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ABSTRACT 

Lyapmov Function proofs of sufficient conditions for a s v "  
totic stability are given for feedback interconnections of bounded 
real and positive real transfer functions. Two cases are considered: 
1) a proper bounded real (resp., positive real) transfer function with 
a bounded ('esp., positive red)  timevarying memoryless non- 
linearity; and 2) two strictly proper bounded real ('esp., positive 
real) transfer functions. A similar treatment is given for the circle 
and popov theorems. Application of these results to robust stability 
4 t h  time-varying bounded real, positive real, and sector-bounded 
uncertaintv is discussed. 
1. INTRODUCTION 

One of the most basic issues in system theory is stability of 
feedback interconnections. Two of the most fundamental results con- 
cerning stability of feedback systems are the small-gain theorem and 
the positivity theorem [l-121. Here we focus (in Sections 3 and 4) 
on the suffiaency aspect of these results. The small gain theorem 
implies that if G and G, are asymptotically stable bounded-gain 
transfer functions such that llGllmllGclloo < 1, then the feedback in- 
terconnection of G and G, is asymptoticdy stable. Furthermore, 
the positivity theorem states that if G and G, are (square) positive 
real transfer functions, one of which is strictly positive real, then 
the negative feedback interconnection of G and G, is asymptotically 
stable. 

For robust stability, if G, represents an uncertain perturbation, 
then it follows from the small gain theorem that an &,-norm bound 
on G implies robust stability in the presence of an B, norm bound 
on G,. Similarly, if the system uncertainty G, can be cast as a pos- 
itive red transfer function and G is strictly positive real, then the 
positivity theorem implies robust stability. Although the small gain 
theorem and positivity theorem are equident  via a suitable trans- 
formation [7], positive real modeling of system uncertainty may be 
sippificantly less conservative than small gain modeling of system un- 
certainty. This improvement is due to the fact that the small gain 
theorem is a normed-based result which captures gain uncertainty 
but ignoren phase information. Since positive real transfer functions 
are phase bounded, the positivity theorem can exploit phase charac- 
teristics within a feedback interconnection. 

Although the predominant approach to stability theory is Lya- 
punov's method, most of the available proofs of the small gain and 
positivity theorems are based upon input-output properties and function- 
analytic methods [1-3,6-8]. The purpoee of this paper is thus to ex- 
plicitly constrnct quadratic Lyapunov functions to prove sufficiency 
in s p e a d  cases of the small gain and positivity theorems. Specifically, 
suilident conditions for asymptotic stability are addressed for two 
cases of feedback interconnections. The first case involves a proper, 
but not necessarily strictly proper, bounded red (resp., strongly pos- 
i t iw real) transfer function in a positive feedback (resp., negative 
feedback) configuration with a bounded real (resp., positive real) 
timevarying memoryless nonlinearity. The second case addresses 
the same problem with two strictly proper systems. Specialization 
of these results to robust stability with linear time-varying bounded 
real and positive real (but otherwise unknown) plant uncertainty is 
also discussed. 

Having addressed the small gain and positivity theorems, we 
then turn our attention (in Section 5) to the well-known cirde crite- 
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denote a state space realization of a transfer function G(s) ,  that is, 
G(s) = C(sI - A)- lB  t D .  The notation "en is used t o  denote a 
minimal realization. 

A transfer function G(s) is bounded real [8] if 1) G(s) is asymp- 
totically stable and 2) I - G*(jw)G(jw) is nonnegative definite for 
all real w .  Equivalently, 2) can be replaced by [8, p. 3071 2') 
I - G'(s)G(s) is nonnegative definite for Re[s] > 0. Alternatively, a 
transfer function G(s) is bounded real if and only if G(s) is asymp- 
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rion or cirde theorem (14-291. In a multivariable setting this result 
applies to sector-bounded nonlinearities and thus, upon appropriate 
specialization, generalizes (and indudes as special cases) both the 
small gain and positivity results. Thus, for practical purposes, the 
circle theorem provides the means for incorporating both gain and 
phase aspects. The proof of the cirde theorem given here is com- 
pletely consistent with the proofs of the small gain and positivity 
results, thus providing a unified treatment of these classical results. 

Next we focus (in Section 6) on the Popov stability criterion 
[30-49]. Although often discussed in juxtaposition with the cirde 
criterion, the Popov criterion is quite distinct with regard to its Lya- 
punov function foundation. Whereas the small gain, positivity, and 
circle results are based upon fixed quadratic Lyapunov functions, 
the Popov result is based upon a quadratic Lyapunov function that 
is a function of the sector-bounded nonlinearity. Thus, in effect, the 
Popov result guarantees stability by means of a familv of Lyapunov 
functions. For robust stability, this situation corresponds to the con- 
struction of a parameter-dependent Lyapunov function as proposed 
in [50,51]. A key aspect of the Popov result is the fact that it does 
not apply to time-varying uncertainties, which renders it less con- 
servative than fixed quadratic Lyapunov function results (such as 
the small gain, pmitivity, and circle results) in the presence of real, 
constant parameter uncertainty. 

Our proof of the Popov Criterion is given in a form that is similar 
to the proofs of the small gain, positivity, and circle theorems. This 
unified presentation is intended to clarify relationships among these 
results. 

There are several reasons for seeking Lyapunov-function proofs 
of the small gain and positivity theorem. For example, these proofs 
help to build stronger ties between state space and frequency domain 
approaches to feedback system theory. Furthermore, these quadratic 
Lyapunov functions may be useful for extending previous results on 
the synthesis of robust feedback controllers (52-591. 

2. PRELIMINARIES 

In this section we establish definitions and notation. Let IR and 
Q: denote the real and complex numbers, let ( )= denote transpose, 
and let I,, or I denote the n x n identity matrix. Furthermore, 
we write 11 111 for Euclidean norm and umsx(.) for the maximum 
singular value and M 2 0 (M > 0) to denote the fact that the 
Hermitian matrix M is nonnegative (positive) definite. In this paper 
a ml-mtional matriz function is a matrix whose elements are rational 
functions with real coefficients. Furthermore, a tmnsfer function is 
a real-rational matrix function each of whose elements is pmper, i.e., 
finite at  s = 00. A strictly proper tmnsfer function is a transfer 
function that is zero at infinity. Finally, an asymptotically stable 
t m d e r  function is a transfer function each of whose poles is in the 
open left half plane. The space of asymptotically stable transfer 
functions is denoted by RH,, i.e., the real-rational subset of H, 
1101. Let 
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totically stable and llG(s)llm 5 1. Furthermore, G(s) is called strictly 
bounded realif 1) G(s) is asymptotically stable and 2) I-G'(jw)G(jw) 
is positive definite for all real w.  Finally, G(s) is strongly bounded 
realif i t  is strictly bounded real and I- DTD > 0, where D e G(cc). 

A square transfer function G(s) is called positive real (8, p. 2161 if 
1) all poles of G(s)  are in the dosed left half plane and 2) G(s)+G*(s) 
is nonnegative definite for Re[s] > 0. A square transfer function G(s) 
is called strictly positive real [9,11,12] if 1) G(s) is asymptotically 
stable and 2) G(jw)+G*(jw) is positive definite for all real w .  Finally, 
a square transfer function G(s) is strongly positive real if it is strictly 
positive real and D + DT > 0, where D fi G(m) .  Recall that the 
minimal realization of a positive real transfer function is stable in the 
sense of Lyapunov [SI. Furthermore, strongly positive real implies 
strictly positive real, which further implies positive real. 

For notational convenience in the paper, G will denote an e x m 
transfer function with input U E IR", output y E Et', and internal 
state z E IR". 

Next we give two key lemmas concerning bounded real and pos- 
itive real matrices. 

Lemma 2.1. Let M E l t x m  and N E l m X C  be such that o,,,(M) I 
1 and u,,,(N) < 1. Then [It  - M N ]  # 0. 

Proof. Since umx(M)  I 1 and u,.,(N) < 1 it follows that p ( M N )  I 

5 U , , , , ~ ( M ) U , , ~ ( N )  < 1, where p(. )  denotes spectral radius. Hence 
det[I( - MN] # 0. Q.E.D. 
Lemma 2.2. Let M , N  E l m X m  be such that M + M' 2 0 and 
N + N' > 0. Then ( I ,  + M N )  # 0. 
Proof. First we show that N is invertible. Let z E I:, 2 # 0, 
and X E I be such that N z  = Xz and hence z * N *  = Xz'. Then 
z * ( N  + N * ) z  > 0 implies that Re X > 0. Hence det N # 0. NOW 
define S fi N-' + M. Now, since N-' + N - *  = N-'(N + N * ) N - *  
it follows that S + S' > 0. Thus det S # 0. Consequently, det(Im + 
MN) = det N S  = (det N)(det S) # 0. Q.E.D. 

omax( M N )  

3. THE SMALL GAIN THEOREM 
In this section we use quadratic Lyapunov functions to prove 

sufficiency in the small gain theorem in two cases. First, recall the 
bounded real lemma [8]. 

Lemma 3.1 (Bounded Real Lemma). G(s) * [ g :] is 

bounded real if and only if there ezist real matrices P, L ,  and W with 
P positive definite such that 

o = A ~ P  + P A  + cTc + L ~ L ,  (3.1) 
O = P B + C ~ D + L ~ W ,  (3.2) 
o = I - D ~ D  - wTw. (3.3) 

Proof. Sufficiency follows from algebraic manipulation of (3.1)-(3.3) 
while necessity follows from spectral factorization theory. For details 
see [SI. Q.E.D. 

Remark 3.1. If (3.1) is replaced by 

o = A ~ P +  P A +  cTc+ L ~ L +  R, (3.1)' 

where R 2 0, then (3.1)'-(3.3) imply that G(s) is bounded real. 

and 
Suppose in Lemma 3.1 u,,,(D) < 1. Then since I - DTD > 0 

wTw = I - D ~ D ,  

LTW = - ( P B  + CTD). 

(3.4) 

(3.5) 

W T W  is nonsingular. Furthermore, (3.2) is equivalent to 

Using (3.5) and noting that W(WTW)- 'WT is an orthogonal pro- 
jection so that LTL 2 LTW(WTW)- 'WL,  i t  followsfrom (3.1) that 

o 2 A~P+PA+(PB+c~D)(w~w)-'(B~P+D~c)+c~c (3.6) 

or, since (w~w)- '  = ( I -  D T D ) - ~ ,  

o 2 A ~ P  + P A  + ( P B  + C ~ D ) ( I  - D ~ D ) - ' ( B ~ P +  D ~ C )  + cTc. 
(3.7) Thus, in this case conditions (3.1)-(3.3) are equivalent to the single 

Riccati inequality (3.7). 
Lemma 3.2. Let G(s) * [ g  :] . Then the following state- 
ments are equivalent: 

i) A is asymptotically stable and G(s) is strongly bounded real; 
ii) I - D T D  > 0 and there ezist positive-definite matn'ces P 

and R such that 

o = A ~ P + P A + ( P B + C ~ D ) ( I -  D~D)-'(B~P+D~C)+C~C+ R 
Now we prove sufficiency of the s m d  gain theorem for the feed- 

back interconnection of a bounded real transfer function and a norm- 
bounded memoryless time-varying nonlinearity. Thus define the set 

@ {$ :  IR'xIR+ -* IR" : ll$(Y,t)JIZ I JlYll2, Y E  E', 
a.a. t 2 0,and $(y, .) is Lebesgue measurable for all y E R'}. 

Theorem 3.1. IfG(s) %!! i s  strongly bounded real, then 

the feedback interconnection of G(s) and $ is asymptotically stable 
for all 4 E @. 

Proof. First note that the feedback interconnection of G(s) and 4 
corresponds to the state space representation 

[ I  

* ( t )  = A 4 t )  + B$(Y,t), (3.21) 
Y(t) = W t )  + D$(Y,t). (3.22) 

Since G(s) is strongly bounded real it follows from Lemma 3.2 that 
there exist positive-definite matrices P and R such that 

o = P+ P A +  ( P B +  cT D)( I  - D~ D ) - ~ (  B~ P+ D ~ c ) + c ~ c +  R. 
(3.23) 

Next, we use the Lyapunov function V(z) = zTPz to show that the 
feedback interconnection (3.21), (3.22) is asymptotically stable. The 
corresponding Lyapunov derivative is given by 

V ( z )  = zT(ATP + P A ) z  + $TBTPz + zTPB4 (3.24) 

or, equivalently, using (3.23) 

V ( Z )  = - z T ~ z  - z T ( ~ ~  + C ~ D ) ( I  - D ~ D ) - ' ( B ~ P  + D ~ C ) Z -  
zTCTCz + $BTPz + zTPB4.  

(3.25) 
Next, add and subtract q5T$, 2zTCTD$, and F D T D $  to (3.25) SO 

that 

v ( 2 )  = - z T ~ z  - Z ~ ( P B  + C ~ D ) ( I  - D ~ D ) - ' ( B ~ P +  D ~ C ) Z  - zTcTc2 
+$TBTPz+~TPB$+$T$-  $ T $ + ~ T C T D 4 + $ T D T C ~  

(3.26) 
- zTCTDd - 4TDTCz + dTDTD$ - 4TDTD4 

or, equivalently, 

V ( 2 )  = - z T ~ z  - Z ~ ( P B  + C ~ D ) ( I  - D ~ D ) - ' ( B ~ P  + D ~ C ) Z  
+ z T ( P B  -k CTD)4 + dT(BTP + DTC)z - dT(I - DTD)4 

+ $T4 - zTCTCz - 4TDTD$ - zTCTD+ - 4TDTD4. 
(3.27) Grouping the appropriate terms in (3.27) yields 

V ( z )  = -zTRz-[(I  - DTD)-'12(BTP + D T D ) z  - ( I  - DTD)'/'41T 
. [ ( I  - D T D ) - ' / ~ ( B ~ P  + DTD)z  - ( I  - DTD)'l2$] 

(3.28) 
which is negative definite since 4 E @ implies dT$- yTy 5 0. Q.E.D. 

+ dT4 - YTY 

261 9 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 13,2010 at 00:39:57 UTC from IEEE Xplore.  Restrictions apply. 



4. THE POSITIVITY THEOREM 

the positivity theorem in two cases as in Section 3. 
In this section we use quadratic Lyapunov functions to prove 

Lemma 4.1 (Positive Real Lemma). G(s )  [; E ]  ispos- 
itive real if and only if there ezist matrices P, L ,  and W with P 
positive definite such that 

o = A ~ P  + PA + L ~ L ,  
o = P B  - cT + L ~ W ,  
o = D + D~ - W ~ W .  

(4.1) 
(4.2) 
(4.3) 

A B  
Lemma 4.2. Let G ( s )  %' [. .]. Then the following state- 

ments are equivalent: 
i) A is asymptotically stable and G(s )  is strongly positive real; 

ii) D + DT > 0 and them ezbt positive-definite matrices P and 
R such that 

0 = ATP + P A  t (C - BTP)T(D + DT)-'(C - B T P )  + R. 

We now prove the positivity theorem for the negative feedback 
interconnection of a strongly positive real transfer function and an 
odd memoryless time-varying nonlinearity. For the statement of the 
next result we define the set 

(4.8) 

6 2 {4 : IR' x IR+ + IR' : 4T(y,t)y 2 0, y E I R ~ ,  a.a. t 2 0, 
and 4(y,.) is Lebesgue measurable for all y E Em}. 

Theorem 4.1. If G ( s )  Cn A is strongly positive real, then 

the negative feedha:k interconnection of G(s )  and 4 is asymptotically 
stable for all 4 E @. 

Proof. First, note that the negative feedback interconnection of 
G(s )  and fl-, .) corresponds to the state space representation 

[ c  D l  

i ( t )  = Az(t) - Bd(Y,t), (4.20) 
Y(t) = CZ(t) - WY,t) .  (4.21) 

Now it follows from Lemma 4.2 that if G(s )  is strongly positive real 
then there exist positive-definite matrices P and R such that 

0 = ATP + P A  + (C - BTP)T(D t DT)-'(C - B T P )  + R. (4.22) 

Next, we use the Lyapunov function V(z) = z T P z  to show that the 
feedback interconnection (4.20), (4.21) is asymptotically stable. The 
corresponding Lyapunov derivative is given by 

V ( z )  = zT(ATP + PAT)z - dTBTPz - zTPB4.  

Add and subtract 24TCz and 24TD4 t o  (4.24) so that 

(4.24) 

v(z)  = - PR, - z T ( ~  - B T P ) ~ ( D  + DT)-'(C - B T P ) ~  

- 4 T E T P ~  - z T P B 4 +  2 4 ~ ~ D 4 -  F D 4  - B O T #  
- 2 4 T ~ ~  + dTcz + zTcT4 

(4.25) 
or, equivalently, 

V ( z )  = - zTRz - zT(C - BTP)T(D + DT)-'(C - BTP)z  
+ zT(CT - P E ) 4  + dT(CT - PB)Tz  - f ( D  + DT)4  
- 24T( D4 - CZ). 

(4.26) 
Grouping the appropriate terms in (4.26) yields 

V ( z )  = - zTRz- [ (D  + DT)-'12(C - B T P ) z  - ( D  + DT)'/24]T 

* [ (D  + DT)-'12(C - BTP)z  - ( D  t DT)'"4] - 24T~,  
(4.27) 

which is negative definite since 4T(y, t)y 2 0 for all fl., .) E 6.Q.E.D. 
Next, we specialize Theorem 4.1 t o  the feedback interconnection 

of a strongly pasitive real transfer function and a linear gain F(t) 
satisfying F ( t )  + p ( t )  2 0. Hence define 

5 e { F  : IR' +EtmXm : F(.) is Lebesgue measurable 

and F ( t )  + FT(t) 2 0, 

Corollary 4.1. If G ( s )  c" [: :] is strongly positive real, then 

the negative feedback interconnection of G(s )  and 4 is asymptotically 
stable for all F E F. 

a.a. t 2 0). 

As in the bounded real case, Corollary 4.1 guarantees robust 
stability for the system 

f ( t )  = (A + AA(t))z(t), 
where AA(. )  E U and U is the uncertainty set 

(4.28) 

U 2 {AA(-): AA(t) = -BF(t ) (Z+ DF(t))-'C, 
F ( t )  + F ( t )  2 0, F( . )  is Lebesgue measurable}. 

The key feature of the uncertainty set Z i  is the fact that BF(I + 
DF)-'C also involves a positive real condition. To see this note 
that if D + DT > 0 and F + fl 2 0 ,  then 

F(Z t DF)-' t [F(Z + DF)-'IT 
= ( z  + D F ) - ~ [ F  + FT + F ~ ( D  + D T ) F I ( I  + DF)-' 2 a. 

As shown in [13,58], p natural characterization of uncertainty that 
can be captured by U arises in lightly damped structures with un- 
certain modal data. 
5. THE CIRCLE CRITERION 

In this section we use quadratic Lyapunov functions to  prove 
the circle criterion. Application of this result to robust stability with 
respect t o  sector-bounded time-varying uncertainty is also discussed. 
Although proofs of the circle criterion appear in the literature [27,28] 
using quadratic Lyapunov functions, these proofs are confined to 
strictly proper systems with a single loop non-linearity. We remove 
these constraints and address the MIMO case for proper SISo SYS- 

terns. To begin, we define the set eC of sector-bounded time-vawing 
memoryless nonlinearities. Let K1, Kz E ELmX' and define 

!$jc e {4 : IR' x IR+ + mm : [4(y,t) - KlYlT[4(Y,t) - K2Yl I 0, 
E mm,a.a., t >_ 0, and f ly ,  .) is Lebesgue measurable for all 

y E am}. 
Note that for the scalar case, the sector condition characterlzlng Pc 

Theorem 5.1. Let K1,Kz E mx'. If 3[Z+KzG(s)][Z+KiG(s)l-'  

is stmngly positive mi, where G(s) Cn [: :] , then the negative 

feedback interconnection of G ( s )  and 4 is asymptotically stable for 
all 4 E !$jc. 

Proof. First note that the negative feedback interconnection of G ( s )  
and #(e, e )  corresponds to  the nonlinear state-space equations (4.44) 
and (4.45). Next, note that 

is equivalent to kly I 4(y,t) 5 BY, y E IR, t 2 0. 

[I + KzG(s)][Z + KiG(s)]-' = I +  ( K z  - K1)[Z + KIG(s)]-'G(s).  
(5.1) 

Now, noting that [ I t  KiG(s)]-'G(s) corresponds to a plant G(s )  
with a feedback gain K1, it  follows from feedback interconnection 
manipulations that a minimal realization for f Z  + ) (K2 - K1)[Z + 
KiG(s) ] - 'G(s)  is given by 

[. T ( K Z  - Ki)(I  i- KID)- 'C ) I  + ~ ( K z  - Kl)(Z + K I  D)-'D 1 .  A -  B ( Z + K l D ) - ' K l C  B(Z + KID)-'  

Note that (Z+KiD)-' exists since [ Z + K z G ( ~ ) ] [ Z + K I G ( ~ ) ] - l  > 0. 
Now it fOllOWS from Lemma 4.2 that if ) [ I +  K&(s)][Z+ K1G(s)]-' 
is strongly positive real then there exist positive-definite matices p 
and R such that 

o =  [ A - B ( z + K I D ) - ' K i C ] T P + P I A - B ( Z +  KID) - 'KIC]  
+ [ f ( K 2  - Ki)(I + KiD)-'C - ( I  + K I D ) - ~ B ~ P ] ~  

. [ I +  ~ ( K Z  - K I ) [ ( ~ + K ~ D ) - ' D + D " Z + K ~ D ) - ~ ] ] ' '  
* [$(Kz - KI)(I + KiD)-'C - ( Z  + KID)-TBTP]  + R. 

(5.2) . ,  
2620 
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Next, define the Lyapunov function V(z) = z T P z  and let 4(.,.) E 
eC. Then we obtain 

V ( z )  = zT(ATP + PA)z  - 4TBTPz - zTPB4 (5.3) 

or, equivalently, using (5.2) 

V ( z )  = - xTRz - zTQz t xTCTKl(I + KID)-TBTPz 
+ z T P B ( I  + KID)-'KICX - d T B T p z  - zTPB4,  (5.4) 

where 

Q e [ $ ( K z  - Ki)(I + KlD)-'C - ( I  + K I D ) - ~ B ~ P ] ~  

. [I t B(Kz - Kl)[(I t KlD) - 'D  + D T ( I  + KID)-T]]-' 

. [$(Kz - Kl)(Z + KlD)-'C - ( I t  K l q - T B T P ] .  
(5.5) 

Next, add and subtract 

[ ( I t  K1D)4 - K1CzlT[(I t KiD)4 - KiCz], 

wz - Kl)[(I + K , D ) ~  - K ~ C ~ I ~ ( I  + K ~ D ) - ~ c ~ ,  

Then it follows from Theorem 5.1, with +(y,t)  = F ( t ) y  = F(t)(Z + 
DF( t ) ) - 'Cz ,  that the zero solution to (5.8) is asymptotically stable 
for all AA(. )  E U,. Note that a simpler uncertainty structure can 
be achieved by setting D = 0 in U,. This results in considerable 
simplification of (5.2). Finally, it is interesting to note that if K1 = 
- I  and Kz = I ,  then U, = U, while if K1 = 0 and Kz = CO, then 
Li =U. 
6. THE POPOV CRITERION 

In this section we use Lyapunov functions to prove the Popov crite- 
rion for a multivariable plant containing an arbitrary number of mem- 
oryless time-invariant nonlinearities. Specialization of this result to 
robust stability with respect to time-invariant plant uncertainty is 
also considered. To begin we define the set @p characterizing a dass 
of sector-bounded time-invariant nonlinearities. Let 

@P {4 : + : 4T(Y)[4(Y) - KYl 5 0, Y E m ,  

~ ( Y I  = [41(Yl)y4z(Yz),.. . , d m ( ~ m ) I ~ > .  

K = diag[kl , I C z , .  . . , km] ,  ki > 0, i = 1,. . . , m, and 

( K z  - K1)[(I + KID)d - z { l ~ 2 ] T ( ~  t K ~ D ) - ~ D [ ( I  + h , l ~ ) 4  - K ~ C ~ I  

to (5.5) so that (after some algebraic manipulation) 

V ( z )  = -xTRz - zTQz 

+ [~(Kz - Ki)zTCT(I t 

Note that 4 E @ p  implies that each component d,(y,) of 4 satisfies 

0 5 $,(y,) 5 kiy;, for ICi > 0, i = 1,2 ,..., m. 

Note that the respective nonlinearities are assumed to be decoupled. 

- z T P B ( Z +  KzD)- ' ] [ ( I+   KID)^ - KICZ] 
+ [dT(I+ KID)T - K1zTCT][+(Kz - K1)(r  + K ~ D ) - ' C Z  - ( I t  KID)-TBTPzj 
- [6(1 + K ~ D ) ~ -  K ~ ~ ~ c ~ I I + + ( K ~  - K ~ ) [ ( I + K ~ D ) - ' D  t D ~ ( I + I ~ ~ D ) - ~ I ]  

Theorem 6.1. Let K E m X m  be a positive-definite diagonal ma- 
triz. r f  there ezists a nonnegative-definite diagonal matriz N such 

f ]  , then the negative feedback connection of G(s) and 4(.) is 

asymptotically stable for all $(.) E @ p .  
Proof. First note that the negative feedback interconnection of G(s) 
and 4(.) corresponds to the state-space equations 

. [ ( I  t Ki D)@iCx] 
+[dTT(z+z'lD)T - K1zTCT1{(zfK1D)4- "lCr - ( K z  - 

that I<-1 + ( I  + Ns)G(s)  is positive real, ,,,here G(s) % 
' I  + K ~ D ) - ' C Z  + (Kz - K1)(I + K 1 D ) - l q ( r  + K ~ D ) ~  - K ~ c ~ ] } .  

(5 ,6 )  [ 
Grouping the appropriate terms in (5.6) yields 

V ( x )  = -zTRz - zTz t (4 - K 1 ~ ) ~ ( 4  - Kzy), (5.7) 

where 

. ((1 + K ~ D ) ~  - K ~ C ~ I .  
Since d(.,.) E GC,  i t  follows from (5.7) that V ( z )  < 0 and thus the 
corresponding feedback interconnection is asymptotically stable for 
a l l  d(.,.) € @c.  n F n  
Remark 5.1. Note that the condition + [ I +  KzG(s)][I+ K,G(s)]-' 
strongly positive real in the statement of Theorem 5.1 is equivalent 
to Re(Z + KzG(jw)](Z + KlG(jw)]-' > 0 for all w E which is the 
classical representation of the circle criterion [44]. Furthermore, if 
K1 and K z  are diagonal, then the conditions of Theorem 5.1 can 
be verified by using the multivariable Nyquist criterion. Specifically, 
by examining the number of counter-clockwise encirclements of the 
zero point of the image of the clockwise Nyquist contour under the 
mapping det[I$ KIG(s)], the stability of the closed-loop system can 
be related to the number of unstable poles of G ( s ) .  For further details 
(in the SISO case) see [44]. 

Next, as in Sections 3 and 4, we specialize the results of The- 
orem 5.1 to robust stability of a linear time-invariant plant with a 
linear time-vazying uncertainty. To this end we have the following 
immediate result. Define 

.Fe e { F  : + + mx' : F( . )  is Lebesgue measurable and 

[ ~ ( t )  - ~ 1 ] ~ [ ~ ( t )  - K Z ]  5 0, a.a. t 2 0) 

(5.8) 
and consider the system 

where A A ( - )  E U ,  and the uncertainty set U, is defined by 
* ( t )  = ( A  + AA( t ) ) z ( t ) ,  

U, e { A A ( . )  : AA(t )  = -BF(t ) ( I  t DF( t ) ) - 'C ,  F( . )  E FC}.  

/ I  

[:A C?B] 

so that K-' t ( I  t N s ) G ( s )  has minimal realization (using cascade 
state space manipulations) 

C + N C A  N C B  + K-' 

Now it follows from Lemma 4.2 that if K-'+(Z+Ns)G(s) is strongly 
positive real then there exist positive-definite matrices P and R such 
that 

0 = ATP + PA+(C t NCA - BTP)T[(K-' + N C B )  +(A'-' + NCB)T]-  

Next, for 4 E @ p  define the Lyapunov function 
.(C t NCA - B T P )  + R. 

(6.3) 

v(z) = z T P x  t 2 1'' 4,(o)dc. (6.4) 

Note that since P is positive definite and d(.) E @ p ,  V(z) is pas- 
itive definite for all nonzero 2. Thus, the corresponding Lyapunov 
derivative is given by 

m 

v ( z )  = z T ( A T p  t PA)% - dTBTPz - zTPBd + 2 c 4 i ( y i ) y i  
i = l  

or, equivalently, using (6.3) 
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V ( z )  = -zT& - zT(C + NCA - BTP)T[(K-l + NCB) 
+ (K-' + NCB)TJ- '  (C + NCA - B T P ) z  + 2 ~ 5 ~ T ( y ) i .  

(6.5) 
Next, since 0 = Ci. = CA2 - CBg, (6.4) becomes $'(z) = 

- zTRZ - zT(C + NCA - BTP)T[ (K- '  + N C B )  + (K-' + NCB)T]-' 
. (C + NCA - BTP)z 

- ~ ( P B  - ATcTN)~ - ~ T ( B T P  - N C A ) ~  - 4 T ( ~ ~ ~  + B ~ C ~ N  
(6 6) 

Adding and subtracting 24TC2 and 4TK-'4 to (6.5) yields V ( z )  = 
- zTRZ - zT(C + NCA - BTP)T[(K-l + NCB) + (K-' + NCB)T]-l 

7. Conclusions 
Special cases of the small gain and positivity theorems were 

proved by explicitly constructing quadratic Lyapunov functions. Ap- 
plication of these results to robust stability with bounded red and 
positive real uncertainty was discussed. Similar techniques were used 
to prove multivariable versions of the circle and Popov theorems. It 
was stressed that the Popov theorem is based upon a parameter- 
dependent quadratic Lyapunov function in the case of linear uncer- 
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APPENDM: 

Next, we specialize Theorem 3.1 to the feedback interconnection 
of a strongly bounded real transfer function and alinear bounded real 
gain. Hence consider the 3 defined by 

F { F  : IR+ +IRmX' : F( . )  is Lebesgue measurable 
and umax(F(t))  < 1, 

That is, F includes those 4 in rP of the form 4(y,t)  = F(t)y .  The 
following corollary is thus immediate. 

Corollary 3.1. If G(s) ",?? [ $ i] is strongly bounded real, then 

the feedback interconnection of G(s) and F ( . )  is asymptotically stable 
for all F( . )  E 3. 

Corollary 3.1 implies that A + BF(.)(I - DF(.))-'C is asymp- 
totically stable in the sense that the zero solution of the linear time- 
varying system 

a.a. t 2 0). 

z( t )  = (A + BF( t ) ( I -  DF( t ) ) - 'C) z ( t )  (3.29) 

is asymptotically stable. This result thus implies robust stability 
with time-varying bounded real (but otherwise unknown) uncertainty., 
Specifically, consider the system 

z( t )  = (A + AA( t ) ) r ( t ) ,  

where AA(.) E U and U is the uncertainty set 

(3.29)' 

U {AA(.) : AA(t) = B F ( t ) ( I -  DF(t))-'C, FT( t )F( t )  5 I, 
F(.) is Lebesgue measurable}. 

Then it follows from Corollary 3.1 and (3.29) that the zero solution 
to  (3.29)' is asymptotically stable for all AA(.) E U. The set U is a 
generalization of the uncertainty sets appearing in (52,53,56,57] for 
robust controller analysis and synthesis. These uncertainty S t N C -  

tures can be recovered by setting D = 0 in U. The case D # 0 has 
not been treated previously. Finally, if we restrict our attention to 
constant matrices, then Corollary 3.1 implies that if G(s) is StrondY 
bounded real, then A+ BF(I  - DF)-'C is WymPtoticdy stable for 
all F satisfying o,,,(F) 5 1. 
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