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Aleksandr Mikhailo vich Lyapunov

Father astronomer, 7 children, 3 survived

Professor of mechanics at Khark ov and St. Petersburg

¢ Research on orbital mechanics and probability theory
A. M. Lyapuno vV died tragicall y at age 61

Completed his doctoral disser tation in 1892 under Chebyshev
¢ Stablility of rotating fluids applied to celestial bodies
¢ Formulated his first and second methods (L1M and L2M)

French translation appeared in 1907 = 1892 + 15
¢ English translation didn’t appear until 1992 = 1892 + 1008"%




How Successful Is L2M?

e Many areas have a strong interest in stability theory
¢ Classical dynamics

¢ Structural dynamics

¢ Fluid mechanics While there are some notab le
¢ Astr odynamics applications of L2M outside of
¢ Chemical kinetics contr ol, there are surprisingl y
¢ Biology few overwhelming successes
¢ Economics

¢ Control

How successful 1s L2M in contr ol?




Let’s First Review the

Basics of L2M




Basic L2M

e Consider x = f(x) with equilibrium xg

e Assume x.Is a strict local minimiz er of V

V < 0implies x.is Lyapunov stable (LS)

V < 0implies xeis asymptoticall y stable (AS)

e Want V(x(¢)) nonincreasing or decreasing
¢ V *keeps" x(¢t) bounded or “makes" x(¢t) > O

¢ In fact, V merely predicts the behavior of x(¢)




Suppose V is Radially Unbounded

e If V <0and V is radiall y unbounded, then all trajectories are
bounded

¢ No finite escape, and thus global existence

e If V <0and V is radiall y unbounded, then xis globall y AS
(GAS)

¢ GAS < LS + global convergence

How can we construct useful V’s? 2 ways.



1) Use x(¢) to Construct V

Persidskii, 1938; Massera, 1949; Malkin, 1952; Ura, 1959 (converse theory)

For AS or GAS, if f is locall y Lipsc hitz, then we can construct
C® V with V <0

For LS, contin uous V may NOT exist even if fis C*®

¢ But, if fis locally Lipsc hitz, then we can construct lower
SEMIcontin uous V with V <0

How Is trajector y-based construction useful if x(¢) is not
available?

¢ Consider an approximate system with KNOWN trajectories

¢ For example, lineariz e the system and construct

Vixp) = fooo x'(H)x(®)dt = xg Pxg

A This Is L1M



2) Use f to Construct V

e Lagrang e-Diric hlet Method
¢ Predates L2M, 1788/1848

e Kraso vskii’' s Method

e Variable Gradient Method

e Constants of Motion

¢ Energy-Casimir Method

e ZuboVv’'s Method
¢ PDE

V(qaq.) = T(q,q')+U(q)

V)= fT(x)Pf(x)

V(x) =g (x)f(x)

V(x) = Y.[Aihi(x) + pihi(x)]

Vix)f(x) =—=h(x)[1-V(x)]

e There aren’t really very many useful methods!!

This explains the lack of success of L2M outside of contr ol




How to Define V? 2 Ways.

1) Use the trajector y x(¢): Need V lower semicontin uous

V(&) = limsup,_ o f[V (x(h, £)) — V(£)]

2) Use the vector field f: Need V locall y Lipsc hitz

V(x) = limsup,_o i[V(x + hf(x)) — V(x)]

If Vis Clthen |V (x) = V'(x) f(x)




Stability 1s qualitative .
How Can We Quantify [t?




How Can We Quantify LS?

e Suppose we can invert §(e) to obtain &(4)

o If [x(O)|| <6, then ||lx(t)| < ()
¢ This quantifies LS by means of a trajector y bound

¢ But doesn’'t use L2M



How Can We Quantify AS?

1) Use asublevel set {x : V(x) < c} to estimate the
domain of attraction

e Can we use L2M? \ . Asymptotic
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How Can We Improve Our

Stability Predictions?

Use Upgrades!




How Can We Upgrade from LS to AS?

® Barbashin/Kraso vskii, 1952; LaSalle, 1967

e DAMPED nonlinear oscillator mg +cq +kq> =0

¢ Energy Vig,q) = 24>+ %¢* and V(g,§) = —c4? <0

¢ So we have LS

e The INVARIANCE PRINCIPLE
upgrades LS to AS

e But V Is “def ective"

¢ That is, V < 0but we DON'T have V <0

But converse theory guarantees that a NONdefective V exists!!! : —(




How Can We Upgrade from AS to GAS?

Teel, 1992

GAS Is equiv alent to AS + global FINITE-TIME convergence to a
domain of attraction

Nested saturation contr oller for the doub le integrator

u=1v(q,q) =-—sat.(q + sate;2(q + q))

Splice the
trajectories

Note that we did NOT construct a radiall y unbounded V

¢ Hence local V is defective for GAS! : —(



How Can We Upgrade the Speed of Convergence?

1) Show V satisfies a diff erential inequality V <p(V)

2) Then construct the COMPARISON system n = p(n)

e If p(0) <0 then V(x(t)) — 0 exponentiall y

¢ If a|lx||> < V(x) < B]x]|° then x(¢#) converges exponentiall y

e If no(n) < 0and foS % < oo then V(x(¢)) — Oin finite time

¢ And thus x(¢) converges in finite time

Next: L2M and Contr ol




What Was the Impact of

L2M on CLASSICAL Control?




Maxwell’ s Work on Stability

e Stability of Saturn’s rings
\.2\ ¢ Quartic linearization

A Fortunatel y, biguadratic - trivial

e Stability of governors
¢ 5th-order linearization - not trivial
¢ Obtained only necessar y conditions

¢ Motiv ated the Adams prize
competition at Cambridg e in 1875




Routh

® Routh, 1877 = 1892 - 15

e Routh considered the stability of a general polynomial

ap ar» as ag

aly a3 as ay

¢ p(s) =s"+a,_1s"t+ -+ +ag >
. - —1
¢ Derived a necessar y and sufficient s"
condition for stability 5
s

¢ Note: No mention of contr ol

bo by bs bg

e His deriv ation was based on the Cauchy inde x theorem

¢ Not based on L2M
A Predates L2M

Is there an L2M proof of the Routh test?




Yes! Parks, 1962 = 1892 + 70

1)

2)

3)

4)
o)
6)

Compute Routh table parameters 1, b1, by, b1b3, bobs, b1b3bs, . ..

Construct the tridia gonal Schwarz matrix A =

0

1

Solve the Lyapunov equation A'P 4+ PA+ R =0 with

0 0 O " bibobs
R=| o o o for P = 0
0 0 2b7 0

Define V(x) = xT Px, whic h implies V(x) = —x' Rx

Since R > 0, get V < 0, whic h proves LS

Use invariance principle to upgrade to AS

0
b1b;
0

0]
0
b1

Since R ¥ 0, after all this, V is defective!!

- —(

> 0




Nyquist Test

® Nyquist, 1932 =1892 + 40

e In 1927, Harold Black invented the negative feedback amplifier
¢ Unlike positive feedback amplifier s, his circuit was stable

¢ Patent office was skeptical and treated negative feedback
like perpetual motion o)
A They demanded a prototype! |

e Nyquist test provided the crucial
frequenc y domain insight

¢ Note: Loop closure stability test

e Like Routh, his proof was based on the Cauchy inde x theorem
¢ [NOT on L2m |




Let’'s Review Absolute Stabllity

® Lur'e/P ostnik ov, 1944

e Feedback inter connection — G

¢ M

e ¢(y,t)Is amemoryless time-varying nonlinearity in a sector @




Absolute Stablility Tests

e Bounded real (small gain)
|G| < 1/F1| = | GAS for all NLTV ¢ € &y,

e Positivity
ReG > —1/F;| = | GAS for all NLTV ¢ € &,

e Circle

Re 77c > 7= | = |GAS for all NLTV ¢ € &

e For each test |V(x) = x" Px

¢ Get P from KYP conditions or a Riccati equation

¢ |...and it's the SAME V for ALL ¢ In the sector &

How do we REDUCE conser vatism for time-INVARIANT ¢(y)? § o



Introduce a Multiplier!

® Popov, 1961

e Insert Z(s) = 1+ as to restrict the time variation of ¢

¢ |[ReZ(s)G(s) > —1/F,| = [GAS for all NLTI ¢ € &

o [Vyx)=x"Px+a [ ¢(c)do

¢ V, depends on ¢ so we actuall y have a FAMILY of V’s

e Furthermore , we can construct Z to further restrict ¢
¢ Slope bounded
¢ Monotonic
¢ Odd




How Can We Allow Only LINEAR ¢(y) = Fy

® Narendra, 1966; Brockett/Willems, 1967; Thathac har/Srinath, 1967

e Construct a SPECIAL Z; that DEPENDS on G

¢ |ReZs;G > -1/F,| < |GAS for all ¢(y) = Fy, F € [0, Fy]

4 y
_’. G
o |Vi(x)=x"Px+ Fy'y _
¢ A FAMILY of V's
F -
e This V proves the Nyquist test,
¢ and completes along and fruitful application of L2M :—)

e But a L2M proof of MULTIVARIABLE Nyquist is open!

Next: Let's include performance




Use Absolute Stability to Bound Performance
® Bernstein/Had dad, 1989

oz=GFw w B 11 z

¢ Small gain uncer tainty omax(F) <y
¢ Gpr~(A+BFC,D,E)

e Construct V(x) =x"Px Lo ..
¢ 0O=A"P+ PA+|y?PBB'"P+C'C|+E"E

¢ Then ||Gr|l> <tr D" PD for all uncer tain F

¢ Guarantees robust stability with a bound on worst-case
H, performance

Speaking of Hy, let’s turn to MODERN contr ol




How HAS L2M Contrib uted to

Modern Contr ol?




Stabilization Based on Linearization Only

o i=f(x,u), Cf, u=y@x), x=f(x¥x)

¢ f(xe,ue) =0 with linearization x = Ax + Bu

e Sufficient condition
¢ |If (A, B) is stabilizab le, then x.is AS’ble with C* ¢

¢ Not necessary: x =—-x3+xuis ASwith u=v(x)=0

e Necessary condition

¢ |If xcis AS’ble with C! ¢, then (A, B) is CLHP stabilizab le

¢ Not sufficient: x=x?+4+x°uhas A=0and B=0

To do better, let’'s use f directl y




Stabilization Based on the Vector Field

® Brockett, 1983

e Necessary condition
¢ |If xcis AS’ble with C° ¢, then 0 e int f(N (xe, ue))

¢ Not sufficient: x = x + x3u (need discontin uous ¥)

e How can we use this result?
¢ If 0 ¢int f(N(xe, ue)), then stabilization is impossib le with
contin uous feedback contr ol
¢ And the same result applies to DISCONTINUOUS contr oller s
with Fillipo v solutions

e Hence we get convergence but not LS with contin uous contr ol
or Fillipo v solutions

So what do we do?




Use Time-Varying Feedback!

® Nonholonomic integrator: Brockett 1983, Pomet, 1992, Bloc h/Drakuno v, 1996

X1 =Ujq, X2 = U, X3 = XoUq1 — X1U2

e Since (0,0, x3) ¢ f(R3), origin not AS’ble by CONTINUOUS ¢

e Origin Is locally ATTRACTIVE but not LS using DISCONT ¢

¢

Y1

= —ax1 + BxoSign(xs) Yo = —ax — Bx1SgN(x3)

e Also, origin is AS’ble by contin uous TIME-VARYING ¢

¢

¢

Y1

= —x1 4+ (x3 — x1x2)(SINt — COS¥t)

Y2

= —2x7 + x1(x3 — x1x2) + (COS?)x1(x1 + (COSE)(x3 — X1X2))

V(x,t) = [x1 + (COSt) (x3 — x1X2)]° + 4x5 + (x3 — X1X2)*

What about discontin uous and TV contr oller s in applications? y




A Multibod y Attitude Control Problem

. . . miliuq malouo
—/ —N/ 0 =
<1 1, X2 29 J+m1z2+moz5 J+m1z2+moz5

e The system is contr ollab le but (z1, z2, 0) ¢ int f (N (xe, ue))

¢ Requires either DISCONTINUOUS feedback or
TIME-VARYING feedback

Now, let’s use L2M for stabilization




ldea: Use uto make V <0

® Jurdjevic/Quinn, 1978; Artstein, 1983; Sontag 1989; Tsinias, 1989

e Consider x=f(x)+gx)u, u=1v(x)

f3u:V (X)[f(x)+ gx)u] <O0,then x,i1s AS’ble with C>*\{0} v

ViV H+ (Vg
V'g

IS a univer sal contr oller

o Y=

¢ V==YV Z+{V'g*<0

o x =x + x3u

u=vyYx)=—-x21++/1+x2

e Vis a CONTROL LYAPUNOV FUNCTION (CLF)

Are CLF contr oller s optimal?




Minimiz e J (xo, u) = [, L(x,u)dt with % = f (x, u)

® Kalman, 1964; Moylan/Ander son, 1973; Freeman/K okotovic, 1996

e Hamilton-Jacobi-Bellman vyields the feedback contr ol

¥ (x) =argmin, [L(x,u) + V'(x) f(x, u)]

e The cost-to-go Vixg) = fOTL(x, Y(x))dt]| Is a
VALUE FUNCTION

e Value functions <«— contr ol Lyapuno v functions
¢ Quadratic L yields LQR or H, synthesis (linear contr oller s)

¢ Exponential-of-quadratic L yields worst-case or He
synthesis (linear contr ollers)

¢ L =1yields minim um time synthesis (nonlinear contr ollers)

What's special about minim um-time contr ol?




Two Things!

e Consider |mg = u | with bounded u

1) Minimum-time control u = ¥ (q, q) is DISCONTINUOUS
(in fact, Iit’s bang bang)

2) And the states converge in FINITE TIME

What else is finite-time convergent?




The Oscillator with Coulomb Friction

mq + csign(q) + kg =0

e These dynamics are DISCONTINUOUS
¢ And the states converge in FINITE TIME

Are CONTINUOUS dynamics ever finite-time convergent?




Consider a Leaky Bucket




h =—-B«~h| where ﬂé\/ 28

(D/d)*—1

e Vector field is contin uous, but NOT Lipsc hitzian at h =0

¢ Nevertheless the solution is unique |h(t) = (V/ho — %;Bt)2

¢ And all trajectories converge to zero in FINITE TIME
A As expected!!

e Note that finite-time convergence REQUIRES non-Lipsc hitzian
dynamics ...

¢ ...since trajectories are NOT UNIQUE in reverse time

Let’s use L2M to PROVE finite-time convergence




To Do This, We Need a “Natural" V

e T'(xp) =time to converge from xp = time to go

¢ | T(x(®) = T(xp) — ¢t and therefore T(x(¥)) = -1

A But T(0) = 0and thus T is not contin uous

e However, let | V(x) = T?(x) |so that V = —2T, which IS
contin uous and negative definite

e Now use the comparison lemma

¢ |V satisfies V= =24V <0

¢ OE % < oo upgrades to finite-time convergence via V = T*

Next, let’s finite-time STABILIZE with a contin uous ¥




Consider the Double Integrator Again

e CONTINUOUS controller u = y(q,q) = —q'°>—4*/3
¢ Closed-loop system mg+ ¢+ ¢>=0

o |V(g,4q) = 24¢°° + m4?

¢ V=—¢*<0gives LS
¢ Invariance principle upgrades to AS
A But V is defective : —(

Let’s prove finite-time convergence




e The system x = f(x) is HOMOGENEOUS of DEGREE r with
respect to the DILATION A =diag(a’, ..., a"™) if

f(Ax) =a"Af(x)

¢ Familiar case A =al yields f(ax)=a""f(x)

e Theorem |FTC < ASandr <O

¢ mg+q¢2+qg¥>=0is AS
«®> 0

¢ With A=|:
0 a3

], r=-—-2<0

¢ Hence finite-time convergent

e Negative-degree homog eneity upgrades from AS to FTC

4 Bhat/Bernstein, 1997



What Do We Do If Some States
Don’'t Converge?

ldea #1. Ignore Them




P —ro?+ &2 0 Orbital Motion 0 = ‘ff””
r

e 0(t) »> oo but luckily 6(¢) doesn’t appear

¢ So ignore It!

e Constants of motion

2 1262 7}
¢ Energy E = — + - —
2 2 r

¢ Angular momentum h = r2f

e For CIRCULAR orbit define |V (r, 7, 0) = (E — E.)? + (h — h¢)?

¢ V =0and thus the circular orbit is LS

Can we always ignore states that don’t converge?



No: Consider Time-Varying Systems

o x = f(x,?)

e Introducing x,,1 =1 yields X = f (@) = [ f(x’ic””) ]

¢ whic h “looks" time-in variant

e But x,,1(t) =t — oo as t — oo (fairly obvious)
¢ AND, you canNOT ignore ¢!

ldea #2: Require stability wrto only PART of x




Partition x = (x1, x»)

® Rumyantsev, 1970; Vorotnik ov, 1998

e Get partitioned dynamics |x; = fi(x1, x2) X2 = fo(x1, x2)

e Define a PARTIAL equilibrium xq¢ Satisfying
fl(xle, x2)=0 for all X2

¢ Consider ONLY x1(¢) — x1e

e Theorem: AsSsume xic IS a strict minimiz er of V(x1)

¢ | V'(x1) f1(x1, x2) <0 = PARTIAL Lyapuno v stability

¢ | V'(x) fi(x1, x2) < 0 = PARTIAL asymptotic stability

Are there any useful applications of partial stability?




The Controlled Slider -Crank!

m0)0 + c(0)62 = u

e Choose u = ¥ (0, 0) so that 6(t) —> 64 (constant angular
velocity)

¢ But this implies 6(¢) ~ et —> 00

e However, since m(0) and c(#) depend on €, we canNOT ignore 6
¢ AND, since 0(t) = oo,
¢ |we canNOT get AS but we CAN get PARTIAL AS

Next, let’s require that all states converge to SOMETHING



Consider the Damped Rigid Body

e | NONE of equilibria are AS!!

e Since ¢ — 0, we have partial AS wrto ¢
e AlsO ¢ — ¢, Where ¢, IS determined Dby initial conditions

e So all states converge to SOMETHING

What kind of stability is THIS?




This i1s SEMISTABILITY

® Campbell, 1980

e Suppose we have a CONTINUUM of equilibria

e A LS equilibrium is SEMISTABLE if every nearby trajector y
converges to a (possib ly diff erent) LS equilibrium

e Sandwich property: AS =— semistabilty = LS




How Can We Analyze Semistability?

® Bhat/Bernstein, 2001

Not Convergent Convergent (SS)

e Assume x.is alocal minimiz er of V.and V <0

¢ If fis NONTANGENT to the O level set of V near x,,
then x. IS semistab le

e Note that V need only be POSITIVE SEMIDEFINITE at x.

Are there any interesting applications of semistability?




Mic haelis-Menten reaction |[S+ E Z:l C E P+ E
2
x1 = [S x1  =koxp — kix1x3
8 ) = [E] xp = —(ko+k3g)xp + kix1x3
x3 2 [C] %3 = (k +k3)xp — kyxqxs
x4 = [P] x4 =kax

e All states are nonnegative and all (0, O, x3, x4) are equilibria

e Let's choose V = ax; + x, > 0 (semidefinite) and thus V <0

¢ Note that LINEAR V Is allowed since all states are
NONNEGATIVE

e Nontang ency implies that all equilibria are semistab le

¢ and [S] — 0,

[E] — 0,

[C] = [Clw, [Pl — [Pl

¢ where [C], and [P]., depend on initial conditions




Is Anything Else Semistab le?

e Compar tmental models

¢ Mass transpor t
A Biological systems

¢ Energy transpor t
A Thermod ynamics

Could semistability possib ly be useful for ADAPTIVE control? | =




Simplest Adaptive Stabilization Problem

e Consider the uncertain system |x = Ax + Bu u=—-Kx

¢ Assume there exists unknown Kssuch that A + BKI1s AS

e Consider the control update |K = BT Pxx"

o Let V(x, K) =x"Px +tr (K — K" (K — Ko SO V(x, K)=—x"x
¢ Hence we have LS

¢ Invariance principle implies x - 0

e | Nontang ency implies semistability and K — K,

¢ K. depends on initial conditions

Note that B must be known




What Do We Do When B i1s Unkno wn?

® Nussbaum, 1983:; Morse, 1985

e Consider |x = ax + bu | where sign(b) is unkno wn

e We canNOT use Iincreasing gain k with k=x?and u = kx

e Instead we use increasing gain k with k = x2 and OSCILLATING

contr ol amplitude |u = k?(cosk)x

e Define INDEFINITE V
V(x,k) = e+ x>+ (a + 2bcosk)k + bk?sink — 2bsink

¢ Every sublevel set of V is a union of disconnected compact
sets

¢ V =—e*x2 <0, which implies x is bounded

¢ | Nontang ency implies semistability and k — k.




Output-Feedbac k Adaptive Stabilization

e Consider minim um phase G with relative degree 1

y = Gu u=—ky k = y?

e Scalar case: V(x,k) =e* + 1x%+ 5-(a + bk)?
¢ V=—eF%y2 <0implies x is bounded and y — 0

¢ f is nontang ent to the zero level set of V
A Hence semistability holds and £k — k.

What happens if y is noisy?



Noise Is the Scour ge of Adaptive Contr ol!!

e Consider minim um phase G with relative degree 1

e Noise w causes k — oo!!

e Damped modification & = —yk + y2 causes bursting

What can we do about this?




Use Chattering Control for Noise Rejection

§g+aq+aq=u—zu+ w; y=4q+ wy

e a; and a, are unkno wn, z < 0 but otherwise unkno wn

e w; and w, are bounded with UNKNOWN bound

g = —=Agi+Yy filters y
ui = 2qi +u filter s u
31 =  —Xiqf estimates az
(;iz =  —Xiqf estimates a»
& = kad?|F] estimates bound on wy and w>
7 = —ifuf(—ﬁ)?’/ 2 estimates z
u = (A+2ut+ (a1 — fo)gr + (a2 — f2)q; — asign(x;)
e
chattering

So what's V?




Here's VI

® Sane, Bernstein, Sussmann, 2001

- S D — -

qf qf
qf qf —~ d
e V)=|a | Pl & | + V-2-——
) ap —Z
. . S —
L= o = == o =

W (2)
¢ W() confines z <0since z <0

¢ Wis a LYAPUNOV WELL

e V is INDEFINITE

¢ But V(x(¢)) < ye~? along trajectories
¢ Hence V(x(t)) IS ASYMPTOTICALLY NONPOSITIVE

e Use BARBALAT'S LEMMA to prove y — O

¢ ...and all states are bounded : -)



Let’s Recapitulate




We Acknowledg ed the Weaknesses of L2M

e While Lyapuno v-like ideas are the basis of classical stability
analysis (e.g., the Lagrang e-Diric hlet stability condition),
L2M per se has had relativel y few successes outside of contr ol

e In general, it's simpl y too difficult to construct Lyapunov
functions using only the vector field




And We Celebrated Its Successes

e L2M is immensel y successful in contr ol theory
e While it had no impact on CLASSICAL control ...

e ... It's the heart and soul of MODERN contr ol, where we

synthesiz e contr oller s to suit Lyapuno v functions of CHOSEN
form

¢ The ablility to construct the contr ol and the Lyapunov

function TOGETHER is what makes L2M so successful In
contr ol

¢ L2M is the backbone of optimal, robust, and
adaptive contr ol




We Traveled from Infancy ...

V <0 = x.is Lyapunov stable

V <0 = x.is asymptoticall y stable




... 10 Potency

Invariance principle
Comparison lemma

Contr ol Lyapuno v functions
Homog eneity

Partial stability

Semistability

Nontang ency

Semidefinite and indefinite V'’s
Asymptotic nonpositivity
Barbalat’ s lemma

Lyapuno v wells




What Lies In the Future for L2ZM?




L2M Beyond ODE’s

e Discontin uous dynamics and diff erential inclusions
¢ Nonholonomic dynamics
¢ Relay and sliding mode contr ol

¢ Essential in contr ol

e PDE’s
¢ Stablility of solitons
¢ Hysteresis Iin smart materials
¢ Flow stabilization

¢ Many other applications




Input-Output Analysis Based on L2M

e Dissipativity (willems)
¢ Storage function Vg, supply rate r(u, y)
A Vs(x) <r(u,y)
¢ Nonlinear positive real theory (passivity)

¢ Nonlinear bounded real/H ,, theory (none xpansivity)

e Input-to-state stability (Sontag)
¢ GAS: |x@®| <b(lx©),t) < V < —a(x)
¢ ISS:  Ix®| <b(xO)|,?) +suplu] = V < —a(x) +bu)




Trends In Nonlinear Control Based on L2M

Receding horizon contr ol

¢ CLF’s to obtain suboptimal HJB solutions

Problems with contr ol and state constraints
¢ Anti-windup and contr ol saturation

¢ Invariant set methods for state constraints (Gilber t/Kolmano vsky)

Gain scheduling methods
¢ LPV methods
¢ Equilibrium switc hing methods (multiple V’s)

Impulsive dynamics

¢ Hybrid systems (Lakshmikantham, Haddad/Chellaboina/Bhat)

¢ Resetting contr oller s (Hollot/Chait)



Specializ ed Applications of L2M

e Nonnegative systems

¢ Chemical kinetics

A Zero deficienc y theorem for rate-independent
semistability (Feinber g)

e Emergent behavior of large scale, inter connected systems

¢ Thermod ynamics

A Analyze energy flow and entropy as emergent proper ties
A Linear storage functions and supply rates (Haddad/Chellaboina)

¢ Swarm dynamics




Some Research Questions

Can we do more with L2M in discrete time?

¢ Discrete-time adaptive contr ol, especiall y for disturbance
rejection (many patents due to lack of theor y!)

Can we use set stability (zubov, Bhatia/Sz ego) t0 prove LS of an
elliptical orbit?

¢ Poisson and orbital stability

Is there an L2M foundation for averaging?

Is there an L2M proof of the Poincare stability theorem?
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