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Hysteresis Is Everywhere!

Structural Mechanics
Ferromagnetics

Smart Materials — PZTs, SMAs, electro- (or
magneto-) rheological fluid

NORMAL FORCE, Cy

Aerodynamics — dynamic stall

Mechanics — backlash, friction P
1

Biological system Hysteresis loops shown in the
Nonlinear systems with a continuum dynamic stall on NACAO0012 airfoil
of semistable equilibria (image from Carr, et. al, 1977)
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Nickel titanium stress/strain Hysteresis loops shown in the

(courtesy John Shaw) motor/linkage experiment



What causes
this butterfly
hysteresis??
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Fig 2. Butterfly loop cortesponding to the hysteresis loop in Fig. 1.

chosen such that dy £y /e, =021, selected to produce a shape comparable to experimental loops
[1,30]. The origin is the starting point since the material is initially unpolarized. This also means
that the material is not initally piesoelectric, as can be seen from Eq. (43). Thus no strain develops
at first when the electric field is incressed. However, polarization commences at £ = £, and
therefore the remanent strain grows quadratically with the polarization and piezoslectnic strain
appears and grows as well, The curve rises stesply at first because thers is a rapid inoeass in
polarization strain. However, lock up sets in and the slope of the curve diminishes, After the
maximum field is reached and the then reduced, switching ceases and the response is at first purely
linearly piezoslectric with the strain given by Eq. (43) with both & and P non-zero and fined.
Therefore, the response to small ectric fields at this stage is pieroslectric with a positive slope, As
the field continues to be reduced, switching rec at £ = =0.5F and since the remanent
polarization % now diminishing, the remanent stram falls, Simultaneously, the pisroelectric effect
is degraded and when the electric field reaches =& and the remanent polarization is zero, the
strain has reached zero as well, However, as the field is reduced below —Ep a negative ramanent
polarization develops and the remanent and pieroslectric strains are rebuill. Lock up now occurs
as the electric field is brought towards —1 .58y, Afier this value is reached, the electric fisld is




Positive and Negative Aspects

* Positive Effects NTC
— Used as controller element for relay Room Temperature

on/

systems (logic hysteresis) Dial

off
+ A P AC

— Can model input frequency-independent  set Temperature

energy dissipation of structural damping Logic hysteresis in thermostat

— Gives analysis tool for biosystems (cell (image from von Altrock, 1996)
signaling) ’ Bl savi_
o Negative effects : ;E: it ! |
— Degrades precision motion control e

— May drive system to limit-cycle instability Cell signaling model and

hysteresis analysis map
(image from Angeli, et. al, 2004)



Some Basic Questions

 What is “hysteresis™?
— Textbooks: “a system with memory” (vague)
— “Peculiar property” (not helpful)

 What causes hysteresis?
— Some hints in the literature (such as bifurcation)

 We need some examples...



Example 1: Linear System
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mq(t) + ¢(t) + k(q(t) —r(t)) =0
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Input-ourtput maps W/ r(t) — sinwt

- Aloop appears in the I/O map

- The loop is indicative of dynamics—a Lissajous figure

- But the loop vanishes at low frequency




Example 2: Time Delay

» Hysteresis (vorepéovo ): lag in arrival®
« Consider static delay

o(t) = u(t —7) T
« The loop vanishes at B
IOW frequency -1 -0.5 S 0.5 1 -1 -0.5 (j 0.5 1
. ow=0.1 . o=10.01
% 0 x 0
s o o5 i 4 s o os

Input-output maps with «(¢) = sin(wt)
6



Example 3: Mechanical Freeplay
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Input-output maps w/ 7(t) = sinwt

- Limiting loop is classical backlash

A loop appears in the I/O map at all frequencies
Nonvanishing |/O loop at low frequency
The I/O loop depends on the input frequency




Example 4: Ferromagnetic Model

B(t) _ a|H(t)| [bH(t) B B(t)] + CH(t) ;0 e |

where B(t) : magnetic flux
H(t) : magnetic field

Input-othput maps w/ H(t) — 30 5sinwt

- Aloop appears in the I/O map
- The I/O loop does NOT depend on input frequency

- Nonvanishing I/O loop at low frequency = Hysteretic



So, What Might Hysteresis Be?

In all linear dynamical systems:

— Dynamics cause input-output loop when input
frequency w is nonzero

— But I/O loop vanishes as w — 0

In some nonlinear systems:
— 1/O loop persistsas w — 0 = quasi-DC /O loop

Hysteresis: Nonvanishing input-output loop at
asymptotically low frequency
— Inherently nonlinear effect!




Intuitively:
« Hysteresis is NOT dynamics

* Hysteresis is NOT statics

 Hysteresis is the ghostly image of the input-output

map as the frequency of excitation goes to zero

— The nontrivial “static limit” of the dynamic I/O map
— Under periodic motion, which is assumed to exist

10



Why the Confusion?

* |f the input-output map is the same loop at every
frequency, then the static limit is

iIndistinguishable from the dynamics

— The system has “rate-independent hysteresis”
— Another misnomer

e Suppose the input-output map is different at

every frequency and the static limit has a loop

— The system has “rate-dependent hysteresis”
— Another misnomer

11



Rate Dependence/lndependence

0

2
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0.5 1 -1 -05 0 0.5 1 0
r r

Input-output maps of Input-output maps of
mechanical freeplay ferromagnetic material

Rate-Dependent Hysteresis Rate-Independent Hysteresis
12



Precise Definition of Hysteresis

— u(t): continuous, periodic with period «

— up(t) = u(at/T): periodic with period 7' y7 (%) : output with up(t)

— up(t), yp(t) — Hp(u) as t — oo, Hp(w): periodic I/O map

— Hp(u) —» Hoo(u) as T — oo, Hoo(w): limiting periodic 1/0 map

Time Convergence to H7(u) Quasi-DC Behavior Hp(u) — Hoo(uw)

If Hoo(u) has (u,y1), (u,yo) such that y1 # yo, then Hoo (1)
s a HYSTERETIC MAP, and the model is HYSTERETIC 13




OK, What Causes Hysteresis?

« We will figure this out from some examples
« What kinds of models exhibit hysteresis?

14



Which Models Are Hysteretic ?

* No linear model is hysteretic

* Three specific nonlinear models
1. Nonlinear feedback models
* Freeplay/backlash
2. Duhem models
* Friction
3. Preisach models
« Smart materials

15



Nonlinear Feedback Models

z(t) = Az(t) + Diu(t) + Byy(t),
y(t) = Cx(t) + Dou(t) + Dyy(t),
uy(t) = E1x(t) + Equ(t) + Eoyy(t),

Yo (t) = ¢(ue(t))

where ¢ is memoryless nonlinearity
« The model is an LFT b/w MIMO system and ¢

U &

u

Ye

G11(s) 2 C(slp — A)~1D; + Do,
G1o(s) = C(slp, — A)"1B+ D
G21(s) = E1(sl, — A)~1Dy + Eq

A
Goo(s) = E1(sl, — A~ 1B+ Ey
16



Nonlinear Feedback Freeplay Model

* Alinear system with a memoryless nonlinearity in the
feedback loop

2w /
| | AN S

T = L 4
N i(t) = Az(t) + B(u(®) + ¢(y(1))),

* Freeplay becomes a deadzone in feedback

r 4+

- I
. dz?-*'-'l: :I 1 ms?4es
Deadzone

Block diagram of freeplay model

q
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Generalized Duhem Model

Based on input direction-dependent switching dynamical system
where g(0) =0

B(8) = (), u)g(i(®), L0y =40 130

y(t) = h(z(t),u(t)) -

The output changes its character when
the input changes its direction

Nonlinear ODE model
— Finite-Dimensional

Can model rate-independent and
rate-dependent hysteresis
Vector field analysis of the Duhem model

Special cases: Ferromagnetic model, of ferromagnetic material
Bouc-Wen model, Madelung model, Dahl friction model

18



Duhem-Based Friction Models

Friction Model | Duhem Type | Rate Dependence Continuity
Coulomb static rate independent discontinuons
v =10 generalized | rate independent discontinuous
0 <~ < generalized | rate independent | continuous but not Lipschitz
Dahl v=1 semilinear | rate independent Lipschitz
Vo= generalized | rate independent Lipschitz
LuGre generalized rate dependent Lipschitz
Maxwell-slip generalized | rate independent discontinuous

Philip R. Dahl worked with The Aerospace Corp.

LuGre = Lund and Grenoble

Based on the slip model proposed by Maxwell for no-slip

boundary conditions in fluid mechanics

Non-Lipschitzian property is necessary for finite-time

convergence (Sanjay Bhat's research)

19



Superposition Models
(Preisach Model)

Based on rate-independent hysteretic kernels

— Preisach model: logic hysteresis po—
it
y() = [[ nla, B)vaslu(]dads, ﬁ
a>f3

— Kransnosel’skii-Pokorovskii model:
linear stop operator (LSO)

Preisach Model and its weighting function
(image from Gorbet, 1997)

Uses hysterons

Can capture complicated reversal behaviors
Usually rate-independent

Usually infinite dimensional

Models piezo materials

20



Reversal Behavior

“major” loop “minor” loop

(a)
Nonlinear
Feedback model

(b)
Duhem model:

Local memory

(c)
Preisach model:

Nonlocal memory

21




Response to Superimposed Dither

Nonlinear feedback model: averaged to memoryless nonlinearity by
*large™ amplitude dither

— Deadzone requires large-amplitude dither

Duhem model: averaged to LTI system by high frequency dither

— Dither amplitude can be infinitesimal
Preisach model: does not respond to dither of any amplitude

0.5

Original
Hysteresis

Hysteresis
with dither

5 ; 55 ; 1 ; o ; s — 5 o ; 22
Nonlinear Feedback Duhem Model Preisach Model



Analysis of Hysteresis

Nonlinear Feedback

Generalized Duhem

23



Nonlinear Feedback Model

« Special Cases

i(t) = Az(t) + B(u(t) + ¢(y(1)),  #(t) = Azx(t) + Bo(u(t) — y(1)),
y(t) = Cz(t) y(t) = Cx(t)

u 4+ Y U 4 Uy Y Y

- 1 G(s) a(ff () 1 Gls)
o)

[Gll(s) G12(3)] _ [G(S) G(S)] [G11(8) GlQ(S)] _ [0 G(S)]
G21(s) Gaa(s) G(s) G(s) G21(s) Goo(s) 1 —G(s)

24



Equilibria Map

» The equilibria map is the set £ of points (4, Cz) € R?
where z is an equilibrium of the NF model with

constant g
* Let (4,B,¢) be given in controllable canonical
form [o 1t - 0~ 0]
A = O O 1 ,B: O ,C:[CO c1 "'Cn—l}
|—ag —ai - —ap_1] 1]
 Then & Is given by G N R v
_|_
€ = {(,coT) € R? : agT = ¢(u — co)} L o)
or |
L 3 3 N PR B2 y
€ = {(a,coZ) € R? : agZ = ¢(coT) +u} — ¢ 1V .

= depends only by ag & cq




Deadzone Equilibria Map

* Mechanical Freeplay Model

mi(t) + cz(t) + kdoy, (m(t) - u(t)) =0

U+ Uy Yeh

4{_ D—"de('> g mst—l-cs

y -




|s Hysteresis Map Contained in & ?

« Hysteresis mapH« is the static limit of the input-
output maps

e Suggests that every point in 7/ is an equilibrium
and thus in ¢

. iy
7
/
= Y Equilibria map £and hysteretic
g map Hoo for a mechanical
backlash model
7 —]
_ Hr(u) — Hool(u) % E

Not always! 27



No Hysteresis Example

Hysteresis requires two distinct equilibria
(u,y1), (u,y2) € Hoo = ¢ Should be multi-valued map
But not every multi-valued ¢ generates hvsteresis

IF; :
‘ IF: E
I; :
ﬂlﬁ

£ of a(t) = (u(_;fﬁ) - ifv(t))3 —l(u(t) —a(t))  Non-hysteretic /0O map

Ingredients of hysteresis

— Step convergence

— Multi-valued limiting equilibria map

— Bifurcation (vertical segments) or a continuum of equilibria 23




Cubic Equilibria Map Example

* Cubic Hysteresis Model

2(t) = —23(t) + z(t) + u(t)

SN 1 v,

+ s—1
Ys __(.)3- g

29



£ and Heo

* Generally Hoo Z €11
* Cubic hysteresis — a bifurcation occurs

— H,

— E (Asymp. Stable) |
— - E (Untable)
| 1

B
/
5
y

« Except for the limiting vertical transition

trajectories,

Hoo C &

30



* Alinear system with a memoryless nonlinearity in the

feedback loop

Bifurcation Video

i(t) = Az(t) + B(u(®) + ¢(y(1))),

* Nonlinearity introduces input-
dependent multiple equilibria

 Input change causes bifurcation

= 1/O trajectory “chases” the stable moving equilibria

2
1
]
1
¢

YO map and Hysterasis

T

I 05 0 05 i

2
1
a
1
2

irv
-
e

-+

q

Deadzone

Block diagram of freeplay model

Input-dependent Multiple Eq.

\

Q

eq. points

-1

0

31



Principle of Multistability

* The presence of hysteresis requires the

existence of multiple, attracting equilibria

— Finite set of attracting equilibria OR
— Continuum of attracting equilibria
— Existence of multiple equilibria is not sufficient

* The input-dependent structure of this set as well
as the dynamics of the system determine the
presence and properties of the hysteresis

32



Deadzone-Based Freeplay Hysteresis

#(t) = Ax(t) + Bday, (u(t) — y(t)),
y(t) = Ca(t)

U 4}_\-u¢

Yo

kxj (i21u

G(s)

y -

ffw(u) 4

Fw u

Ve

« Let (4,B,C) be given by the controllable canon.
form = limiting equilibria map &£ is given by

E={(u,%) € R?: agT + doy(coT —u) = 0}

— depends only on ag & ¢g, where ag and co
are constant terms in numerator and

denominator of G(s), respectively.

33



& Set of Deadzone-Based

Freeplay Hysteresis

« Can determine & from ap and co

e Case 1
y

ag += 0 &
ag+co=0

& does not exist
forall u e R
= No Hysteresis

e Case 2 « Case 3 e Case 4

-}J [‘D y y
dy ey / Cy
ayte,
1
1 /
W w u “w /»1«' U -w / w u
_% o
a,te, / ayte,

ag #= 0 &
tocs > 0 S ag 70 &
= co(ap 4+ cg) >0
or ag #= 0 &
co(ag +¢cp) <O Multi-valued map

single valued map = Hysteresis

= No Hysteresis "



He of DZ-Based Freeplay Hysteresis

« Suppose DZ-BH is step convergent
« Limiting periodic I/O map H is given by

e Case 2 e Case 3 e Case 4
Y y yi o : y y
/w W u /w W U Vw u
/£ .l/
/S /£ 7 Y

= No Hysteresis = Backlash-type = Bifurcation-type
hysteresis hysteresis

35



What Other Nonlinearities Can Cause
Hysteresis?

* Arctangent model
2(t) = —z(t) + u(?) + tan—122(%)

2
=0
A TS

-4 -4

> ) .
h s+1 o
U 1 3

tan™—

¥ ¥
| | \ .
L=l = = = Ll d A e w e o = o b @
L i i
o = i = i
[ [
on
2 o n
= i =] i =
=2 & = &
o o o
= o o
o [=] [=]
o o o

(1) = —z(t) + saty (u(t) + 2:13(15))

U+ Uy Yeh

' 2
—*(_ )—*-Sath - _S—I—l

Saturation can cause hysteresis !

y -

« Saturation model ' @



Generalized Duhem Model

Nonlinear feedback models are rate dependent

Generalized Duhem models can rate dependent

or rate Independent
— Rate and shape dependent

Dither properties
Friction modeling

37



Generalized Duhem Model (GDM)

GDM: () = f(x(t),u(t))g(u(t)), =(0)==zq, t>0
y(t) = h(z(t),u(t))

where z cR?, u,y € R, f : R* xR — R?"¥" g:R — R"

and ¢(0) =0

Every constant u gives equilibria

Rate dependent: Hysteresis map depends on
the rate of the input

Shape dependent: Hysteresis map depends on
the shape of the input

38



When |s GDM Rate-Independent?

« FACT: GDM is rate independent if g is positively
nhomogeneous, that is, g(aw) = ag(v) for all a >0

g | o) |

i U

positively homogeneous not positively homogeneous

 FACT: if Hr exists for rate-independent GDM,
Hr = Heo forall T

— Rate-Independent Hysteresis

39



u-parameterized Model

. ( h v, v > 0
Fact: s pos. homogeneous = g(v) =1 ™

Hence the Rl GDM can be written as
da(t) { f (@(8),u(®)) hy 28 () > o,

z(0) = zg (1)
P @ uw)ntD, ) <o,
y(t) = h(z(t), u(t)) (2)

u -parameterized model

dz(u) { f(@(u),u)hy, when u increases,

du | f(@(u),u)h—, when u decreases, #(uo) = o

y(u) = h(zZ(u),u)

Time-varying dynamical system with NON-
MONOTONIC “time” u!

40



Rate-Independent Semilinear
Duhem Model

BE_

y(t) = Cz(t) + Du(t), x(0) = a:o t>0

i(t) = | ap(t)n a_(t)In x Bty By
®) = [ up®In (t)z,,,]([A + (t)+[5 + | (t)-l-[ D

where
up(t) 2= max{0,u(t)}, u_(t) = min{0,u(t)}

u-parameterized

dz(u) Ayz(u) +Byu+Ey, u 1
du o A—é}(u) +B—U+E—7 U \L

y(u) = CzZ(u) + Du, z(up) = zo

“ramp+step” response for “time” u

41



When Does I/O Map Converge?

e Let u(®) € [umin, umax] be periodic

[ (umax—tmin)As  —(u e YA ,
) If pke\ min/ ‘14— (tUmaX min/ —) < 1

then (u,y) converges to

Hoo = { (u, y1-(w)) : u € [umin, umax] jU{ (u,y—(u)) : u € [umin, umax] |

gy (u) = C’eA+(u_um‘”)5s_|_ - C’A_EI)_ {u[ — umineAﬂL(u_umi”)} By

~ 22D [ 1 ,A+(u—umm)1 n Y AD (7 ., ,+\u—umm)\ Inl
—CAL" I —e | By —CAy (I —e E
+C X4 (u, umin) + CY4+(u — umin) + Du,
j-(u) = Cet-(wmumadz — CAP [ul — umaxe?-(v7uma)] p_

—CAZP [ — eA-(umuma)| B — 0 AP (1 — eA-lumumad)
+CX_ (U, Umax) + CY_ (U — Umax) + Du

AP = Drazin generalized inverse o



Convergence of Rate-Independent SDM

b0 = [ay O L] ( [’Z+ﬂx<t>+[’2+§1u<t>+[fﬁjD

y(t) = Cz(t), =(0)=xo,

with A:[_l 4 ] le

—4 -1

0z

015} ¢ N

01k

00sr

0.05F

01k

T~ — Transient_Response
a1 o enaree
-0.2 ' : ' — ' : : ; -
-1 08 0 0s 1 1 0.5 o 05 1
hy =1,h_= -1, p(e? e 24-) =0.018  hy =1,h_ = 1.1, p(e?*MHe24-) = 1.221
Converges Does not converge
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Rate-Dependent Semilinear

Duhem Model
i) = [ (10)1n a-(aO) ] (| 4 |20 +| Gt [uw+] 5+ |)
y(t) = Cx() + Du(t),  2(0) = o, t> 0

where g4(i) = max{0,g(w)}, g (@) = min{0, ()},
and g is NON-positively homogeneous and ¢(0) =0

o FACT: If| p (cCmartmn e - (umaumin)a )4 < 3

then rate-dependent SDM 1I/O map converges to a
closed curve Ho @S T —
= Consequence of rate-independent SDM

44



Friction

« How to model it?
— Duhem models

| Friction Model | Duhem Type | Rate Dependence Continuity
Coulomb static rate independent discontinuous
v =10 generalized | rate independent discontinuous
0 <~ < 1| generalized | rate independent | continuous but not Lipschitz
Dahl vy=1 semilinear | rate independent Lipschitz
v =1 generalized | rate independent Lipschitz
LuGre generalized rate dependent Lipschitz
Maxwell-slip generalized | rate independent discontinuous

* Why is it hysteretic??
— Mathematically
— Physically



Dahl Friction Model

 Nonlinear Model

. 8 8 g8 .

Flt)=al|l - Fit Iarrn (i) -_.fr11( — F“’Iﬁgu ::':(fjl) t(t)
i F(:! -zt
F = Friction force ::
u = relative displacement B |
([ I “
Rewrlte as Hysteresis loop between
. . Friction force and relative
F(t)=o [F4(F(t) F_(F(t)] LIJ’# ] displacement
where
) o A Fit)|' ( Flj,l)
FLlF(t)=a|l— sen | 1 — .
+HE®) = Fo | F, — Rate-Independent
FFO) 2ot F;) e (1 N F;t')‘ Generalized Duhem model
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DC Motor Experimental Setup

5 Outputs

— 2 Load cells

— Tachometer built in

— Encoder for angular deflection
— Current supplied to the motor

1 Input : Current supplied
through a Quanser current
amplifier

Motor

Load cells Encoder

Connected to a digital
computer through a dSpace Spring
system

47



Dynamics of the DC motor Setup

« Dynamics of the setup given by

Fi = fi+ kidy,

d =18,

to current = 7. =iuin

Hence,

16 =T,, — Ty + Fyr — Fyr

* The spring forces

cSQ = —?'IEI

Fy = fy 4 kabg,

Shaft

T

A

|
\

|'I}_-"

|

—~2,

3

_ /N

* Motor torque proportional %_Vm - [
L

\/

Cables

(fi — fo)r

.

éﬂ“ 5

fEEFfrsre

48



Similarity to a Mass-Spring System

» The dynamics of the experiment are same as
that of the mass-spring system shown below

x(t)
r(t) ~:!"if3| = e(t) — (x(t), z(t)) N
F.
| I I — ke

m EVAVANAY
(Fy + ka)rd o A >
Bit) + 7 B(t) =|—im (1) —\ T (8(1). 6(1)) 777 77 7777777777777

« Simulate the dynamics using different friction

models for 7 and compare with the experimental
results

RS N
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Experimental Results

e Sinusoidal current fed to the motor

o : : — . o : : . . . /4 Input current

Load-cell ;|

. a 0.8
readings ¢
v o Ly
% = (R ]
5 oo g
*E 0.5
T
] i 04r
_; naf
E nzp
08 g
g - S i
= 2 ngp
5 '
a i |
: 3 B VR S T Ty T B TR
g _a sl Moter Torque T [M-m]
L] c .
: : Hysteresis map from motor
3 = .
H ; torque to angular deflection 8
_udll 10 1] 1] 40 ] 1] 0 10 il 1] 40 o =1}
J Time [] Time [5]
Angular velocity Angular deflection 6
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Simulation with the Dahl Model

_ow frequency sinusoidal input current

':'j5 MobrT-:-rquEln T, M ¢
Hysteresis map from motor
torque to angular deflection 6

Angular deflection 6 Angular velocity

o1



Simulation with the LuGre Model

* Low frequency sinusoidal input current

g
5 0A4F
h-
2 03
=

z 0z

[(NR 3

(18

_O'E 1 1 1 1
(] 10 0 ] o % -01

Time [ Time ] z Makr Torqua T, M-
»/ \ Hyteresis map from motor

lection ©
Angular deflection 8 Angular velocity torque to angular deflection
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Simulation with Maxwell-slip Model

* Low frequency sinusoidal input current

1.5 T T . G T .

1t = [ —-l —-l 4
E o | g
g = 0 . |
s ! “
39-0.5- ?.4- E T

-1 __J l— |__- I__- L =k At

] £y 0 W = ] ] ] I = 15 T 1 s 1
Tims [5] T |5 Mokor Torqua T d-mi
Hyteresis map from motor
_ _ torque to angular deflection 6
Angular deflection 6 Angular velocity
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Compare Simulation with Experimental
Results

Hysteresis loop from Motor Torque to Angular
Deflection
.- -u.;jg;]mi};";gers LuGMrﬁgﬁ:urﬁlT(n)r:dﬂel \ Maxwell-slipn model

LuGre model
Matches the beg}

Drur angular da on B [rad]

02

01

3: \Aside from the transients
- nd the input current bias,
Experimental  : . ] / P

i

_u'—1H -1z -1 -lg -0E 04 -2 ] 02 04

Motor Torque T M-m]



Compare Simulation with Experimental

Results

« Comparing the Angular velocity

& b & b 2 2 2 oo
P T N NS - T S N R T

g )
Tima |

Dahl model

Experimental

Angular w
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|dentification of the Gearbox Friction

* LuGre friction parameters that model the
gearbox friction were identified
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u LuGre friction model)
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Friction

« Hysteretic friction can perhaps be explained by

sudden release

« Sudden release converts linear bristle damping
iInto hysteretic friction

Undisturbed
bristles

Released
bristles

\\\/\

Captured bristles
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Damping
e How to model it?

 Why is it hysteretic?
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Hysteretic Energy Dissipation

Hysteresis sometimes corresponds to energy loss

Energy loss in static limit = area enclosed by force-to-
position hysteresis loop Hoo

— Line integral around loop
— Area measured in Joules

Dissipation need NOT be hysteretic

— Viscous damping is not hysteretic

Hysteresis need NOT be dissipative
— Position to position hysteresis is usually not dissipative
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Structural/Material Damping

Conventional viscous damping predicts energy dissipation in 1 cycle
as mcwA? = rate-dependent

Experiments shows the energy @) b persists at DC
dissipation is rate independent /

Conventional model: frequency-domain
mq(t) + mq(t) + kq(t) = f ®

structural damping model

Has complex, unstable time-domain solutions--noncausal

Energy dissipated per cycle depends only on the signal amplitudes
but not on the frequency

Constant energy dissipation as w — 0 = Hysteretic damping
— Energy dissipation “at” DC!

Real damping has more complex frequency dependence

viscous

experimental
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Hysteresis in a Two-bar Linkage

« Two-bar linkage has 2 stable equilibria for constant F
— Note linear/viscous damping

» Exhibits snap-through buckling
* Multiple equilibria

/ r )
& —AAA—1~
/ Q [ ¢ -~
k - _|j_ ~
} o — — ~ _,j_ﬁ 7 AN g
~ AW

| 4 02
1

Two stable equilibria of the linkage for a constant F
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Snap-Through Buckling
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Hysteresis in a Two-bar Linkage

« Simulations show hysteresis between the vertical
force F and the vertical displacement =

-

E £ =11
. = 05 - 05
£ g
[} &
d 2 I
X : :
i 7 050, & 05
—w—f L ”
P _ﬁlj_g s 0 05 1 4 s 0 05 f
[ Forca F [N] Farcs F[M]
AATIRRNRARAAANRRANA R ; ;
: 3 E' =005 E' w=0.01
%= 05 = 05
. . i = =
Two-bar linkage showing 1 g g
and F 8 g
7 05 & -05
(] [
-1 -1
-1 05 0 05 1 - 05 0 05

Force F M) Farca F[M]
Area of each loop is the energy dissipated by the linear

damper during one cycle of operation
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Damping

« Multistability plus viscous damping causes
hysteretic damping

* Hysteretic damping can possibly be explained
by microbuckling
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1566  RM McMeeking C M, Landis | Brtemational Sowmal of Enginesring Scimee #) (2002) 15531577
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Fig 2. Butterfly loop cortesponding to the hysteresis loop in Fig. 1.

chosen such that dy £y /e, =021, selected to produce a shape comparable to experimental loops
[1,30]. The origin is the starting point since the material is initially unpolarized. This also means
that the material is not initally piesoelectric, as can be seen from Eq. (43). Thus no strain develops
at first when the electric field is incressed. However, polarization commences at £ = £, and
therefore the remanent strain grows quadratically with the polarization and piezoslectnic strain
appears and grows as well, The curve rises stesply at first because thers is a rapid inoeass in
polarization strain. However, lock up sets in and the slope of the curve diminishes, After the
maximum field is reached and the then reduced, switching ceases and the response is at first purely
linearly piezoslectric with the strain given by Eq. (43) with both & and P non-zero and fined.
Therefore, the response to small ectric fields at this stage is pieroslectric with a positive slope, As
the field continues to be reduced, switching rec at £ = =0.5F and since the remanent
polarization % now diminishing, the remanent stram falls, Simultaneously, the pisroelectric effect
is degraded and when the electric field reaches =& and the remanent polarization is zero, the
strain has reached zero as well, However, as the field is reduced below —Ep a negative ramanent
polarization develops and the remanent and pieroslectric strains are rebuill. Lock up now occurs
as the electric field is brought towards —1 .58y, Afier this value is reached, the electric fisld is
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Butterfly Hysteresis in the
Linkage Mechanism

F = -sin(0.5t) F = -sin(0.11)
2.5 ; - ' 2.5 ' ' '
2
E 15
(o
1 A
0.5 ' ' ‘ 1 ) : ‘
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Force [N] Force [N]
F = -sin(0.05t) F = -sin(0.01t)
2.5 ; - ' 2.5 ' ' '

q [m]

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Force [N] Force [N]

67



Conclusions

« Hysteresis is the static limit of the periodic
dynamic response

« Hysteresis arises from the principle of
multistability

« The principle of multistability suggests
mechanisms that can explain hysteretic

phenomena
— Friction------ sudden release of viscously damped bristles
— Damping-----snap-through buckling
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