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Abstract 

In this paper we intrc,duce new bounds for the real structured singular value. The approach is based on absolute stability 
criteria with plant-dependent multipliers that exclude the Nyquist plot from fixed plane curve shapes containing the critical 
point - 1 ÷ 30. Unlike laalf-plane and circle-based bounds the critical feature of the fixed curve bounds is their ability to 
differentiate between the real and imaginary components of the uncertainty. Since the plant-dependent multipliers have the 
same functional form at all frequencies, the resulting graphical interpretation of the absolute stability criteria are frequency 
independent in contrast to the frequency-dependent off-axis circles that arise in standard real-p bounds. 
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I. Introduction 

The quest for less conservative and easily computable bounds for the real structured singular value remains 
as one o f  the primary goals of  robust control theory. The bounds given in [2], which are based upon frequency- 
dependent scaling matrices that exploit the block structure and phase restriction of  the real uncertainty, are 
now known to be closely related to frequency-domain absolute stability tests such as the Popov criterion 
[1, 3-6]. This relationship is based upon the fact that, for two-sided uncertainty, all of  these bounds involve 
the construction o f  frequency-dependent off-axis circles to enclose the Nyquist plot at each frequency. 

An alternative boulad for the real structured singular value that does not involve off-axis circles was given 
in [3]. For the case of one-sided uncertainty, the bound given in [3] is based on exclusion of  the Nyquist 
plot from a parabolic region that encompasses the critical point, thus ensuring stability. Transforming this 
parabola by means o f  an appropriate linear fractional transformation to address two-sided uncertainty yields 
an octomorphic (figure-eight-shaped) region. For two-sided uncertainty, stability is guaranteed by requiring 
that the Nyquist plot lies entirely inside the octomorphic region, which yields a bound for the real structured 
singular value. 

Unlike circle-based bounds, the critical feature of  the octomorphic bound for the real structured singular 
value is its ability to differentiate between the real and imaginary components of  the uncertainty. This difference 
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Table 1 
Exclusion-inclusion pairs involving fixed regions 

Exclusion region Inclusion region 

Half plane (positivity) Circle 
Parabola Octomorph 
Cissoid Nephroid 
Semi-cubical parabola Epicycloid 
- -  Hyperbola 

can be interpreted as being due to the judicious choice of a frequency-domain multiplier which is plant- 
dependent and which has the same functional form at all frequencies. This fixed functional form is reflected 
by the octomorphic region, which is independent of  frequency in contrast to the frequency-dependent off-axis 
circles that arise in circle-based bounds. 

In the present paper we develop new bounds for the real structured singular value by considering alternative 
regions in the Nyquist plane. For each choice of exclusion region in the Nyquist plane for one-sided uncer- 
tainty, we obtain a corresponding inclusion region in the Nyquist plane for the case of two-sided uncertainty. 
In this paper we show that the parabola-octomorph pair studied in [3] is only one of the many possibilities 
of  exclusion-inclusion pairs that yield bounds for the real structured singular value. Specifically, in this paper 
we consider exclusion of the Nyquist plot from a cissoid, which gives rise to an inclusion condition involving 
a nephroid. In addition, we consider exclusion from a semi-cubical parabola which corresponds to inclusion 
by an epicycloid (figure-eight-shaped). Finally, for the case of two sided uncertainty a hyperbolic region is 
also considered. These choices draw upon a rich heritage of special plane curves in mathematics dating back 
to antiquity [7, 9]. The cases we consider are summarized in Table 1, which includes the classical case of the 
positivity and circle criteria. 

As in [3], for simplicity of exposition our results are confined to the case of  a single uncertainty block of 
the form 31. Extensions to multiple block uncertainty will be reported elsewhere. 

2. Notation and mathematical preliminaries 

In this paper, we use the following standard notation and definitions. Let ~ and C denote real and complex 
numbers, and let ~nxm and C nxm denote real and complex n x m matrices. Let A T and A* denote the 
transpose and complex conjugate transpose of A. M/>0 (M > 0) denotes the fact that the Hermitian matrix 
M is nonnegative (positive) definite. The Hermitian and skew-Hermitian parts of an arbitrary complex matrix 
G are defined by He G ~ ½(G + G*) and Sh G ~ ½ ( G -  G*), respectively. An asymptotically stable transfer 
function is a transfer function each of whose poles is in the open left half complex plane. Let 

denote a state space realization of a transfer function G(s), that is, G(s) = C(sI-A)-IB+D. The parahermitian 
conjugate G-(s) of G(s) has the realization 

G (s) ~ L_BTID j. 

A square transfer function G(s) is called weakly positive real [3] if G(s) has no imaginary poles and 
He G(3~o) is nonnegative for all ~o c E. A square transfer function G(s) is called strict weakly positive real 
[3] if G(s) has no imaginary poles and He G(30~) is positive definite for all oJ c E. 
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3. Absolute stability criteria with plant-dependent multipliers 

In this section we consider a robust stability problem involving an uncertain matrix of  the form FIm, 
where F is a real scalar, in a negative feedback interconnection with the m x m asymptotically stable transfer 
function 

The uncertain scala:: F is assumed to satisfy O<~F<~M, where M E N is nonnegative. 
First we present :he following lemmas which are needed for the main result. 

Lemma 3.1. Let  G(s) be asymptotically stable, let H = H *  CC mXm, and let N E ~. Furthermore, define 

Z(s )  & (Ira - G(s)H)(Im - HG~(s ) )  - N ( G ( s )  - G~(s)) .  

I f  Z(S)(Im + MG(s) )  is strict weakly positive real, then det(Im + FG(3~o)) ¢ 0 for  all 0 <.F <,M and o3 E ~. 

Proof.  The result is immediate if M = 0. Hence, assume M > 0 and suppose that there exist o) E N and 
F E [0,M] such that det(Im + FG(3o))) = 0. Then there exists nonzero x ¢ C m such that FG(3cn)x = - x .  
Now, since F E [0, M] it follows that F 2 - F M  ~ 0 and 

x* G* (3o~ )(Im - G(3~o )H )( F 2 - F M  )(Im - HG* (3o~ ) )G(3~o )x <.0, 

which simplifies to 

x* [(Im - G(So~)H)(Im - HG*(sOJ) ) + He[M(Im - G(3~o)H)(Im - HG*(3~o))G(3cn)]]x ~ O. 

Alternatively, since Z(s)(Im + MG(s) )  is strict weakly positive real it follows that 

(1) 

x* [(Im - G(3•')H)(Im - HG*(3co) ) + He[M(Im - G(3~o)H)(Im - HG*(3~o) )G(3~o)] 1 x 

M N x .  
> 2 [(G(3c°) - G*(3c°))G(3°~) + G*(3oJ)(G*(3o)) - G(3oJ))]x 

MNF ~ . 
= - 2 x: G (3co)[G(3co) - G*(3o) + G*(3~o) - G(3oo)lG(3co)x = O, 

which contradicts ( l) .  Consequently, det(Im +FG(3o)) )  # 0 for all F ¢ [0,M] and for all co E ~. [] 

Lemma 3.2. Let  hi,k2 E ~, kl ~k2. Assume that the negative feedback  interconnection o f  

and klIm is asymptotically stable and det(Im + GOe))F)  ¢ 0 for  all o) E ~ and F E [kl,k2]. Then the 
negative feedback imerconnection o f  G(s)  and Fire is asymptotically stable for  all F E [kl,k2]. 

Proof.  The result is trivial if kl = k2. Now, suppose kl < k2 and there exists F E (kl,k2] such that the 
negative feedback interconnection of  G(s) and Flm is not asymptotically stable or, equivalently, A - f ' B C  
is not Hurwitz. Since, the negative feedback interconnection o f  G(s) and kllm is asymptotically stable, it 
follows that A - k jBC is Hurwitz and there exists F E (hi,,  #] such that A - FBC has an eigenvalue 305 on 
the imaginary axis. 
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Next, note that 

det(Im + FG(3dg)) = det(Im + k~ G(3dg) + (F - k~ )G( ig) )  

= det(Im + k~G(3dg))det(Im + (F - kj )(I + klG(3dg))-lG(3d~)) 

= det(Im + k~ G(3dg)) det(Im + (F - kl )C(3ebI - A + k~BC)-IB) 

= det(Im + kl G(3d~)) det(3o3I - A + klBC) -1 det(3o3I - (A - FBC)). 

Since det(3cbI - (A - F B C ) )  = 0, it follows that det(Im + FG(3dg)) - 0, which is a contradiction. [] 

Next we present our main result. 

Theorem 3.1. Let 

be asymptotically stable, let H = H* E C mxm, and let N E ~. I f  Z(s)(Im + MG(s)) is strict weakly positive 
real, then the negative feedback interconnection of  G(s) and FI,~ is asymptotically stable for all 0 <.F <~M. 

Proof. The result is a direct consequence of  Lemmas 3.1 and 3.2. [] 

Next, we extend Theorem 3.1 to the case of  upper and lower uncertainty bounds. To do this let Ml, M 2 E R 
be such that M1 <~M2, let M & M2 - M1, and define the shifted uncertainty Fs E [M1,M2] along with the 
shifted transfer function 

Gs(s) & ( I m + M , G ( s ) ) - 1 G ( s ) ~  [ A - M 1 B C  B]  
C 0 ' 

and shifted multiplier 

Zs(s) & (Im - Gs(s)H)(lm - HGs(s) )  - N(Gs(s) - Gs(s)).  

For upper and lower uncertainty bounds we have the following corollary to Theorem 3.1. 

Corollary 3.1. Let 

assume Gs(s) is asymptotically stable, let H = H* E C mxm, and let N E R. I f  Zs(s)(Im + MG~(s)) is strict 
weakly positive real then the negative feedback interconnection of  G(s) and F~Im is asymptotically stable 
for all F~ E [Mx,M2]. 

Proof.  Since Zs(S)(Im + MGs(s)) is strict weakly positive real it follows from Lemma 3.1 that det(Im + 
FGs(3Og)) ¢ 0 for all F E  [0,M] and o9 E N or, equivalently, det(Im +(F~  -M1)Gs(3O9)) ¢ 0 for all 09 E R 
and for all Fs E [MI,M2]. Now, 

det(Im + (Fs - M1 )Gs(3og)) = det(Im + (Fs - M1 )(Ira + MI G(3O9))-lG(3Og)) 

= det(l  + M1G(3o9)) -1 det(I  + FsG(3og)), 

and hence, det(I  + G(3og)Fs) ¢ 0 for all o9 E ~ and Fs E [MI,M2]. The result now follows from Lemma 3.2. 
[] 
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Remark 3.1. It is i:aaportant to note that even though Theorem 3.1 and Corollary 3.1 consider a single 
uncertainty block of the form Fire the results also apply to multiple-block uncertainty when G(3e))F = 
FG(3co). This can be easily seen by tracing through the proof of Lemma 3.1. This is not surprising since as 
in mixed-/~ theory the multipliers, which in this case are plant-dependent, are required to commute with the 
block uncertainty structure. Alternatively, choosing specific multiplier structures, for example, 

Z(s)  = tr[(/m - G(s)H)(Im - HG~(s ) )  - N ( G ( s )  - G~(s))]/m, 

where "tr" denotes the trace operator, the commuting assumption between the multiplier and the plant is no 
longer required for addressing multiple-block uncertainty. 

The form of the absolute stability criteria in Theorem 3.1 and Corollary 3.1 is similar to classical absolute 
stability criteria which involve a feedback system containing a linear time-invariant plant and a memoryless 
(possibly time-varying) sector bounded nonlinearity [8]. As discussed in [3] the transfer function Z(s)  is a 
stability multiplier that distinguishes the class of allowable nonlinearities. Furthermore, as in [3], the multipliers 
Z(s)  and Zs(s) depend upon the plant itself. As will be shown in the next sections, in the SISO case these 
plant-dependent multipliers provide stability tests involving fixed functional forms that differentiate between 
the real and imaginary components of the uncertainty while eliminating a large class of feedback nonlinearities 
and hence providing tight bounds for real parameter uncertainty. 

Remark 3.2. Since the form of the absolute stability conditions of Theorem 3.1 and Corollary 3.1 are similar to 
classical absolute stability criteria, a natural question is for what class of memoryless feedback nonlinearities do 
these criteria predict stability? This question could be addressed by constructing specialized Lyapunov functions 
predicated on Kalman-Yakubovitch-Popov equations corresponding to the weak positive real conditions of 
Theorem 3.1 and Corollary 3.1. For the case H = 0, Kalman-Yakubovitch-Popov conditions are given in [3]. 

4. Geometric interpretation of stability criteria 

In this section, we give geometric interpretations of the criteria developed in Theorem 3.1 and Corollary 3.1 
in the scalar uncertainty case (m = 1). To do this, let G(3co ) = x(3~o)+ 3Y(3O~). For notational convenience 
we write x for xO~o) and y for y(3co). In this case, He[Z(y~)(Im + MG(ye)))] > 0 yields 

(1 + Mx)[(1 - Hx) 2 + H2y 2] + 2MNy 2 > O. (2) 

Similarly, let Gs(3Co) = Xs + 3Ys. In this case, He[Zs(3co)(Im + (M2 - Ml )Gs(3Co)] > 0 yields 

2 2 [1 + ( M 2 -  Ml)Xs][(1-Hxs)  2 + H Ys] + 2 ( M 2 - M ~ ) N y  2 > O. 

Next, since Gs(3Co) =-- (1 + MIG(yc~))-lG(3og) it follows that Xs and Ys are given by 

(3) 

x + Ml (X 2 q- y2 ) y 
Xs (1 +MlX): + MZy 2' Ys 

and hence (3) can be written as 

(1 + M i x )  2 + M~y 2 

[(1 + Mix)(1 + M2x) + M1M2y2](~ 2 + H 2 y  2) + 2(M2 - M1 )N[(1 + Mix)  2 + M?y2]y 2 > O, (4) 

where a & 1 -t-(2MI - H ) x  + MI(M1 - H ) ( x  2 + y2). Note that (2) and (4) correspond to the strict weakly 
positive real conditions in Theorem 3.1 and Corollary 3.1, respectively. Conditions (2) and (4) have a graphical 
interpretation in the Nyquist plane in terms of fixed shapes which are symmetric about the real axes. 

Next we consider several special cases of (2) and (4) by choosing specific values for H and N. 
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4.1. Positivity and circle criteria 

First, choosing N = 0 and H = 0 it follows from Theorem 3.1 and Corollary 3.1 that robust stability is 
guaranteed if 

~o~ ~, (5) He(Im + MG(3o~)) > O, 

and 

He(Ira + (M2 - M1)G~(3~)) > O, 

In this case, (2) and (4) simplify to 

and 

E ~. (6) 

1 + Mx > 0 (7) 

(1 +Mix)(1 + M z x ) +  M i M 2 y  2 > O, (8) 

which correspond to the classical positivity and circle criteria with a graphical interpretation in the Nyquist 
plane in terms of a half plane exclusion and a circle inclusion, respectively. 

4.2. Parabolic and octomorphic criteria 

Next, we specialize Theorem 3.1 and Corollary 3.1 to the parabolic and octomorphic criteria given in [3]. 
Specifically, choosing H = 0 it follows from Theorem 3.1 and Corollary 3.1 that robust stability is guaranteed 
if 

and 

He[Im + M(Im - N(G(3oo) - G*(j~o)))G(3~o)] > 0, ~o E R, 

He[Ira + (M2 - M1 )(Ira - N(Gs(3~o) - Gs(3OJ)))Gs(3~)] > O, 

in this case, (2) and (4) specialize to 

I + Mx + 2MNy  2 > 0 

and 

(9) 

~ R. (lO) 

(11) 

Condition (11) has a graphical interpretation in the Nyquist plane in terms of a parabola which is symmetric 
about the real axis with vertex ( - l / M ,  0) and parameter N governing the curvature (Fig. 1 ). For the two-sided 
uncertainty case, condition (12) requires that the Nyquist plot of G(3oo) lies inside the octomorphic region in 
the Nyquist plane with real-axis intercepts - l / M 2  and - l / M 1  shown in Fig. 2. 

4.3. Cissoid and nephroid criteria 

Next with H = - M  it follows from Theorem 3.1 and Corollary 3.1 that robust stability is guaranteed if 

He[((Im + MG(3~o))(Im + MG*(3co)) - N(G(3~o ) - G*(3~o)))(Im + MG(3~o))] > 0, ~o E ~, (13) 

[(1 + Mix)(1 + Mzx)  + MIM2y2][(1 + Mix) 2 + M ( y  2] + 2(M2 - M1 )Ny 2 > O. (12) 
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Fig. 1. Parabolic region with x-axis intercept -1/M. Fig. 2. Octomorphic region with x-axis intercepts -I/M2 and 
- I / M I .  

and 

He[((Im + MGs(3Og))(Im + MGs(3Co) ) - N ( G s ( 3 ~ )  - Gs(3r~o)))(Im + MGs(3~))] > O, 

In this case (2) and (4) specialize to 

(1 + M x )  3 +My2[M(1 + M x ) + 2 N ]  > 0 

and 

E N. (14) 

(15) 

/~3 + (M2 - M1 )2fly2 + 2(M2 - M1 )N[(1 + Mix) z + m2y2]y 2 > O, (16) 

where fl & (1 + Max)(1 + M2x)+ M1M2y 2. Condition (15) has a graphical interpretation in the Nyquist 
plane in terms of  ~ cissoid which is symmetric about the real-axis with vertex ( - I / M , 0 ) ,  asymptote x = 
- ( 2 N + M ) / M  2, an6 parameter N governing the curvature (Fig. 3). In the two-sided uncertainty case, condition 
(16) requires that the Nyquist plot of  G(3o9) lie inside a nephroid in the Nyquist plane with real-axis intercepts 
-1/M2 and -1/M1 shown in Fig. 4. 

4.4. Hyperbolic criterion 

Finally, for two-sided uncertainty, choosing H = M1 it follows from Corollary 3.1 that robust stability is 
guaranteed if 

He[(Im + M1G(3co))-l(Im - N(G(3og) - G*(3eg)))(Im + M1G*(3og))-I(I,,, + Mas(3Co))] > 0, (17) 

for all m E ~. In this case (4) specializes to 

( I + Mix)( 1 + M2x) + [MIM2 + 2(M2 - MI )N] y2 > 0, (18) 

which has a graphical interpretation in the Nyquist plane in terms of  a hyperbola when N satisfies 
N < MIMff(2(MI -. M2)) and an ellipse when N satisfies N > M1M2/(2(M1 - M2)). In both cases the real- 
axis intercepts are -1/M2 and - l / M 1 ,  with center (--(MI + M2)/2MIM2,0), and principal axes x = 
-(M1 + M2)/2MIM2 and y = 0. 
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Remark 4.1. Note that in the single sector case, MI = 0, (18) yields (11) which gives an absolute stability 
test with a graphical interpretation in terms of a parabola. 

Remark 4.2. It is important to note that unlike many of the classical criteria the above absolute stability 
criteria allow the Nyquist plot of G(3o~) to enter all four quadrants of the complex plane while avoiding 
encirclements and crossings of the critical point -1 /M + 30. 

Remark 4.3. Note that if we replace N by - N s  2 in Z(s) and Zs(s) the stability criteria in the above subsections 
yield frequency-dependent shapes in the Nyquist plane involving parabolas, octomorphs, cissoids, nephroids, 
and hyperbolas, respectively. 

5. Alternative fixed shapes in the Nyquist plane 

In this section we present a different plant-dependent multiplier that specializes to frequency domain 
stability criteria with alternative fixed shapes in the Nyquist plane in the case of scalar uncertainty. The 
proofs of the following results are similar to those of Theorem 3.1 and Corollary 3.1 and hence are 
omitted. 

Theorem 5.1. Let 

be asymptotically stable and let N E N. Furthermore, define 

Z(s) & I m  + ½M(G(s) + G~(s)) - N(G(s) - G~(s)). 

I f  Z(s)(Im + MG(s)) is strict weakly positive real then the negative feedback interconnection of G(s) and 
Fire is asymptotically stable for all O<.F <.M. 
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Corollary 5.1. Let 

G ( s )  ~ 

assume Gs(s) is asymptotically stable, and let N C ~. Furthermore, define 

Zs(s) A Im + ½M(Gs(S) + G•(s)) - N(Gs(s) - G~'(s)). 

I f  Zs(s)(/m + MGs(s)) is strict weakly positive real then the negative feedback interconnection of G(s) and 
Fslm is asymptotically stable for all Fs E [M1,M2]. 

Now we specialize the above results to the case of scalar uncertainty. Specifically, letting G(3o9) = x + 3Y 
it follows that the strict weakly positive real conditions of Theorem 5.1 and Corollary 5.1 can be written as 

(1 + M x )  3 + 2MNy 2 > 0, (19) 

and 

[(1 + Mix)(1 -+- M2x) + M1M2y2] 3 + 2(342 - MI )N[(1 + Mix)  2 + M~yZ]y 2 > O. (20) 

Condition (19) has a graphical interpretation in the Nyquist plot in terms of a semi-cubical parabola which is 
symmetric about the real axis with vertex ( - l / M ,  0) and parameter N governing the curvature. The geometric 
shape for a semi-c.ubical parabola is similar to a cissoid but, unlike a cissoid, does not involve a y-axis 
asymptote [7, 9]. Ir~ the two-sided uncertainty case the stability criterion of Corollary 5.1 requires the Nyquist 
plot of  G(3co) lie inside the plane curve characterized by (20) which corresponds to an epicycloid (nephroid- 
like shape) with real-axis intercepts - 1/1142 and - 1/MI. 

6. Application to real-/~ upper bounds 

In this section, we use Corollary 3.1 to obtain real-/i upper bounds which do not involve off-axis circles and 
frequency-dependent scales. Note that similar results could be obtained using the absolute stability criterion 
given by Corollary 5.1. To make connections with real-p theory we set -M1 = M2 = ]:-1, where 7 > 0, and 
consider the set of uncertain matrices 

A A ( A  E []~mxm : A = ~5Im,(5 E N}, (21) 

and 

A~, = {A ~ A : - 7  -1 ~<6~<'Fl}. 

Next, recall that for real uncertainty A E A, the structured singular value P(G(3~)) is defined by 

( p(G(3o2)) & min{ama×(A) " det(I + G(3e))A) = 0 , (22) 
~AcA 

while p(G(3co)) & 0 if there does not exist A E A such that det(I  + G(3o~)A) = 0. The following result 
provides an upper bound for li(G(3~o)) defined by (22). 

Theorem 6.1. Let o9 c ~ and G(3co) E C mxm. Then 

p( G(3~o ) ) <~ fi( G(aco ) ), (23) 
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where 

fi( G( 3~o)) in ' 
L 

> 0 : there exist H = H* E C mXm, and N E 

where 

Gs(3Co) ~- (I - ?-IG(3eo))-lG(3o~ ). 

(24) 

Proof.  First note that with - M I  = M2 = 7 - l ,  the inequality in (24) is the strict weakly positive real condition 
given in Corollary 3.1. Hence, it follows from the proof  of  Corollary 3.1 that det ( I  + G(3~o)A) ~ O, A E A 7. 
Now, since ~(G(36o)) is defined as the infimum over all 7 such that the inequality in (24) is satisfied, it 
follows that de t ( I  + G(j~o)A) ~ O, A E A:,, for each such 7- Now, it follows from the definition of  l~(G(3~o)) 
that l~(G(3~o)) <~ fi(G(3~)).  [] 

Remark  6.1. It is important to note that since fi(G(3o~)) given by (24) involves a strict weakly positive real 
condition which in turn can be captured by Kalman-Yakubovi tch-Popov type equations the resulting/L bound 
can be computed using standard BMI techniques. 

Remark 6.2. In the SISO case ~(G(3~) )  can be written as 

fi(G(3co)) = inf{7 > 0 : there exist H , N  E ~ such that (4) is satisfied with - M i  =M2 =7 -1 }. 

Note that if y = 0 then (4) is satisfied if and only if 7 > Ixl which yields fi(G(3oa)) = Ixl. Alternatively, if 
y ¢ 0 then there exists N E R for all 7 > 0 such that (4) is satisfied which yields fi(G(3~o)) = 0. Hence the 
allowable real parameter uncertainty predictions using Theorem 6.1 correspond to the real axis intercepts of  
the Nyquist plot of  the plant G(3co) which shows that f i (G(3~))  given by (24) is totally nonconservative for 
SISO systems. 

7. Illustrative numerical example 

To illustrate Theorem 3.1 and Corollary 3.1 consider the asymptotically stable plant 

-0 .25s  + 1 
G(s) - 3s 2 -k- s --}- 3" 

It follows from the Nyquist plot of  G(s) (Fig. 5) that the negative feedback interconnection of  G(s) and F 
is asymptotically stable for - 3  ~<F ~< 4. Setting M = 4 the strict weakly positive real condition in Theorem 
3.1 is satisfied for H = 0, N = 200 and for H = - M ,  N = 5. The parabola and the cissoid corresponding to 
these stability conditions are shown in Figs. 5 and 6, respectively. 

To illustrate Corollary 3.1, consider two-sided tmcertainty M1 <~F<~M2. Letting M1 = - 3  and M2 = 3, 
it follows that the Nyquist plot is contained in the octomorphic region with intercepts -1 /M2  = -0 .33  and 
- I / M I  =0.33.  This inclusion is shown in Fig. 7 where N = 8 .  For the full uncertainty range, this inclusion is 
obtained with N = 4200. Next, letting Ml = --3 and M2 = 4 it follows that the Nyquist plot is contained in 
the nephroid region with N = 12 and H = - 7  (Fig. 8). Finally, setting Ml = --2.5 and M2 = 2.5 it follows 
that the Nyquist plot is contained within the hyperbolic branches with N = 3 and H = -2 .5  (Fig. 9). For 
the full range of  uncertainty this inclusion is obtained with N = 1000 and H = - 3 .  For this example the 
positive real criterion and the circle criterion yield the conservative bounds 0 ~<F ~< 1.71 and -0 .95  ~<F ~< 0.97, 
respectively. 
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Fig. 5. Nyquist plot excladed from parabola (M = 4, N = 200). 
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Fig. 6. Nyquist plot excluded from cissoid (M = 4, N = 5). 
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