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ABSTRACT

Real-time simulation often requires a computer to
interact with external hardware in a dynamic loop.
Data must be sampled from input signals and incor-
porated into the numerical integration algorithm to
evaluate the derivatives of the state variables.
Also, data from the integration must be available for
external use with a minimum of delay. This paper
will show that, because of these requirements, cer-
tain numerical integration routines are best suited
for real-time simulation. A new fourth-order Runge-
Kutta routine designed for real-time use is presented
along with its derivation.

lKeywords: digital integration, digital simulationtechniques

INPUT-OUTPUT DIFFICULTIES IN CERTAIN INTEGRATION

SCHEMES

Consider the real-time integration of the system

where y(t) represents the state variables and r(t)
is the set of external input variables. To use a

numerical integration routine we assume, as is usual-

ly the case, that inputs can be sampled before each
evaluation of the state-variable derivatives and that
the evaluations of the derivatives take most of the

computing time. We also assume that the numerical

integration interval h is chosen to be as small as

possible. A lower bound on the size of h is usually
determined by the speed of the digital computer when
it is being taxed to keep up with real time. Thus,
in order to keep the integration accuracy at an

acceptable level, the smallest possible value must
often be used.

Suppose that the integration is performed with the
classical fourth-order Runge-Kutta method. This
routine has the form

In real time each evaluation of the state variable
derivatives must be accomplished in h/4 time units.
Note that the method requires the input value
r(tn + 2h) to evaluate fnl. This evaluation, however,
must be initiated at time tn + h/4. Similarly, the
fourth derivative evaluation, which begins at time
tn + 3h/4, requires r (tn + h), the value of the input
at the end of the interval. For these two derivative
evaluations some form of extrapolation is needed to
approximate the required input data when it is needed,
i.e., h/4 time units before it is available. The

extrapolation procedure, besides increasing the com-
puting overhead, results in reduced accuracy,
especially when the inputs contain high-frequency
components. This problem has previously been referred
to in the literature, e.g., on page 8 of Reference 2.

An alternative to the extrapolation of inputs is to

perform the classical fourth-order Runge-Kutta inte-
gration h/4 time units behind real time and then
extrapolate the output h/4 time units ahead to com-
pensate for the delay.
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The same sort of timing problem arises with the Adams-
Moulton predictor-corrector routines. For these

methods the end-of-interval input value r(tn + h) is

required at time tn + h/2, requiring extrapolating
ahead by h/2 time units.

ELIMINATING EXTRAPOLATION

There are integration routines which, when used for
real-time simulation, do not require extrapolation of
either input or output values. The Adams-Bashforth
predictors and certain Runge-Kutta methods are
examples.

It is well known that infinitely many different Runge-
Kutta formulas exist for each order of 2 or greater.
We are particularly interested in the second-order
formula (page 47 of Reference 4).

and the third-order formula (page 49,ibid.)

These formulas require sampled input data at equally
spaced intervals, and hence no extrapolation is need-
ed for real-time simulation. We note that these two
routines and the classical fourth-order formula are

&dquo;purely iterative&dquo; in that the evaluation of the
derivative fn2, i 1, requires only the preceding
value y~- -,.1. Compared to a method that is not

purely iterative, a routine of this form has the

advantages of fast execution and minimal storage
requirements.

The situation is not so fortunate for a fourth-order
method. It is shown on page 207 of Reference 3 that

any four-stage, fourth-order Runge-Kutta formula re-
quires r(tn + h) for the evaluation of the fourth
derivative. Si~ ce this derivative evaluation must

begin at time tn + 3h/4, we see that there cannot
exist a four-stage, fourth-order Runge-Kutta method
that does not require extrapolation when used for
real-time simulation.

DERIVATION OF A NEW FORt1ULA

We now derive a five-stage Runge-Kutta method that
has fourth-order accuracy but does not require extra-
polation. We shall choose the coefficients to be
small rational numbers with a minimal least common
denominator to facilitate numerical computation.
Also, zero values will be chosen wherever possible to
reduce execution time and storage requirements.

The derivation proceeds as follows: a five-stage
Runge-Kutta method has the form

where

Real-time operation requires that

To realize a fourth-order method, the remaining
fifteen parameters must satisfy twelve equations.
These equations are given on pages 17 and 18 of
Reference 1. Using (1), we can write these equa-
tions as follows:

By algebraic manipulation we find that the minimal
least common denominator of the coefficients

cp, ..., c4 satisfying I, II, III, and IV is 24.
If we choose
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the other coefficients are

If we now fix b21 and b43, the one nonlinear equation
(VIII) becomes linear and Equations V, VI, VII, and
VIII form a system of four linear equations in four
unknowns. For all possible choices of b21 and b43
the coefficient matrix of the resulting system is
singular (rank = 3). However, Equations V - VIII can
be solved, and they have infinitely many solutions if
and only if b21 and b43 satisfy

Choosing

and

to satisfy the above constraint and using the last
degree of freedom to choose

we obtain

The foregoing steps lead to the following integration
formula:

For the execution of this routine, note that fn2
need not be stored. After its computation it can be
entered into the equation for y +1. Also, the
memory space for fnl can be used to store fn3.
Unfortunately, no five-stage fourth-order formula

Table 1

exists that is purely iterative. We can see this by
setting

and using V- XII. Other routines can be derived,
however, by considering tradeoffs among execution
speed, memory requirements, and integration accuracy.

ACCURACY OF THE PROPOSED ROUTINE

Truncation error coefficients are useful indicators
of the accuracy of an integration routine. These
coefficients multiply the leading terms in the Taylor
expansion of the local, or one-step, integration
error. The relative importance of the various terms
in the expansion, and hence of their respective co-
efficients, depends on the system being integrated.
Two rough indicators of accuracy that are often used
to compare Runge-Kutta formulas are the sum of the
absolute values and the square root of the sum of
the squares. These values are given in Table 1 along
with those of the classical fourth-order formula for

comparison. The numbering of the coefficients cor-
responds to page 10 of Reference 1.

CONCLUSION

We have pointed out that certain second- and third-
order Runge-Kutta formulas may be well suited for
real-time simulation since they do not require extra-
polation. It is also important that these formulas
have approximately the same accuracy as the other
well-known Runge-Kutta methods of their orders (see,
for example, Reference 4).
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The proposed integration routine requires five
derivative evaluations per integration step as com-

pared to four per step for the classical fourth-order
Runge-Kutta method. Since most of the computing time
is used to evaluate the derivatives, maintaining real-
time speed with the proposed routine requires a step
size that is 25% larger than that used for the
classical fourth-order method. Assuming that both
routines have approximately the same truncation error
properties, this represents an increase in the local
truncation error by a factor of (5/4)5 ~ 3 for
asymptotically small h. Thus, since the proposed
routine eliminates the need for extrapolation, its
use is recommended for real-time simulation when the
inputs contain high-frequency components and the
derivative evaluations do not present an excessive
burden to the computer.
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