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Aleksandr Mikhailo vic h Lyapuno v

• Father astr onomer , 7 children, 3 sur vived

• Professor of mechanics at Khark ov and St. Petersburg

� Research on orbital mechanics and probability theor y

• A. M. Lyapuno v died tragicall y at age 61

• Completed his doctoral disser tation in 1892 under Chebyshe v

� Stability of rotating fluids applied to celestial bodies

� Form ulated his fir st and second methods (L1M and L2M)

• Frenc h translation appeared in 1907 = 1892 + 15

� English translation didn’t appear until 1992 = 1892 + 100



How Successful Is L2M?

• Many areas have a str ong interest in stability theor y

� Classical dynamics

� Structural dynamics

� Fluid mechanics

� Astr odynamics

� Chemical kinetics

� Biology

� Economics

� Contr ol

While there are some notab le

applications of L2M outside of

contr ol, there are surprisingl y

few overwhelming successes

How successful is L2M in contr ol?



Let’s First Review the

Basics of L2M



Basic L2M

• Consider ẋ = f (x) with equilibrium xe

• Assume xe is a strict local minimiz er of V

V̇ ≤ 0 implies xe is Lyapuno v stab le (LS)

V̇ < 0 implies xe is asymptoticall y stab le (AS)
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• Want V (x(t)) nonincreasing or decreasing

� V “keeps" x(t) bounded or “makes" x(t)→ 0

� In fact, V merel y predicts the behavior of x(t)



Suppose V is Radiall y Unbounded

• If V̇ ≤ 0 and V is radiall y unbounded, then all trajectories are
bounded

� No finite escape , and thus global existence

• If V̇ < 0 and V is radiall y unbounded, then xe is globall y AS
(GAS)

� GAS ⇐⇒ LS + global convergence

How can we construct useful V ’s? 2 ways.



1) Use x(t) to Construct V
• Persidskii, 1938; Massera, 1949; Malkin, 1952; Ura, 1959 (converse theor y)

• For AS or GAS, if f is locall y Lipsc hitz, then we can construct
C∞ V with V̇ < 0

• For LS, contin uous V may NOT exist even if f is C∞

� But, if f is locall y Lipsc hitz, then we can construct lower
SEMIcontin uous V with V̇ ≤ 0

• How is trajector y-based construction useful if x(t) is not
availab le?

� Consider an appr oximate system with KNOWN trajectories

� For example , lineariz e the system and construct

V (x0) =
∫ ∞

0 xT(t)x(t)dt = xT
0 Px0

N This is L1M



2) Use f to Construct V

• Lagrang e-Diric hlet Method V (q, q̇) = T (q, q̇)+ U(q)
� Predates L2M, 1788/1848

• Kraso vskii’ s Method V (x) = f T(x)Pf (x)

• Variab le Gradient Method V̇ (x) = gT(x)f (x)

• Constants of Motion V (x) =∑[λihi(x)+ µih2
i (x)]

� Energy-Casimir Method

• Zubo v’s Method V ′(x)f (x) = −h(x)[1− V (x)]
� PDE

• There aren’t reall y very many useful methods!!

This explains the lack of success of L2M outside of contr ol



How to Define V̇ ? 2 Ways.

1) Use the trajector y x(t): Need V lower semicontin uous

V̇ (ξ)
4= lim suph→0

1
h
[V (x(h, ξ))− V (ξ)]

2) Use the vector field f : Need V locall y Lipsc hitz

V̇ (x) = lim suph→0
1
h
[V (x + hf (x))− V (x)]

If V is C1 then V̇ (x) = V ′(x)f (x)



Stability is qualitative .

How Can We Quantify It?



How Can We Quantify LS?
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• Suppose we can inver t δ(ε) to obtain ε(δ)

• If ‖x(0)‖ < δ, then ‖x(t)‖ < ε(δ)

� This quantifies LS by means of a trajector y bound

� But doesn’t use L2M



How Can We Quantify AS?

1) Use a sub level set {x : V (x) ≤ c} to estimate the
domain of attraction

• Based on L2M
PSfrag replacements
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2) Estimate the speed of convergence
PSfrag replacements
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Asymptotic

Exponential
Finite-Time t

• Can we use L2M?

� Yes, . . .



How Can We Impr ove Our

Stability Predictions?

Use Upgrades!



How Can We Upgrade from LS to AS?
• Barbashin/Kraso vskii, 1952; LaSalle , 1967

• DAMPED nonlinear oscillator mq̈ + cq̇ + kq3 = 0

� Energy V (q, q̇) = m
2 q̇

2 + k
4q

4 and V̇ (q, q̇) = −cq̇2 ≤ 0

� So we have LS

• The INVARIANCE PRINCIPLE
upgrades LS to AS

• But V is “def ective"

� That is, V̇ ≤ 0 but we DON’T have V̇ < 0
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But converse theor y guarantees that a NONdefective V exists!!! : – (



How Can We Upgrade from AS to GAS?
• Teel, 1992

• GAS is equiv alent to AS + global FINITE-TIME convergence to a
domain of attraction

• Nested saturation contr oller for the doub le integrator

u = ψ(q, q̇) = −satε(q̇ + satε/2(q + q̇))
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• Splice the
trajectories

• Note that we did NOT construct a radiall y unbounded V

� Hence local V is defective for GAS! : – (



How Can We Upgrade the Speed of Convergence?

1) Show V satisfies a diff erential inequality V̇ ≤ ρ(V )

2) Then construct the COMPARISON system η̇ = ρ(η)

• If ρ′(0) < 0 then V (x(t)) −→ 0 exponentiall y

� If α‖x‖2 ≤ V (x) ≤ β‖x‖2 then x(t) converges exponentiall y

• If ηρ(η) < 0 and
∫ ξ

0
dη
ρ(η)

<∞ then V (x(t)) −→ 0 in finite time

� And thus x(t) converges in finite time

Next: L2M and Contr ol



What Was the Impact of

L2M on CLASSICAL Contr ol?



Maxwell’ s Work on Stability

• Stability of Saturn’ s rings

� Quar tic linearization
N For tunatel y, biquadratic – trivial

• Stability of governor s

� 5th-or der linearization – not trivial

� Obtained onl y necessar y conditions

� Motiv ated the Adams priz e
competition at Cambridg e in 1875

Who won?



Routh

• Routh, 1877 = 1892 - 15

• Routh considered the stability of a general pol ynomial

� p(s) = sn + an−1s
n−1 + · · · + a0

� Derived a necessar y and sufficient
condition for stability

� Note: No mention of contr ol

sn a0 a2 a4 a6 · · ·
sn−1 a1 a3 a5 a7 · · ·

sn−2 b0 b2 b4 b6 · · ·
...

...
...

...

• His deriv ation was based on the Cauchy inde x theorem

� Not based on L2M

N Predates L2M

Is there an L2M proof of the Routh test?



Yes! Parks, 1962 = 1892 + 70

1) Compute Routh table parameter s 1, b1, b2, b1b3, b2b4, b1b3b5, . . .

2) Construct the tridia gonal Schwarz matrix A =





0 1 0

−b3 0 1

0 −b2 −b1





3) Solve the Lyapuno v equation ATP + PA+R = 0 with

R =





0 0 0

0 0 0

0 0 2b2
1



 for P =





b1b2b3 0 0

0 b1b2 0

0 0 b1



 > 0

4) Define V (x) = xTPx, whic h implies V̇ (x) = −xTRx

5) Since R ≥ 0, get V̇ ≤ 0, whic h proves LS

6) Use invariance principle to upgrade to AS

Since R ≯ 0, after all this, V is defective!! : – (



Nyquist Test

• Nyquist, 1932 = 1892 + 40

• In 1927, Harold Blac k invented the negative feedbac k amplifier

� Unlike positive feedbac k amplifier s, his cir cuit was stab le

� Patent office was skeptical and treated negative feedbac k
like perpetual motion

N They demanded a prototype!

• Nyquist test provided the crucial
frequenc y domain insight

� Note: Loop closure stability test

• Like Routh, his proof was based on the Cauchy inde x theorem

� NOT on L2M

Why not?



Let’s Review Absolute Stability
• Lur’e/P ostnik ov, 1944

• Feedbac k inter connection

�

-
u

−
y

φ

G

• φ(y, t) is a memor yless time-v arying nonlinearity in a sector Φ
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Absolute Stability Tests

• Bounded real (small gain)
|G| < 1/F1 H⇒ GAS for all NLTV φ ∈ Φbr

PSfrag replacements

• Positivity
Re G > −1/F1 H⇒ GAS for all NLTV φ ∈ Φpr

PSfrag replacements

• Circle
Re G

1+F1G
> 1

F1−F0
H⇒ GAS for all NLTV φ ∈ ΦcPSfrag replacements

• For each test V (x) = xTPx

� Get P from KYP conditions or a Riccati equation

� . . . and it’s the SAME V for ALL φ in the sector Φ

How do we REDUCE conser vatism for time-INVARIANT φ(y)?



Intr oduce a Multiplier!
• Popo v, 1961

• Inser t Z(s) = 1+ αs to restrict the time variation of φ

� Re Z(s)G(s) ≥ −1/F1 H⇒ GAS for all NLTI φ ∈ Φ

• Vφ(x) = xTPx + α
∫ y

0 φ(σ)dσ

� Vφ depends on φ so we actuall y have a FAMILY of V ’s

• Fur thermore , we can construct Z to fur ther restrict φ

� Slope bounded

� Monotonic

� Odd



How Can We Allo w Only LINEAR φ(y) = Fy
• Narendra, 1966; Brockett/Willems, 1967; Thathac har/Srinath, 1967

�

-
u

−
y

F

G

• Construct a SPECIAL ZG that DEPENDS on G

� Re ZGG ≥ −1/F1 ⇐⇒ GAS for all φ(y) = Fy, F ∈ [0, F1]

• VF (x) = xTPx + FyTy

� A FAMILY of V ’s

• This V proves the Nyquist test,

� and completes a long and fruitful application of L2M : – )

• But a L2M proof of MULTIVARIABLE Nyquist is open!

Next: Let’s inc lude perf ormance



Use Absolute Stability to Bound Performance
• Bernstein/Had dad, 1989

- -

-

�

w z

F







A D B

E 0 0

C 0 0







• z = GFw

� Small gain uncer tainty σmax(F ) ≤ γ
� GF ∼ (A+ BFC,D,E)

• Construct V (x) = xTPx

� 0 = ATP + PA+ γ 2PBBTP + CTC + ETE

� Then ‖GF‖2 ≤ tr DTPD for all uncer tain F

� Guarantees robust stability with a bound on worst-case
H2 perf ormance

Speaking of H2, let’s turn to MODERN contr ol



How HAS L2M Contrib uted to

Modern Contr ol?



Stabilization Based on Linearization Only

• ẋ = f (x, u), C1 f , u = ψ(x), ẋ = f (x,ψ(x))
� f (xe, ue) = 0 with linearization ẋ = Ax + Bu

• Sufficient condition

� If (A,B) is stabilizab le, then xe is AS’b le with C∞ ψ

� Not necessar y: ẋ = −x3 + xu is AS with u = ψ(x) = 0

• Necessar y condition

� If xe is AS’b le with C1 ψ , then (A,B) is CLHP stabilizab le

� Not sufficient: ẋ = x2 + x3u has A = 0 and B = 0

To do better , let’s use f directl y



Stabilization Based on the Vector Field
• Brockett, 1983

• Necessar y condition

� If xe is AS’b le with C0 ψ , then 0 ∈ int f (N (xe, ue))

� Not sufficient: ẋ = x + x3u (need discontin uous ψ)

• How can we use this result?

� If 0 /∈ int f (N (xe, ue)), then stabilization is impossib le with
contin uous feedbac k contr ol

� And the same result applies to DISCONTINUOUS contr oller s
with Fillipo v solutions

• Hence we get convergence but not LS with contin uous contr ol
or Fillipo v solutions

So what do we do?



Use Time-Varying Feedbac k!
• Nonholonomic integrator: Brockett 1983, Pomet, 1992, Bloc h/Drakuno v, 1996

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2

• Since (0, 0, x3) /∈ f (R3), origin not AS’b le by CONTINUOUS ψ

• Origin is locall y ATTRACTIVE but not LS using DISCONT ψ

� ψ1 = −αx1 + βx2sign(x3) ψ2 = −αx2 − βx1sign(x3)

• Also, origin is AS’b le by contin uous TIME-VARYING ψ

� ψ1 = −x1 + (x3 − x1x2)(sin t − cos t)

� ψ2 = −2x2 + x1(x3 − x1x2)+ (cos t)x1(x1 + (cos t)(x3 − x1x2))

� V (x, t) = [x1 + (cos t)(x3 − x1x2)]2 + 4x2
2 + (x3 − x1x2)

2

What about discontin uous and TV contr oller s in applications?



A Multibod y Attitude Contr ol Problem

PSfrag replacements
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• The system is contr ollab le but (z1, z2, 0) /∈ intf (N (xe, ue))

� Requires either DISCONTINUOUS feedbac k or
TIME-VARYING feedbac k

Now, let’s use L2M for stabilization



Idea: Use u to make V̇ < 0

• Jurdjevic/Quinn, 1978; Ar tstein, 1983; Sonta g 1989; Tsinias, 1989

• Consider ẋ = f (x)+ g(x)u, u = ψ(x)

If ∃ u : V ′(x)[f (x)+ g(x)u] < 0, then xe is AS’b le with C∞\{0} ψ

• ψ = −V
′f +

√

(V ′f )2 + (V ′g)4
V ′g

is a univer sal contr oller

� V̇ = −
√

(V ′f )2 + (V ′g)4 < 0

• ẋ = x + x3u

u = ψ(x) = −x−2(1+
√

1+ x12)

PSfrag replacements
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• V is a CONTROL LYAPUNOV FUNCTION (CLF)

Are CLF contr oller s optimal?



Minimiz e J(x0, u) =
∫ T

0 L(x, u)dt with ẋ = f (x, u)
• Kalman, 1964; Moylan/Ander son, 1973; Freeman/K okoto vic, 1996

• Hamilton-Jacobi-Bellman yields the feedbac k contr ol

ψ(x) = argminu [L(x, u)+ V ′(x)f (x, u)]

• The cost-to-go V (x0) =
∫ T

0 L(x,ψ(x))dt is a

VALUE FUNCTION

• Value functions ←→ contr ol Lyapuno v functions

� Quadratic L yields LQR or H2 synthesis (linear contr oller s)

� Exponential-of-quadratic L yields worst-case or H∞
synthesis (linear contr oller s)

� L ≡ 1 yields minim um time synthesis (nonlinear contr oller s)

What’s special about minim um-time contr ol?



Two Things!

• Consider mq̈ = u with bounded u

PSfrag replacements
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1) Minim um-time contr ol u = ψ(q, q̇) is DISCONTINUOUS
(in fact, it’s bang bang)

2) And the states converge in FINITE TIME

What else is finite-time convergent?



The Oscillator with Coulomb Friction

mq̈ + csign(q̇)+ kq = 0

PSfrag replacements t
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• These dynamics are DISCONTINUOUS

� And the states converge in FINITE TIME

Are CONTINUOUS dynamics ever finite-time convergent?



Consider a Leaky Buc ket
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ḣ = −β
√
h where β

4=
√

2g
(D/d)4−1

• Vector field is contin uous, but NOT Lipsc hitzian at h = 0

� Never theless the solution is unique h(t) =
(√
h0 − 1

2βt
)2

� And all trajectories converge to zero in FINITE TIME

N As expected!!
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• Note that finite-time convergence REQUIRES non-Lipsc hitzian
dynamics . . .

� . . . since trajectories are NOT UNIQUE in reverse time

Let’s use L2M to PROVE finite-time convergence



To Do This, We Need a “Natural" V

• T (x0) = time to converge from x0 = time to go

� T (x(t)) = T (x0)− t and theref ore Ṫ (x(t)) = −1

N But Ṫ (0) = 0 and thus Ṫ is not contin uous

• However, let V (x) = T 2(x) so that V̇ = −2T , whic h IS
contin uous and negative definite

• Now use the comparison lemma

� V satisfies V̇ = −2
√
V < 0

�
∫ ξ

0
dη√
η
<∞ upgrades to finite-time convergence via V = T 2

Next, let’s finite-time STABILIZE with a contin uous ψ



Consider the Doub le Integrator Again

• CONTINUOUS contr oller u = ψ(q, q̇) = −q1/5 − q̇1/3

� Closed-loop system mq̈ + q̇1/3 + q1/5 = 0

• V (q, q̇) = 5
6q

6/5 + 1
2mq̇

2

� V̇ = −q̇4/3 ≤ 0 gives LS

� Invariance principle upgrades to AS

N But V is defective : – (

PSfrag replacements
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Let’s prove finite-time convergence



• The system ẋ = f (x) is HOMOGENEOUS of DEGREE r with
respect to the DILATION 1 = diag(αr1, . . . , αrn) if

f (1x) = αr1f (x)

� Familiar case 1 = αI yields f (αx) = αr+1f (x)

• Theorem FTC ⇐⇒ AS and r < 0

� mq̈ + q̇1/3 + q1/5 = 0 is AS

� With 1 =
[

α5 0

0 α3

]

, r = −2 < 0

� Hence finite-time convergent

PSfrag replacements t
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• Negative-degree homog eneity upgrades from AS to FTC

� Bhat/Bernstein, 1997



What Do We Do If Some States
Don’t Converge?

Idea #1: Ignore Them



r̈ − rθ̇2 + µ

r2
= 0 Orbital Motion θ̈ = −2θ̇ ṙ

r

• θ(t)→∞ but luc kil y θ(t) doesn’t appear

� So ignore it!

• Constants of motion

� Energy E = ṙ2

2
+ r

2θ̇2

2
− µ
r

� Angular momentum h = r2θ̇

• For CIRCULAR orbit define V (r, ṙ, θ̇ ) = (E −Ec)
2 + (h− hc)

2

� V̇ ≡ 0 and thus the cir cular orbit is LS

� � �

� � �

� � �

� � �

� � �

� � �

E

Can we always ignore states that don’t converge?



No: Consider Time-Varying Systems

• ẋ = f (x, t)

• Intr oducing ẋn+1 ≡ 1 yields ˙̃x = f̃ (x̃) 4=
[

f (x, xn+1)

1

]

� whic h “looks" time-in variant

PSfrag replacements x1
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• But xn+1(t) = t −→∞ as t −→∞ (fairl y obvious)

� AND, you canNOT ignore t !

Idea #2: Require stability wr to onl y PART of x



Partition x = (x1, x2)

• Rumyantse v, 1970; Vorotnik ov, 1998

• Get par titioned dynamics ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2)

• Define a PARTIAL equilibrium x1e satisfying
f1(x1e, x2) ≡ 0 for all x2

� Consider ONLY x1(t)− x1e

• Theorem: Assume x1e is a strict minimiz er of V (x1)

� V ′(x1)f1(x1, x2) ≤ 0 H⇒ PARTIAL Lyapuno v stability

� V ′(x1)f1(x1, x2) < 0 H⇒ PARTIAL asymptotic stability

Are there any useful applications of par tial stability?



The Contr olled Slider -Crank!
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motor
θ

m(θ)θ̈ + c(θ)θ̇2 = u

• Choose u = ψ(θ, θ̇) so that θ̇ (t) −→ θ̇des (constant angular
velocity)

� But this implies θ(t) ≈ θ̇dest −→∞

• However, since m(θ) and c(θ) depend on θ , we canNOT ignore θ

� AND, since θ(t)→∞,

� we canNOT get AS but we CAN get PARTIAL AS

Next, let’s require that all states converge to SOMETHING



Consider the Damped Rigid Bod y

PSfrag replacements c
m
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q̇

• NONE of equilibria are AS!!

• Since q̇ −→ 0, we have par tial AS wr to q̇

• Also q −→ q∞, where q∞ is determined by initial conditions

• So all states converge to SOMETHING

What kind of stability is THIS?



This is SEMISTABILITY
• Campbell, 1980

• Suppose we have a CONTINUUM of equilibria

PSfrag replacements
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• A LS equilibrium is SEMISTABLE if every nearb y trajector y
converges to a (possib ly diff erent) LS equilibrium

• Sandwic h proper ty: AS H⇒ semistability H⇒ LS



How Can We Anal yze Semistability?
• Bhat/Bernstein, 2001

Not Convergent Convergent (SS)

x

y

x

y

• Assume xe is a local minimiz er of V and V̇ ≤ 0

� If f is NONTANGENT to the 0 level set of V̇ near xe,
then xe is semistab le

• Note that V need onl y be POSITIVE SEMIDEFINITE at xe

Are there any interesting applications of semistability?



Michaelis-Menten reaction S+ E
k1



k2
C

k3→ P + E

x1
4= [S] ẋ1 = k2x2 − k1x1x3

x2
4= [E] ẋ2 = −(k2 + k3)x2 + k1x1x3

x3
4= [C] ẋ3 = (k2 + k3)x2 − k1x1x3

x4
4= [P] ẋ4 = k3x2

• All states are nonnegative and all (0, 0, x3, x4) are equilibria

• Let’s choose V = αx1 + x2 ≥ 0 (semidefinite) and thus V̇ ≤ 0

� Note that LINEAR V is allo wed since all states are
NONNEGATIVE

• Nontang ency implies that all equilibria are semistab le

� and [S] → 0, [E] → 0, [C] → [C]∞, [P] → [P]∞
� where [C]∞ and [P]∞ depend on initial conditions



Is Anything Else Semistab le?

• Compar tmental models

� Mass transpor t

N Biological systems

� Energy transpor t

N Thermod ynamics

Could semistability possib ly be useful for ADAPTIVE contr ol?



Simplest Adaptive Stabilization Problem

• Consider the uncer tain system ẋ = Ax + Bu u = −Kx
� Assume there exists unkno wn Ks suc h that A+ BKs is AS

• Consider the contr ol update K̇ = BTPxxT

• Let V (x,K) = xTPx + tr (K −Ks)
T(K −Ks) so V̇ (x,K) = −xTx

� Hence we have LS

� Invariance principle implies x → 0

• Nontang ency implies semistability and K −→ K∞

� K∞ depends on initial conditions

Note that B must be kno wn



What Do We Do When B is Unkno wn?
• Nussbaum, 1983; Morse, 1985

• Consider ẋ = ax + bu where sign(b) is unkno wn

• We canNOT use increasing gain k with k̇ = x2 and u = kx

• Instead we use increasing gain k with k̇ = x2 and OSCILLATING

contr ol amplitude u = k2(cos k)x

• Define INDEFINITE V

V (x, k) = e−k + 1
2x

2 + (a + 2b cos k)k + bk2 sin k − 2b sin k

� Every sub level set of V is a union of disconnected compact
sets

� V̇ = −e−kx2 ≤ 0, whic h implies x is bounded

� Nontang ency implies semistability and k −→ k∞



Output-Feedbac k Adaptive Stabilization

• Consider minim um phase G with relative degree 1

y = Gu u = −ky k̇ = y2

• Scalar case: V (x, k) = e−k + 1
2x

2 + 1
2b (a + bk)2

� V̇ = −e−ky2 ≤ 0 implies x is bounded and y −→ 0

� f is nontang ent to the zero level set of V̇

N Hence semistability holds and k −→ k∞
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What happens if y is noisy?



Noise is the Scour ge of Adaptive Contr ol!!

• Consider minim um phase G with relative degree 1

y = Gu+ w u = −ky k̇ = y2

• Noise w causes k −→∞!!

• Damped modification k̇ = −γ k + y2 causes bursting

What can we do about this?



Use Chattering Contr ol for Noise Rejection

q̈ + a1q̇ + a2q = u̇− zu+ w1 y = q + w2

• a1 and a2 are unkno wn, z < 0 but otherwise unkno wn

• w1 and w2 are bounded with UNKNOWN bound

q̇f = −λqf + y filter s y

u̇f = ẑqf + u filter s u
˙̂a1 = −x̃f q̇f estimates a1

˙̂a2 = −x̃fqf estimates a2

˙̂α = kα̂3/2|x̃f | estimates bound on w1 and w2

˙̂z = −x̃fuf (−ẑ)3/2 estimates z

u = (λ+ ẑ)uf + (â1 − f1)q̇f + (â2 − f2)qf − αsign(x̃f)
︸ ︷︷ ︸

chattering

So what’ s V ?



Here’s V !
• Sane, Bernstein, Sussmann, 2001

• V (x) =






qf
q̇f
â1
â2
α̂






T

P






qf
q̇f
â1
â2
α̂




 +

√

−ẑ− z√
−ẑ

︸ ︷︷ ︸

W(ẑ)

� W(ẑ) confines ẑ < 0 since z < 0

� W is a LYAPUNOV WELLPSfrag replacements

ẑ

W(ẑ)

• V̇ is INDEFINITE

� But V̇ (x(t)) ≤ γ e−2λt along trajectories

� Hence V̇ (x(t)) is ASYMPTOTICALLY NONPOSITIVE

• Use BARBALAT’S LEMMA to prove y −→ 0

� . . . and all states are bounded : – )



Let’s Recapitulate



We Ackno wledg ed the Weaknesses of L2M

• While Lyapuno v-like ideas are the basis of classical stability
analysis (e.g., the Lagrang e-Diric hlet stability condition),
L2M per se has had relativel y few successes outside of contr ol

• In general, it’s simpl y too difficult to construct Lyapuno v
functions using onl y the vector field



And We Celebrated Its Successes

• L2M is immensel y successful in contr ol theor y

• While it had no impact on CLASSICAL contr ol . . .

• . . . it’s the hear t and soul of MODERN contr ol, where we
synthesiz e contr oller s to suit Lyapuno v functions of CHOSEN
form

� The ability to construct the contr ol and the Lyapuno v
function TOGETHER is what makes L2M so successful in
contr ol

� L2M is the backbone of optimal, robust, and
adaptive contr ol



We Traveled from Infanc y . . .

V̇ ≤ 0 H⇒ xe is Lyapuno v stab le

V̇ < 0 H⇒ xe is asymptoticall y stab le



. . . to Potenc y

• Invariance principle

• Comparison lemma

• Contr ol Lyapuno v functions

• Homog eneity

• Partial stability

• Semistability

• Nontang ency

• Semidefinite and indefinite V ’s

• Asymptotic nonpositivity

• Barbalat’ s lemma

• Lyapuno v wells



What Lies in the Future for L2M?



L2M Beyond ODE’s

• Discontin uous dynamics and diff erential inc lusions

� Nonholonomic dynamics

� Relay and sliding mode contr ol

� Essential in contr ol

• PDE’s

� Stability of solitons

� Hysteresis in smar t materials

� Flow stabilization

� Many other applications



Input-Output Anal ysis Based on L2M

• Dissipativity (Willems)

� Stora ge function Vs, suppl y rate r(u, y)

N V̇s(x) ≤ r(u, y)
� Nonlinear positive real theor y (passivity)

� Nonlinear bounded real/H∞ theor y (none xpansivity)

• Input-to-state stability (Sonta g)

� GAS: ‖x(t)‖ < b(‖x(0)‖, t) ⇐⇒ V̇ < −a(x)
� ISS: ‖x(t)‖ < b(‖x(0)‖, t)+ sup |u| ⇐⇒ V̇ < −a(x)+ b(u)



Trends in Nonlinear Contr ol Based on L2M

• Receding horizon contr ol

� CLF’s to obtain suboptimal HJB solutions

• Problems with contr ol and state constraints

� Anti-windup and contr ol saturation

� Invariant set methods for state constraints (Gilber t/Kolmano vsky)

• Gain scheduling methods

� LPV methods

� Equilibrium switc hing methods (multiple V ’s)

• Impulsive dynamics

� Hybrid systems (Lakshmikantham, Haddad/Chellaboina/Bhat)

� Resetting contr oller s (Hollot/Chait)



Specializ ed Applications of L2M

• Nonnegative systems

� Chemical kinetics

N Zero deficienc y theorem for rate-independent
semistability (Feinber g)

• Emergent behavior of large scale , inter connected systems

� Thermod ynamics

N Anal yze energy flo w and entr opy as emergent proper ties
N Linear stora ge functions and suppl y rates (Haddad/Chellaboina)

� Swarm dynamics



Some Research Questions

• Can we do more with L2M in discrete time?

� Discrete-time adaptive contr ol, especiall y for disturbance
rejection (many patents due to lack of theor y!)

• Can we use set stability (Zubo v, Bhatia/Sz ego) to prove LS of an
elliptical orbit?

� Poisson and orbital stability

• Is there an L2M foundation for averaging?

• Is there an L2M proof of the Poincare stability theorem?



Special Thanks to:

• Sanjay Bhat, Wassim Haddad

• Seth Lacy, Harshad Sane

• Harris McClamr och, Elmer Gilber t

• Eduar do Sonta g, Hector Sussmann

• Kevin Passino, Kris Hollot, Jinglai Shen

• Susan, Sam, Jason, and Mom

What Hath Lyapuno v Wrought!


