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Specifying Preinitial Conditions
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he correspondence between transfer functions and
state-space realizations is a bedrock principle in sys-
tems and control theory. We routinely extract transfer
functions from state-space realizations and, conversely,
construct realizations of transfer functions. In doing so, we
recognize that a transfer function does not capture initial
conditions and thus ignores the free (unforced) response of
the system, that is, the response to initial conditions. Aside
from this consideration, the equivalence is viewed as exact.

In the time domain, we can, as an alternative to state-
space models, express the system as an ordinary differen-
tial equation of higher order, that is, with derivatives of
order higher than one. For mechanical systems with iner-
tia, models with second derivatives are widely thought to
be more natural than state-space models, despite the fact
that much control theory is most conveniently developed
for the latter representation.

Given the single-input, single-output (SISO) transfer
function G(s) = n(s)/d(s), the degree of the denominator
d(s) determines the highest-order derivative of the output
appearing in the differential equation, while the degree of
n(s) determines the highest-order derivative of the input.
The presence of differentiated inputs is a distinguishing
feature compared to state-space models, in which differ-
entiated inputs do not appear.

The purpose of this note is to stress the critical role of
the initial conditions of the input when the differential
equation involves differentiated inputs.

A SIMPLE EXAMPLE
We consider the second-order forced ordinary differential
equation (ODE) in the scalar variable g(t) given by

q(t) +4(t) +q(t) = u(t) + ut), t=0, M
with the initial conditions
q(0) =0,  g(0)=0. 2
The input signal u(t) is taken to be
uty=e', t=0. ®3)

We wish to determine the solution to (1)—(3).

1066-033X/07/$25.00©2007IEEE

A difficulty with (1) is immediately evident, namely,
how can we specify the values u(0) and (0)? Although
u(t) +u(t) =0 for all £t > 0, the value of u(0) + 1(0) is not
clear in light of the fact that the initial-value problem is
concerned only with time f > 0. In short, is there a discon-
tinuity at #(0) that causes an impulse in 1(t)?

LAPLACE TRANSFORM SOLUTIONS
Taking the £ Laplace transform of (1) yields

U(s) + sU(s) — u(0") + g(O0") + sq(0) + g(0™)

Q(s) = Prstl

)

where U(s) = L£{e7!} = 1/(s+ 1). Thus, U(s) + sU(s) = 1.
If we choose to interpret (2) as the post-initial conditions
g0t =0, 40" =0 ®)
then, along with u(0") = 1, it follows that Q(s) = 0, and
thus the solution to (1) and (5) is q(t) = 0 for all £ > 0.

Alternatively, using the £_ transform, as preferred in
many texts [1]-[9],

cifw)=Fo = [~ foear

where the domain of integration fully includes the origin,
yields

1—u07)+4(07) +s9(07) +q(07)

= 6
Q) Ea—— ©)

If we choose to interpret (2) as the pre-initial conditions
q(07) =0, q(07) =0, @)

we find
1—u7)

= 7, 8
Q(s) 2rstl ®)

where 1(07) is the pre-initial condition on u.
If we choose to define u(t) continuously for t < 0, then
u(07) = 1, and the solution to (1) and (7) is

q(t)y =0forall t >0, )
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State-Space Formulation
ransformation to state-space coordinates has the dubious
benefit of burying the pre-initial conditions of the input. To
circumvent the problem of specifying the value u(0) + u(0), we
ignore initial conditions and realize the transfer function

s+1

G =
® s24+s+1

(S

corresponding to (1) in state space. A minimal realization of (S1) is
given by

X = AX + Bu, (S2)
q = Cx, (S3)
where
Al —QG+u Al 0 1
X_[q+Q—u]’ A_[—l —1}*
A O A
B:[l], C2[1 1]

As a check, taking the Laplace transform of (S2) and (S3), yields

s+1
s24s+1°

[X1(0) + x2(0)]s + x2(0)

e = s?2+s+1

The free response of (S2) and (S3) thus involves the value
u(0), although it is embedded in the initial state x(0). Howev-
er, it remains to be determined whether the correct value is
u(0™) or u(07). In particular, this transformation merely
obscures the issue since the initial condition of the state is
now suspect. Consequently, the use of transfer functions to
solve differential equations such as (1)—(3) ultimately requires
that the pre-initial conditions of the input be specified. In every
instance the user is required to determine the physical ratio-
nale for specifying these values.

as above. On the other hand, if we define u(t) = 0 for all
t <0, then u(0~) = 0, and we have

1
QO =377 1o
which yields
q(t) = %e_t/z sin [(«/g/Z)t] . (11)

The different solutions we obtain using the £_ trans-
form arise from the different pre-initial conditions that we
assume in each case. In effect, the two different solutions
arise from the fact that we are solving two different prob-
lems. So the question remains: How do we determine the
pre-initial condition u(07)?
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HOW TO SPECIFY PREINITIAL CONDITIONS

When using the £_ Laplace transform, we obtained two
different solutions of the ODE (1) depending on how the
pre-initial condition u(07) is specified. In particular,
1(07) = 0 is assumed in [3, p. 80]. But on what rational basis
is the value u(0™) determined in general?

In defining a function u(t) on the interval [0, c0), the
pre-initial values of u(t) and its derivatives are required
pieces of information [10], [11]. This information cannot be
“left to the reader.” Thus, the input function

u(t) = e,

t>0, u0)=1,

which is used to find (9), and the input function

u(ty=e', t=0, u07)=0,
which is used to find (11), are different functions. As
such, they produce different solutions to (1) and (2). The
unilateral Laplace transform doesn’t care what u(t) is for
t <0, but the value of u(07) is a special piece of extra
information that we require to be able to take derivatives
on the interval [0, 00).

The need for pre-initial information is explained by the
brief theory of generalized functions in [11]. If we want to
define a function on the interval [0, o0), and we want to be
able to take derivatives, then we need complete informa-
tion at £ = 07. Since these pre-initial values are not implied
by the behavior on t > 0, this extra information must be
explicitly included.

CONCLUSIONS

When a differential equation has differentiated inputs, the
pre-initial values of the input must be specified in order
for the problem to be well posed. These values are not
determined by the mathematics but rather by the physical
situation. The issue persists in state-space models, even
though no derivatives of the input appear explicitly (see
“State-Space Formulation”). Consequently, care must be
taken to determine the pre-initial conditions to obtain the
physically meaningful solution.
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he final value theorem is an extremely handy result in

Laplace transform theory. In many cases, such as in

the analysis of proportional-integral-derivative (PID)
controllers, it is necessary to determine the asymptotic value
of a signal. The final value theorem provides an easy-to-use
technique for determining this value without having to first
invert the Laplace transform to determine the time signal.

The standard assumptions for the final value theorem
[1, p. 34] require that the Laplace transform have all of its
poles either in the open-left-half plane (OLHP) or at the
origin, with at most a single pole at the origin. In this case,
the time function has a finite limit.

Although no limit exists when the Laplace transform
has a nonzero pole on the imaginary axis, some textbooks
note that the final value theorem can be used when the
limit is infinite. For example, in [2, p. 104], (1) given below
is used to obtain infinite limits of the closed-loop transfer
function for type-0 and type-1 systems with ramp com-
mands as well as for type-1 systems with parabolic com-
mands. Furthermore, [3, p. 96] states that, for poles at the
origin, (1) “gives the final value f(co) = oco” for a time
function f(#). In addition, [4, p. 567], allows poles in the
OLHP or at the origin.

The goal of this note is to publicize and prove the “infi-
nite-limit” version of the final value theorem. The version
we provide is a slight refinement of the classical literature
in that we require that s approach zero through the right-
half plane to obtain the correct sign of the infinite limit. We
first consider the case of rational Laplace transforms and
then state a version that applies to irrational functions.

FINITE-LIMIT CASE
Let y(#) be a signal on [0, 00), let (s) be its Laplace trans-
form, and define

y(oo) 2 Jim y(h

whenever this limit exists. By “exists” we mean that y(co)
is a real number and y(¢) — y(oo) — 0 as t — oo. We stress
that oo and —oo are not real numbers. For now, we assume
that J(s) is a proper rational function.
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Standard Final Value Theorem

Assume that every pole of §(s) is either in the OLHP or at
the origin, and assume that §(s) has at most a single pole at
the origin. Then y(co) exists and is given by

Y(00) = g% si(s). )

Note the “reversal” between t and s in that f - oo cor-
responds to s — 0. Note also the factor of s that precedes
7(s). A similar reversal occurs in the initial value theorem,
which includes a factor of s as well.

As an example, let §(s) = (3s+2)/(s(s + 1)). It thus fol-
lows from (1) that y(co) = 2. Indeed, y(t) =2+ et

To see how this result can fail when its hypotheses are
not satisfied, consider y(t) = sinwgt, where wy > 0, so that
#(s) = wo /(s> + a)(zJ). Since the poles of §(s) are not in the
OLHP or at the origin, the final value theorem cannot be
applied. Although lim, ¢ sj(s) exists for this example, the
limiting value 0 is useless since y(co) does not exist.

INFINITE-LIMIT CASE

We wish to extend the applicability of (1) beyond the
stated conditions on {(s). To do this, suppose that
y(c0) does not exist, but assume that lim o y(f) = 0o
or limi,o y(t) = —co. Let y(co) denote oo in these
cases. For convenience we say that y(oco) does not exist
but is infinite.

Note that this definition does not apply to signals such
as y(t) = elsin t. Alternatively, consider y(f) = ef, so that
y(oo) =c0. Since J(s)=1/(s—1) it follows that
lim,_, ¢ si(s) = 0, and thus (1) is not satisfied. However, the
following result encompasses infinite limits arising from
multiple poles at the origin. In the following statement, the
notation “s | 0” means that s approaches 0 through the
positive numbers.

Note that the limit s | 0 is consistent with the fact
that #(s) has poles only in the CLHP and is analytic in
the ORHP. Hence, the Laplace transform converges in
the ORHP and the limit can be taken along the positive
real axis, whereas the limit may not exist when taken
from the CLHP.
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