
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. 2011; 25:374–378
Published online 24 February 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.1235

SHORT COMMUNICATION

Comments on ‘Output feedback adaptive command following
and disturbance rejection for nonminimum phase uncertain

dynamical systems’

Dennis S. Bernstein1,∗,†, Anthony M. D’Amato1, Jesse Hoagg2 and Mario A. Santillo3

1Aerospace Engineering Department, University of Michigan, 1320 Beal Ave., Ann Arbor, MI 48109, U.S.A.
2Mechanical Engineering Department, University of Kentucky, 271 Ralph G. Anderson Building,

Lexington, KY 40506, U.S.A.
3ITT Geospatial Systems, 800 Lee Rd, Rochester, NY 14606, U.S.A.

SUMMARY

We provide numerical examples and analysis to show that the adaptive controller given by Theorem 3.1
of Yucelen et al. [1] may fail to stabilize plants under the stated conditions. Copyright � 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Theorem 3.1 of Yucelen et al. [1] provides an adaptive controller for a model reference adaptive
control problem. This result implies that the error e(t)�x f (t)−xm(t) converges to zero, where
x f (t) is the state of a nonminimal-state-space realization of the plant and xm(t) is the state of the
reference model. In addition, Theorem 3.1 implies that the state x p(t) of the plant in its minimal-
state-space realization is bounded. In [1], Theorem 3.1 is illustrated by several numerical examples.
For each example, the error e(t) is shown to converge to zero, and the plant output y(t) is shown
to follow the command.

Theorem 3.1 is of interest because the controller does not require (1) knowledge of the sign of
the high-frequency gain of the plant; (2) any assumptions on the locations of the poles or zeros
(e.g., the plant need not be minimum phase); or (3) knowledge of any poles or zeros of the plant.
Stabilization with this limited level of modeling information is shown in [2] to be possible if the
order of a stabilizing controller is known. However, to our knowledge, Yucelen et al. [1] are the first
to provide an explicit controller. As a point of comparison, the controller in [3] does not require
knowledge of the sign of the high-frequency gain, but is limited to minimum-phase systems.

In this note, we modify Example 5.3 of Yucelen et al. [1] in several ways, and we show that
the plant output y(t) may be unbounded, and thus the state x p(t) may be unbounded. We trace
this observation to an error in the proof of Theorem 3.1.
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2. NUMERICAL EXAMPLE

Example 5.3 of Yucelen et al. [1] is the plant

ẋ(t) = Ax(t)+ Bu(t), (1)

y(t) = Cx(t), (2)

where

A=
[

0 1

−20 0.5

]
, B =

[−2

1

]
, C = [−1 0], x(0)=

[
2

−1

]
. (3)

In addition, the command r (t) driving the modified reference model (47) of Yucelen et al. [1]
is identically zero. The poles of A are given by 0.25±4.4651j . Figure 1 verifies the numerical
results shown in Figure 5 of Yucelen et al. [1]. In particular, the plant output y(t) converges
to zero.

We now consider two variations of (3). For both examples and unless indicated otherwise, we
use exactly the same reference model, adaptive parameters, initial conditions, and command that
are used for Example 5.3 in [1].
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Figure 1. Closed-loop response for Example 5.3 of Yucelen et al. [1] using the data given by (3). These
plots verify the numerical results shown in Figure 5 of Yucelen et al. [1].
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Figure 2. Closed-loop response for the adaptive controller presented in Example 5.3 of Yucelen et al. [1]
with B replaced by −B, which changes the sign of the high-frequency gain. This information is not required
by the assumptions of Theorem 3.1 of Yucelen et al. [1]. This figure indicates that y(t) is unbounded.

Example 1
Let

A=
[

0 1

−20 0.5

]
, B =

[
2

−1

]
, C = [−1 0], x(0)=

[
2

−1

]
. (4)

This example is identical to (3) except that B is replaced by −B, which changes the sign of the
high-frequency gain. Application of the adaptive controller of Theorem 3.1 of Yucelen et al. [1]
requires no modification in this case. The numerical results shown in Figure 2 indicate that y(t) is
unbounded.

Example 2
Let

A=
[

0 1

−20+� 0.5

]
, B =

[−2

1

]
, C = [−1 0], x(0)=

[
2

−1

]
, (5)

where � is a nonnegative constant. This example is identical to (3) except that the parameter �
modifies the locations of the poles so that their real part is constant but their imaginary parts decrease
in magnitude as � increases. In particular, both poles become real and equal for �=19.9375.
Figure 3 indicates that y(t) is unbounded for �=15. Finally, Figure 4 shows the upper bound
for the values of the tuning parameter �E for which y(t) is bounded. As shown in Figure 4, this
range decreases as � increases. In particular, for ��15.6, there are no values of �E for which y(t)
converges to zero.
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Figure 3. Closed-loop response for the adaptive controller presented in Example 5.3 of Yucelen et al.
[1], where the imaginary parts of the eigenvalues of A are decreased from ±4.47 to ±2.22. These plots

indicate that y(t) is unbounded.
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Figure 4. The range of the tuning parameter �E for which the plant output y(t) is bounded as a
function of �. Note that �E decreases as � increases. Furthermore, for ��15.6, there are no values

of �E for which y(t) converges to zero.
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3. DISCUSSION

The model reference adaptive control problem in [1] introduces a reference model in Equation (44).
However, the error signal e(t) used by the adaptive controller of Theorem 3.1 refers to the modified
reference model (47), which differs from (44) by the feedback injection term �(t)�− Ê(t)x f (t),
where Ê(t) is given by (48) of Yucelen et al. [1]. The last sentence of Theorem 3.1 states:
‘Furthermore, x p(t), t�0, satisfying (1) is bounded for all x p(0)∈Rn .’ This statement is discussed
in the previous paragraph of the proof of Theorem 3.1, which refers to the asymptotic stability
of (47). However, there is no proof that any equilibrium of (47) is asymptotically stable or that
its state xm(t) is bounded. More precisely, the assumption that the dynamics matrix Am of the
modified reference model (47) is asymptotically stable is not sufficient to conclude that xm(t) is
bounded. This discrepancy is due to the feedback injection term �(t), which is included in the
modified reference model (47). Consequently, xm(t) may be unbounded, and thus, the state x f (t)
of the nonminimal state-space realization may follow the unbounded reference model state xm(t),
while the error e(t) is guaranteed to converge to zero.

4. CONCLUSIONS

Modifications of Example 5.3 of Yucelen et al. [1] show that the output y(t) of the controlled plant
may be unbounded. Theorem 3.1 of Yucelen et al. [1] guarantees that the error defined in terms of
a modified reference model converges to zero. However, this modified reference model may have
unbounded behavior, thus explaining why the modifications of Example 5.3 exhibit unbounded
response. Consequently, the statement in Theorem 3.1 of Yucelen et al. [1] that the state x p(t) is
bounded is false.
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