LS (cf. Hu et al, pp28-30). Phonetically Hu et al correctly recorded this glottal drop. But phonemically one would want to exclude it from the underlying
representation. This is probably why Qu & Tan have merged [-VP] 121 and [-V] 12 to give C 12. Similarly, if we discount the glottal drop on [-VP] 52, we would merge it with [-V] 54 to give A 54. But why do Qu & Tan mark A as 53 instead of 54? Qu & Tan give no explanation in their book. However, Tan, a co-author, points out in another paper that 'the experimental value (of A) in Lhasa Tibetan is 43 or 54..., for convenience and visual clarity, it is usually marked as 53' (Tan 1987: 25).

Let us now look at [-V]. Since this is a short syllable, it is natural that in the Low column, it does not rise all the way to 3 or 4, but stops short at 2. Now in the High column, why does [-V] not hold steady as 55, but tilt down a little? The reason, I suggest, is again phonetic. From the data of Hu et al, we can see that the vowel on a checked syllable (e.g. [kaʔ] 'to prevent') is about 100ms, and that on a smooth syllable (e.g. [ka:] 'pillar') is about 300ms, both being considerably longer than in normal speech. This suggests that the sample syllables must have be spoken either in isolation, or in an environment where the surrounding syllables are unstressed (Hu et al do not describe the environment in which the syllables were spoken). In either case, we may expect a drop in the final pitch, due to the domain final intonation, perhaps. This in fact seems to be the case. Compare the following schematic pitch contours of high [-V:] and [-V] syllables (adapted from Hu et al, p35)

(17) Pitch Contours on Isolated High Syllables

On both syllables, the final pitch is lowered. On [CV:], this lowering does not affect overall level contour, but on [CV] the lowering does make contour look like a fall. That is perhaps why Hu et al writes 55 for the former and 54 for the latter.15

The above considerations suggest that there are just two underlying syllable tones, a high level H, which includes A and B of Qu & Tan, and a rise LH, which includes C and D of Qu & Tan. We will see immediately that this view is justified in multisyllabic patterns.

Consider bisyllabic phrases first. According to Qu & Tan (p35), there are sixteen combinations (cf. also Hu 1980, Qu 1981)

15 On the high syllables [ka:m] 'do' and [pa:r] 'picture', the pitch contours do not show a final drop (Hu et al p35). This is probably because Hu et al have not included the pitch contour on the sonorant coda, since they consider tone to be the the pitch contour 'on the vowel' (p20, p25).
10

Bisyllabic Patterns in LS

1. AA: 53 53 --> 55 53 çuʔ pa 'cypress'
2. AC: 53 12 --> 55 53 na ma 'bride'
3. AB: 53 55 --> 55 55 tç'u çel 'crystal'
4. AD: 53 14 --> 55 55 ha jaŋ 'aluminum'
5. CA: 12 53 --> 11 53 taʔ po 'master'
6. CC: 12 12 --> 11 53 to ro 'pile of rocks'
7. CB: 12 55 --> 11 14 me por 'fire pan'
8. CD: 12 14 --> 11 14 tça ril 'bowl shaped tea brick'
9. BA: 55 53 --> 55 53 k'aŋ pa 'house'
10. BC: 55 12 --> 55 53 laŋŋa 'earthenware pot'
11. BB: 55 55 --> 55 55 sam tçar 'opinion'
12. BD: 55 14 --> 55 55 çiŋ toŋ 'tree'
13. DA: 14 53 --> 11 53 sam pa 'bridge'
14. DC: 14 12 --> 11 53 tuŋ ma 'roof beam'
15. DB: 14 55 --> 11 14 ŋal tsø 'labor'
16. DD: 14 14 --> 11 14 ŋam ŋuŋ 'experience'

It can be seen that, if we consider 53 as a variant of 55, and 12 as a variant of 14, conditioned by the phonetic effects we discussed above, then there are just three patterns, [55 55], [11 55], and [11 14]. [55 55] occurs when the first syllable is 55 (or 53). [11 55] occurs when the first syllable is 14 (or 12) and the second syllable is short. [11 14] occurs when the first syllable is 14 (or 12) and the second syllable is long.

There is a question, however. Why is H on a short syllable 53 in final positions but 55 in nonfinal positions? The answer, I suggest, is twofold. First, as we mentioned above, on final [-V] 53 syllables, the slight pitch drop is due to the domain final effect; this effect is absent on nonfinal syllables. Second, on final [-VP] 52 syllables, the pitch drop is due to the glottal coda. If the glottal coda is deleted, the pitch dropping effect will also be lost. In Chinese languages, [ʔ] coda is deleted in nonfinal positions (Chao 1928, Xu et al 1981), and its pitch dropping effect is lost. Although in the transcriptions of Qu & Tan, it is not shown whether Tibetan [ʔ] coda is deleted in nonfinal positions, Hu (1980, p36) points out that this is indeed the case.

Nearly all Tibetan expressions we cite are made of (strings of) monosyllabic morphemes (L. Gomez personal communication, 1991). For example, in [çuʔ pa] 'cypress', [çuʔ] is the root and [pa] is the nominal suffix. For simplicity I follow Qu & Tan and only give a single gloss to each expression. In addition, Qu & Tan write all vowels before a sonorant coda as long, but Qu (1981) does not. I follow Qu and omit the length marking in [-VN] syllables.

16 Nearly all Tibetan expressions we cite are made of (strings of) monosyllabic morphemes (L. Gomez personal communication, 1991). For example, in [çuʔ pa] 'cypress', [çuʔ] is the root and [pa] is the nominal suffix. For simplicity I follow Qu & Tan and only give a single gloss to each expression. In addition, Qu & Tan write all vowels before a sonorant coda as long, but Qu (1981) does not. I follow Qu and omit the length marking in [-VN] syllables.
Given the above considerations, we are able to analyze LS tone in the same way we analyzed Margi and New Shanghai. Below are the rules and some derivations:

(19) LS Tone Rules:
 a. Delete tones from noninitial syllables.
 b. Associate tone to syllables one-to-one, left to right.
 c. If there are more syllables, spread the last tone to excess syllables.
 d. If there are more tones, link excess tones to the last syllable.
 e. If a L precedes a final long syllable with a H, spread L to the latter:

(20) Underlying tones:

<table>
<thead>
<tr>
<th>H</th>
<th>LH</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>13 (or 14) -VN</td>
</tr>
<tr>
<td>52</td>
<td>121 -VP</td>
</tr>
<tr>
<td>54</td>
<td>12 -V</td>
</tr>
</tbody>
</table>

(21) Underlying Realizations:

<table>
<thead>
<tr>
<th>ka:</th>
<th>ka:</th>
<th>ka:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>LH</td>
<td>LH</td>
</tr>
</tbody>
</table>

(22) Derivations:

a. \(= (AC)\):

<table>
<thead>
<tr>
<th>na ma</th>
<th>na ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>LH</td>
</tr>
</tbody>
</table>

b. \(= (CA)\)

<table>
<thead>
<tr>
<th>ta? po</th>
<th>ta? po</th>
<th>ta?11 po53</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>H</td>
<td>LH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>me por</th>
<th>me por</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>H</td>
</tr>
</tbody>
</table>
The rule (19a) is similar to initial prominence in New Shanghai. (19b,c,d) were seen in Margi. (19e) is also found in some African languages (cf. Hyman & Schuh 1974).

Let us now consider trisyllabic expressions. Qu & Tan (1983, p36-37) and Qu (1981, p24) give the following patterns:

\[
\begin{array}{ccc}
\text{Initial} & \text{Pattern} & \text{Last Syllable} \\
A: & 53 X X \rightarrow a. 55 55 53 & \text{short} \\
& b. 55 55 55 & \text{long} \\
B: & 55 X X \rightarrow a. 55 55 53 & \text{short} \\
& b. 55 55 55 & \text{long} \\
C: & 12 X X \rightarrow a. 11 55 53 & \text{short} \\
& b. 11 55 55 & \text{long} \\
D: & 14 X X \rightarrow a. 11 55 53 & \text{short} \\
& b. 11 55 55 & \text{long} \\
\end{array}
\]

\((X=\text{any syllable})\)

Again, if we discount the variation between 53 and 55 (which are short and long respectively on the last syllable), then there are just two patterns, [H H H] and [L H H]. Both patterns follow from our previous rules. Below we show the derivations of (24A, D)\(^{17}\):

\[
\begin{align*}
19a & \quad 19b, c \\
(24) & \quad a. \quad \text{tç'e ma lep} \rightarrow \text{tç'e ma lep} \rightarrow \text{tç'e55 ma55 lep53} & \text{moth'} \\
& \quad H \ LH \ LH \ H \ H \\
19a & \quad 19b, c \\
& \quad b. \quad \text{kã ma tça} \rightarrow \text{kã ma tça} \rightarrow \text{kã11 ma55 tça55} & \text{sleet'} \\
& \quad LH \ LH \ LH \ LH \ L \ H \\
\end{align*}
\]

To summarize, LS has two underlying syllable tones, H and LH. Tonal patterns in multisyllabic phrases are derived by first deleting tones from

\(^{17}\) In the expression for 'moth', Qu (1981, p24) marks the output tone on [lep] as 55. I consider this to be a typographical error, since [lep] is a short syllable and should be 53 in Qu's analysis.
noninitial syllables, and then linking and spreading the tone(s) from the initial syllable to the entire domain.

2.2. Gar Tibetan (GR) According to Qu & Tan (p33-35), GR has the same four syllable tones A, B, C, and D as LS

(25) A B C D
 53 55 12 14
 pa53 pa:55 pa12 pa:14
ape to light tent neck tumor

In addition, bisyllabic patterns in GR are very close to those in LS, except in four places indicated by bold face below

(26) Bisyllabic Patterns in GR

1. AA: 53 53 --> 55 53 çu? pa 'cypress'
2. AC: 53 12 --> 55 53 na ma 'bride'
3. AB: 53 55 --> 55 55 tç’u çel 'crystal'
4. AD: 53 14 --> 55 55 ha jaŋ 'aluminum'
5. CA: 12 53 --> 11 53 ta? po 'master'
6. CC: 12 12 --> 11 53 ntso mo 'female pien niu'\(^{18}\)
7. CB: 12 55 --> 11 55 me por 'fire pan'
8. CD: 12 14 --> 11 55 tça ril 'round tea brick'
9. BA: 55 53 --> 55 53 k’aŋ pa 'house'
10. BC: 55 12 --> 55 53 laŋ ŋa 'earthenware pot'
11. BB: 55 55 --> 55 55 sam tçar 'opinion'
12. BD: 55 14 --> 55 55 çiŋ ñø 'tree'
13. DA: 14 53 --> 11 53 sam pa 'bridge'
14. DC: 14 12 --> 11 53 tuŋ ma 'roof beam'
15. DB: 14 55 --> 11 55 ŋal tsø 'labor'
16. DD: 14 14 --> 11 55 ŋam ŋuŋ 'experience'

While in LS the last syllables in CB, CD, DB, and DD surface as 14, those in GR surface as 55. In our analysis, the reason is simple: GR simply lacks the rule (19e). Below are GR tone rules, and the derivation of (26.7) CB (cf. CB of LS in (18.7), (22c))

\(^{18}\) A pien niu is an offspring of a bull and a female yak.
GR Tone Rules:
 a. Delete tones from noninitial syllables.
 b. Associate tone to syllables one-to-one, left to right.
 c. If there are more syllables, spread the last tone to excess syllables.
 d. If there are more tones, link excess tones to the last syllable.

\[
\begin{array}{c|c|c|c|c|c|c}
27a & 27b & 28 & 29 & 30 & 31 \\
\hline
\text{me por} & \text{me por} & \text{me11 por55} & \text{fire pan}' & \text{GZ Bisyllabic Patterns:} & \text{GZ Syllable tones:} \\
\text{LH} & \text{H} & | & | & \text{A B C D} & \text{H H LH LH} \\
\end{array}
\]

Trisyllabic patterns in GR are exactly the same as in LS. No new rules are needed to account for them, and so we will omit the derivations. In addition, of the eight Tibetan languages Qu & Tan surveyed, five others, Ritu, Zhada, Geje, and Cuoqin, resemble Gar in monosyllabic, bisyllabic, and trisyllabic patterns. This may be taken as evidence that languages tend to adopt simpler rule systems, a tendency that is reflected in our analysis.

2.3. Gêrzê (GZ)
GZ also has four citation tones, corresponding to A, B, C, and D in LS and GR. In addition, bisyllabic and trisyllabic patterns in GZ resemble those of GR (Qu & Tan p36). If we again discount the variation between 53 and 55 on the final syllable, GZ has the following patterns:

\[
\begin{array}{c|c|c|c|c|c|c}
29 & 30 & 31 & \\
\hline
\text{GZ Bisyllabic Patterns:} & \text{GZ Trisyllabic Patterns:} & \\
\text{a. A X } & \text{a. A X X} & \text{A B C D} & \text{H H LH LH} \\
\text{b. B X } & \text{b. B X X} & H H H & \\
\text{c. C X } & \text{c. C X X} & L H H & \text{H H H} \\
\text{d. D X } & \text{d. D X X} & L H H & \text{H H H} \\
\end{array}
\]

As can be seen, like in LS and GZ, noninitial syllables in GZ have no effect on the output. In other words, output tones must have come entirely from the initial syllable. We will therefore give the same analysis to GZ as we did to LS and GR.
(32) GZ Multisyllabic Tone Rules:
 a. Delete tones from noninitial syllables.
 b. Associate tone to syllables one-to-one, left to right.
 c. If there are more syllables, spread the last tone to excess syllables.

(33) GR Trisyllabic derivations (... = any tone):

\[
\begin{align*}
32a & \quad 32b & \quad 32c \\
| & \quad | & \quad | \\
H & \quad H & \quad H \\
\end{align*}
\]

\[
\begin{align*}
32a & \quad 32b & \quad 32c \\
| & \quad | & \quad | \\
LH & \quad LH & \quad LH \\
\end{align*}
\]

However, this analysis has a problem with syllable tones. If GZ has the same syllable tones as LS and GR, namely, A=H, B=H, C=LH, and D=LH, then we expect GZ syllable tones to have the same pitch values as those in LS and GR, namely, A=53, B=55, C=12, D=14. But this is not the case. Compare the predicted syllable tones with the actual pitch values in GZ (Qu & Tan p33, p35)

(34)

<table>
<thead>
<tr>
<th>Syllable Tones:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted:</td>
<td>H</td>
<td>H</td>
<td>LH</td>
<td>LH</td>
</tr>
<tr>
<td>Actual:</td>
<td>53</td>
<td>51</td>
<td>31</td>
<td>22</td>
</tr>
</tbody>
</table>

While the actual values in LS and GR agree with the prediction, those in GZ do not. Specifically, C and D are predicted to be a rise (LH), but they turn out to be low fall and a low level. In addition, B is predicted to be H, but it turns out to be a fall. How, then, can we relate the predicted tones with the actual values?

It can be seen that all GZ syllable tones end in L (with the possible exception of A 53, which is too short to tell). I suggest, therefore, that in GZ, a L is added to the end of the syllable when it is in isolation, and that the H in C and D stay unlinked (shown in parentheses below)

(35) GZ Syllable Tones:

<table>
<thead>
<tr>
<th>Underlying:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>HL</td>
<td>LH</td>
<td>LH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-insertion:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>HL</td>
<td>L(H)L</td>
<td>L(H)L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual:</th>
<th>53</th>
<th>51</th>
<th>31</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
<td>long</td>
<td>short</td>
<td>long</td>
<td></td>
</tr>
</tbody>
</table>
The exact way to insert L, and not linking H to C and D will be discussed shortly. Let us now see what effects our proposal has. First, L-insertion makes both A and B a fall, which, in view of the shortness of A, agrees with the actual values. Second, without linking to H, both C and D will be L (or LL). The value of D 22 nearly agrees with our expectation. But what about the value of C 31? Here again we have to consider phonetic effects and the nature of Chao letters. Recall that C is a short syllable with a glottal or glottalized coda. Recall also that a glottal coda sharply drops the final pitch. Below is a schematic representation of how L may be realized on different syllables

(36) Realizations of L on different syllables

In a language where L only falls on [-VN] syllables, the point X will be the lowest and marked 11 in Chao letters. In a language where L falls on both [-VN] and [-Vʔ] syllables, the points Y is the lowest and will be marked 11, while the point X will be marked 22 or 33. This, I suggest, is what happens to Qu & Tan's analysis of GZ, where L on [-VN] is marked 22 and L on [-VP] marked 31. If we use Chao letters phonemically, however, we would disregard the point Y and transcribe both [-VN] and [-Vʔ] as 11.

From the above considerations, I suggest the following analysis of GZ

(37) GZ Syllable Tones: A B C D
 H H LH LH

(38) GZ Tone Rules:
 a. Delete tones from noninitial syllables.
 b. Associate tones to syllables one-to-one, left to right.
 c. If there are more syllables, spread last tone to excess syllables.
 d. On a monosyllable, add L to the right.

We have already shown two derivations on trisyllabic syllables. Below we show derivations of monosyllabic B and C
The fact that H remains unlinked in [tar] 'popular' may be that GZ allows at most two tones on a syllable. In a footnote, Qu & Tan note that GZ B 51 may alternate with 55, and C 31 may alternate with 12. It is not clear, however, whether D 22 alternates with 14 in GZ. If so, then L-insertion in GZ is optional; when L-insertion does not apply, GZ syllable tones are exactly like those in LS and GR.

Multisyllabic phrases are derived in the same way as in previous Tibetan languages. Below we show the derivations of BD and CB patterns.

[Footnote 19] If there is no restriction on two tones per long syllable, then after the final L-insertion, D would surface as a rise-fall LHL. I guess this is the case in the speech of Mr. Nawang Nornang, described in Chang & Shefts (1964), where, domain finally, B may appear as what Chang & Shefts call 'high-falling' (which we call HL), and D may appear as what Chang & Shefts call 'low-falling' (which we call LHL). In fact, L-insertion is a fairly general phenomenon. In New Shanghai, for example, [ho] 'good' is MH, but under emphasis, it can become MHL.
In the output of (41b), L from the first syllable does not spread to the second syllable, even though the second syllable is long. In this respect, GZ is like GR and unlike LS (cf. the CB pattern in LS and GR).

2.4. Zedang (ZD) ZD has the same four syllable tones as LS and GR, namely, A=53, B=55, C=12, and D=14 (Qu 1981: 25).

Following our analysis of LS and GR, we assume that ZD has the same underlying syllable tones

According to Qu (1981: 25), bisyllabic patterns in ZD 'are basically the same as in LS', with a few peculiarities which we will not go into. In trisyllabic patterns, ZD shows an interesting difference. Compare the schematic representations of ZD with LS and GR below (omitting the variation between 53 and 55 on the final syllable)

While in LS and GR, [C X X] and [D X X] are [11 55 55], in ZD they are [11 11 55]. In other words, the H from the initial syllable is shifted to the final syllable, instead of the second. We will account for this difference by proposing the following rules for ZD
ZD Tone Rules:

a. Delete tones from noninitial syllables.

b. Associate the first tone to the first syllable, and the last tone to the last syllable.

c. If there are free syllables in between, spread the first tone to them.

The rule (45a) is the same as in the previous languages. Although (45c) looks new, it is essentially the same as the spreading rule in Margi, LS, GR, and GZ in that there is rightward spreading to toneless syllables. (45b) is like what Yip (1988) calls 'edge-in' association, which, as she suggests, has considerable generality. An example of (45b) is seen in New Shanghai below

a. \(\text{ba? ço? koŋ tsz} \rightarrow \text{ba? ço? koŋ tsz} \)

\[
\begin{array}{cccccc}
\text{LH} & \text{MH} & \text{HL} & \text{MH} & \text{LH} \\
\text{ba? ço? koŋ tsz} \rightarrow & \text{ba? ço? koŋ tsz} \\
| & | & | & | \\
\text{L} & \text{H} & \text{L} & \text{H} & \text{L} & \text{L} \\
\end{array}
\]

b. \(\text{ba? ço? koŋ tsz} \rightarrow \text{ba? ço? koŋ tsz} \)

\[
\begin{array}{cccccc}
\text{LH} & \text{MH} & \text{HL} & \text{MH} & \text{LH} \\
\text{ba? ço? koŋ tsz} \rightarrow & \text{ba? ço? koŋ tsz} \\
| & | & | & | \\
\text{L} & \text{H} & \text{L} & \text{H} \\
\end{array}
\]

'Snow White' (Lit.: white snow princess)

The expression for 'Snow white' has two patterns (which freely alternate), [L H L L] or [L L L H] (Xu et al 1983). The first can be derived by left to right association (followed by default L insertion, cf (11)). The second pattern, however, must be derived by edge-in association (followed either by spreading or by L insertion, which we will leave open). This alternation happens only with expressions that begin with a [CV?] syllable that is underlyingly LH. Whatever the reason for [CV?] with LH to trigger edge-in association, it seems that edge-in association must available as an alternative to left to right association.\(^{20}\)

Below we give the derivations of some ZD expressions

\(^{20}\) One may suggest other alternatives to edge-in association, such as right to left association. The point here is that there must be more than one way of association available.
The results of (47a,b) are the same as what we would get in LS, GR and GZ, even though we have applied edge-in association. The result of (47c) shows the real effect of edge-in association, which gives the characteristic color of ZD 'accent'.

2.5. Summary In our analysis of LS, GR, GZ, and ZD above, we have shown that tonal variations among mono- and multisyllabic expressions, and among different Tibetan languages, can be explained by assuming that all tones are made of level tones. In addition, the relation between tones and syllables are regulated by general rules. Moreover, we have seen that Tibetan languages share tonal similarities with other tone languages, such as Margi and New Shanghai.

3. The Non-autosegmental Approach Let us now compare our analysis with the non-autosegmental approach. For exposition, we will focus on Qu & Tan's analysis of LS.
Qu & Tan's approach represents a long tradition in Asian phonology. In this tradition, tone is viewed as a property of the syllable. Given a tone language, one first determines how many syllable tones there are by looking at syllables in isolation. Then one looks at multisyllabic expressions and see if each syllable maintains its syllable tones. If not, then one considers there to be 'tone sandhi'. To describe 'tone sandhi', one enumerates all possible combinations of syllable tones in bisyllabic, trisyllabic, and longer expressions, and see which syllable tone changes to which other tone in which environment. Finally, one gives a set of 'sandhi rules' that list such changes.

Below we repeat Qu & Tan's analysis of LS syllable tones and the exhaustive bisyllabic patterns, together with their 'sandhi rules'

(48) LS Syllable Tones

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>55</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

(49) LS Bisyllabic Patterns

1. AA: 53 53 --> 55 53 çuʔ pa 'cypress'
2. AC: 53 12 --> 55 53 na ma 'bride'
3. AB: 53 55 --> 55 55 tç'u çel 'crystal'
4. AD: 53 14 --> 55 55 ha jaŋ 'aluminum'
5. CA: 12 53 --> 11 53 taʔ po 'master'
6. CC: 12 12 --> 11 53 to ro 'pile of rocks'
7. CB: 12 55 --> 11 14 me por 'fire pan'
8. CD: 12 14 --> 11 14 tç'a ril 'round tea brick'
9. BA: 55 53 --> 55 53 k'aŋ pa 'house'
10. BC: 55 12 --> 55 53 laŋ ŋa 'earthenware pot'
11. BB: 55 55 --> 55 55 sam tçar 'opinion'
12. BD: 55 14 --> 55 55 çiŋ toŋ 'tree'
13. DA: 14 53 --> 11 53 sam pa 'bridge'
14. DC: 14 12 --> 11 53 tuŋ ma 'roof beam'
15. DB: 14 55 --> 11 14 ñal tsø 'labor'
16. DD: 14 14 --> 11 14 ñam ŋuŋ 'experience'

21 Xiong (1984) nicely summarizes the essential steps of this approach.
LS Bisyllabic Sandhi Rules (Qu & Tan, p35):

a. 53 (A) changes to 55 on the first syllable, and does not change on the second syllable.
b. 55 (B) does not change on the initial syllable. On the final syllable, 55 does not change after 55 and 53, and changes to 14 after 12 and 14.
c. 12 (C) changes to 11 on the first syllable, and to 53 on the second.
d. 14 (D) changes to 11 on the first syllable. On the second syllable, 14 does not change after 12 and 14, and changes to 55 after 53 and 55.

There are important differences between Qu & Tan's analysis and ours. For example, in our analysis, all noninitial syllables lose their underlying tones; their surface tones come from the initial syllable. Thus, in both DA and DC, the surface H of the second syllable comes from the first syllable. In contrast, in Qu & Tan's analysis, the surface 53 on the second syllable of DA does not come from the first syllable, but is its original tone, since according to their (50a), '53 (A) does not change on the second syllable'. Similarly, the surface 53 on the second syllable of DC does not come from the first syllable; instead, C directly changes into 53 on the second syllable by the rule (50c).

Although Qu & Tan's sandhi rules can derive the correct results, they offer no insight into why LS tone should behave the way it does. For example, there is no explanation why 55 can change to 14 on the second syllable, but not on the first. Similarly, we do not understand why sometimes there is no change, such as in BA, sometimes the first syllable changes, such as in DA, sometimes the second syllable changes, such as in BD, and sometimes both syllables change, such as in DB. In other words, in Qu & Tan's sandhi rules, there is no constraint at all.

Qu & Tan's analysis also makes wrong predictions. For example, if any syllable tone can change to any other, we can imagine the following possibility for a language with the same four syllable tones as LS

(51) a. 53 changes to 11 on the first syllable.
b. 55 changes to 51 on the first syllable.
c. 12 changes to 11 on the first syllable.
d. 14 changes to 51 on the first syllable.

This alternative says that, in initial positions, short syllables change to 11, and long syllables change to 51. On the second syllable, no change takes place. This process is simpler than that in LS, and one would expect it to occur in some languages, had tone sandhi been a process of free tone change. However, no such language is reported. In our view, (51) is impossible. In particular, if the high tone 53 should change to L, as in (51a), then 55 should change to L, too, and not to 51. Similarly, since 12 and 14 are both LH, they should change in the same way.
Let us now consider trisyllabic patterns. Recall that in our analysis, trisyllabic patterns follow from the same rules as bisyllabic patterns (cf. section 2.1. above). In contrast, in the traditional analysis, two new rules have to be added:

(52) LS Trisyllabic Sandhi Rules (Qu & Tan, p36-7; Qu, p24)

a. The first and the third syllables change according to bisyllabic rules, except that when the first syllable is 12 or 14, and when the third is 55, the latter does not change to 14.

b. All tones on the second syllable change to 55.

Again, these rules tell us nothing about why the changes should be as such. In addition, one hardly sees any relation between bisyllabic and trisyllabic patterns.22

In sum, the non-autosegmental analysis offers no insight to why Tibetan tone behaves the way it does. In addition, the non-autosegmental analysis predicts possible sandhi patterns that are never found. Moreover, an autosegmental analysis brings out significant generalities among tones in Tibetan, Chinese, and African languages, whereas a non-autosegmental approach completely miss them.

4. Conclusions Our analysis of the Tibetan tone sandhi shows that autosegmental phonology not only can be applied to Tibetan but is also superior to the non-autosegmental approach. The latter offers little insight into the behavior of tone, makes wrong predictions, and reveals no generality between Tibetan and other tone languages. In contrast, the autosegmental approach brings out important similarities among Tibetan, Chinese, and African tone languages, namely, contour tones are made of level tones, and that tones may move across segments in a rule governed way.

Our analysis also shows that languages may have different ‘mapping rules’ (or association conventions). Consider the ‘mapping rules’ below, rephrased from Williams (1971/6)

22 The same might be said to Sprigg’s (1981) analysis of Lhasa Tibetan. Sprigg proposes two syllable tones, tone1 (corresponding to the high tones A and B) and tone2 (corresponding to the low tones C and D). In a multisyllabic expressions (without emphatic words), the tonal output is derived by switching noninitial tone2 to tone1 (pp57-58). For example, in a trisyllabic [T1 T2 T1], we apply [T2]→[T1] to get [T1 T1 T1]. It is unexplained why initial tones do not switch, nor why noninitial T1 does not switch. For Sprigg, it should be possible to find a process (in a language like Lhasa) where, in a trisyllabic domain (without emphatic words), noninitial T1 switches to T2, and noninitial T2 switches to T1, so that we get [T1 T1 T2]→[T1 T2 T1]. For us, such a process is not possible under initial dominance.
(53) a. Associate tones to syllables one-to-one
b. left to right
c. If there are more syllables, spread the last tone to excess syllables
d. If there are more tones, link excess tones to the last syllable.

We have seen that New Shanghai and Zedang Tibetan (ZD) do not always follow (53b); instead, they seem to show edge-in association in some cases. Similarly, New Shanghai does not follow (53c); instead, excess syllables get L as default (or possibly remain toneless throughout). Finally, we saw that in Gêrzê Tibetan (GZ), an underlying H may remain unlinked in C and D syllables, so that (53d) is not observed.

Our analysis of Tibetan is preliminary, and several issues remain untouched. First, we said nothing about what the tone bearing unit is (e.g. syllable, rime, or the nuclear segment in the rime). Second, we said nothing about how a tonal domain is determined. For example, some trisyllabic expressions form one domain, such as [ko ko ja2] 'cross-bred ox', while others form two domains, such as [tçeå | ka ra] 'sugar' and [sa tsa | npu] 'centipede' (Qu & Tan 36-37, vertical bar indicating domain break). Third, there are certain 'weak' syllables that do not have tone in isolation, nor do they receive tone from other syllables (Qu & Tan, 33-34), and this remains to be explained. Finally, Sprigg (1981: 57) notes that an emphatic stress may change the tonal pattern of the following syllables, and we have not looked at such cases. Nevertheless, since these issues are separate from our present topic, namely, how tones move in a given domain, I will leave them for further studies.23

REFERENCES:

Chao, Yuen-ren. 1928. Xiandai Wuyu Yanju (Studies in the Modern Wu-dialects), Peking: Tsing Hua University.

23 The fact that tone rules are sensitive to syllabic weight (e.g. 'weak' syllables do not carry nor attract tones, and long syllables may trigger L spreading in LS) and that emphatic stress may alter tonal patterns, strongly suggests an interaction between tonology and metrical phonology. Cf. Meredith (1990) for a metrical approach to Tibetan tone, which differs from the present proposal in a few ways. Cf. Duanmu (1991b, c) for a discussion of the relation between metrical structures and tonal domains.
Duanmu, San. 1991a. 'A featural analysis of some onset-vowel interactions',
Proceedings of the First Annual Conference of Southeast Asian Linguistic Society, Wayne State University, Detroit.
---. 1991b. 'Stress and syntax-phonology mismatches', paper presented at the
Tenth West Coast Conference on Formal Linguistics, March 1-3, Tempe.
---. 1991c. 'Stress and tonal domains in Danyang', paper presented at the Third
Hu, Tan. 1980. "Zangyu (Lhasa hua) de shengdiao yanjiu" ("A study of the
Tibetan (Lhasa) tone"), Minzu Yuwen, 1:22-36.
Hu, Tan, Aitang Qu, & Lianghe Lin. 1982. 'Zangyu (Lasa hua) shengdiao shiyan'
Consonant Types and Tone, Southern California Occasional Papers in
Linguistics 1.
Qu, Aitang. 1981. "Zangyu de biandiao" ("Tibetan tone sandhi"), Minzu Yuwen
81.4:20-26.
kexue yan chubanshe (Chinese Academy of Social Sciences Press), Peking.
Selkirk, E. & T. Shen. 1990. 'Prosodic domains in Shanghai Chinese', in S.
Inkeles & D. Zec (eds.) The Phonology-Syntax Connection, CSLI
monograph.
Shen, T. 1981. 'Lao pai Shanghai fang yan de lian du bian diao' (Tone sandhi
in Old Shanghai), Fangyan, 1981:2 pp131-144.
Sprigg, R. K. 1981. 'The Chang-Shefts tonal analysis, and the pitch variation of
Tan, Keran. 1987. "Xiarba zangyu de shengdiao xitong" ("Tonology of Xiarba
Tibetan"), Minzu Yuwen 87.2:22-28.
Williams, E.S. 1971/6. 'Underlying tone in Margi and Igbo', Linguistic Inquiry
7.3: 436-468.
Xiong, Zhenghui. 1984. 'Zhengyan qiu chu liang zi zu de lian du bian diao gui lu'
(How to find out the rules for bisyllabic tone sandhi), Fangyan 2: 102-108.
Xu, Baohua, Zhenzhu Tang & Nairong Qian. 1981. "Xing pai Shanghai fang yan
de lian du bian diao (1)" (Tone sandhi in New Shanghai (part 1)), Fangyan,
---. 1983. "Xing pai Shanghai fang yan de lian du bian diao (3)" (Tone sandhi in
---. 1988. 'Template morphology and the direction of association', Natural
Language and Linguistic Theory 6, 551-557.
evidence and phonological analysis", UCLA Working Papers in Phonetics,
March, 93-129.
Zhang, Jichuan. 1981. "Zangyu Lhasa hua shengdiao fenhua de tiaojian"
(Conditions on the tonogenesis in Lhasa Tibetan), Minzu Yuwen, 3: 14-18.