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2(a/a)y' + (gla)y = 0 (6)

where g is the gravitational constant.
Claim: Assume that a(t) is a positive bounded above func-

tion. If a(t) satisfies one of the following conditions for all t
> k

1) a' > 0
2) a' < 0
3) a' + r*a > 0, for some p > 1

then (6) is stable.
Proof: Criteria 1 and 2 can be proved by Corollary 3 with

M = 1, D = la1 la, K = gla, and a(f) = max {-a'la, -4a'I
a } . If a' > 0, then a(f) = -a'la. If a' ^ 0, then a(f) =
—^a' la. This shows that /°°a (5) ds < c, which implies (6)
is stable.

Criterion 3 can be obtained by Corollary 4 with A — 0,
M = 1, D + G = 2a'/a, # - £/0, and a(f) = rp, p > 1.
The claim is then proved.

Remark 7. Criteria 1 and 2 can also be seen in Hsu and Wu.3

VI. Conclusion
One stability criterion and two instability criteria for the first-

order linear time-varying system are given in this Note. These
criteria are extensions and/or consolidations of the results in
Refs. 3 and 4. These conditions, though not intuitive, can be
checked easily for a given system.

A general necessary and sufficient condition on stability is
very difficult to derive. However, it is interesting to know if
such conditions can be obtained in some forms of linear systems.
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I. Introduction

M AXIMUM entropy controller synthesis was developed
specifically for the robust control of flexible structures.1"4

The goal of this paper is to provide well-documented numerical
examples that illustrate the characteristics of the method. The
examples we consider in this note were chosen to contrast the
properties of maximum entropy controllers in two key cases,
namely, colocation and noncolocation. Our results confirm pre-
vious observations, namely, that maximum entropy controllers

employ positive real phase stabilization in the colocated case
and wider and deeper notch gain stabilization in the noncolo-
cated case. The computations were performed using a standard
quasi-Newton technique in conjunction with the appropriate
cost gradient expressions.

II. Maximum Entropy Controller Synthesis
Consider the structural model

x = Bu
J = 1

y = Cx + D2w
with feedback controller

xc = Acxc + Bcy
u = Ccxc

performance variables
z = E\x + E2u

and performance measure

c, Cc) = lim f l f 1\ - zT(s)z(s)ds \
[t JQ }

(D

(2)

(3)
(4)

(5)

(6)

where x e 2ft", u e 2ftM, y e 91* , w e &', z e 9l«, xc e Sft"s
a, is an uncertain parameter representing uncertainty in a>^, and

o,...,o|_°1 J ] , 0 , . . . , O J (7)

so that the zth 2 X 2 diagonal "block is the only nonzero entry
in Ai. The disturbance w is a standard white noise signal and
% denotes expectation. The matrix A is assumed to be in real
normal coordinates, that is,

(8)H,...,^' HI
-"niJ L-w* -'nJJ

In maximum entropy theory, the performance J(AC, Bc, Cc) is
given by

/(Ac, Z?0 Cc) = tr QE7E (9)
where Q satisfies the maximum entropy covariance equation

0 - AQ + QAT

+ V 8?U A?g + A,QAJ + i QAf\ + DDT

i^i \- 2 J

and where A, A,-, D, and E are defined by

= \_BCC Ac J ' = L 0 0J ' = \_BCD2

(10)

E 4 [E{E2CC]
(U)

and 8: is a measure of the magnitude of the uncertainty a/.
To minimize /(Ac, Bc, Cc) given by Eq. (9) where Q satisfies

Eq. (10), we define a Lagrangian function

4 tr QETE + tr P AQ + QAT

Received Sept. 2, 1992; revision received July 2, 1993; accepted
for publication July 2, 1993. Copyright © 1993 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

*Graduate Student, Department of Aerospace Engineering.
t Associate Professor, Department of Aerospace Engineering.

8? ^Q + AiQA! + QAf + DD (12)

where P is a nonzero Lagrange multiplier. Now by partitioning
Q and P as
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= f
LGIi G2

P =

and assuming for simplicity that E]E2 = 0 and D{DT
2 = 0, it

can be shown that P satisfies
0 = ATP + PA

8BC

c, ac, ce)

(13)

(14)

= 2C(GiPi2 + QnPi) + 2D2DT
2B?P2 (15)

(16)

and the cost gradients are given by
dJ(An Bc, Cc)

c, BCT Cc)

The expressions (14-16) follow from the fact that the cost
gradients are equal to the gradients of the Lagrangian.5

To perform the optimization, we used the MATLAB subrou-
tine fininu, which implements the BFGS quasi-Newton algo-
rithm. The search algorithm was modified to ensure closed-
loop stability within the line search subroutine. As in Ref. 5
and the homotopy methods3'6 we initialized the optimization
routine with the standard LQG solution. In addition to the
optimization routine we used the algorithm developed in Ref.
6 for solving Eqs. (10) and (13).

III. Illustrative Example: Colocated Case
The first example is a two-mass system with a colocated

sensor /actuator pair as shown in Fig. 1, where the measured
output yc is the velocity of mass M\ (yc and y^ denote the outputs
for the colocated and noncolocated cases). The dynamics of
the system are given by

C2(q2 - 4,)
C2 (q2

K2(q2 - q { )
q{) + K2(q2 -

(17)
(18)

yc = qi (19)
with the parameter values given in Fig. 1. After transforming to
real normal coordinates the following A, B, and C are obtained:

• -0.0002 0.2208 0 (T
-0.2208 -0.0002 0 0

0 0 -0.0103 1.4322
0 0 -1.4322 -0.0103

A =

B =

f -0.1439'
0.2168

-0.0426
1.1892

(20)

C = [-0.0545 0.0819 -0.0352 0.8181] (21)

The performance criterion was chosen so that LQG synthesis
would place a notch at the second mode. This is accom-
plished when

OnrO
1
0

LO

0
0
OJ

D2 = [0 1]

[1 0 0 01 [01

Ho o o oJHiJ

(22)

This matrix E\ weights the amplitude of the first mode but does
not penalize the amplitude or velocity of the second mode. In
practice this performance criterion reflects the situation in which
the closed-loop performance depends primarily upon the lower
frequency modes, while the higher frequency modes are uncer-
tain.

Note that in Eq. (21) the nominal damped natural frequencies
and damping ratios are w^ = 0.2208, 0)^2 = 1.4322, £1 =
0.0011, and £2 = 0.0072, and that the plant is positive real. In
Table 1 and Fig. 2 we compare the standard LQG design to
three maximum entropy designs, where the only parameter that
is varied is 82, which is a measure of the magnitude of the
uncertainty cr2 in the second damped natural frequency. When
compared to the LQG compensator, the maximum entropy
method with a small measure of uncertainty 82 first adjusts the
phase so that the controller is stable. Then the method continues
to alter the phase as 82 increases, yielding positive real control-
lers as 82 becomes large. The increase in robustness obtained
by increasing 82 was also assessed by determining the range
of values of a2 for which the closed-loop system remains stable.
This range of values, which increases with 82, is given by the
last column of Table 1 and is illustrated by the performance/
robustness tradeoff curves shown in Fig. 3.

It is important to stress that, although the use of positive real
controllers in the colocated case is standard practice to achieve
robustness, the maximum entropy method is the only technique
we know of that yields such controllers as a direct consequence
of uncertainty.

IV. Illustrative Example: Noncolocated Case
In the second example we examine the same two-mass system

as in Sec. III. However, in this example the sensor/actuator
pair is noncolocated with measured output ync — q2 = Cc, where
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20

Noncolocated Case
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Fig. 1 Two-mass system.
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Fig. 2 Compensator transfer functions.
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Table 1 Compensator comparison—colocated case

52

0 (LQG)
0.3
10
1000

Stable?
No
Yes
Yes
Yes

Minimum
phase?

Yes
Yes
Yes
Yes

Positive
real?
No
No
Yes
Yes

3^2 Nominal
state cost
13.8522
14.2884
15.2425
15.1942

^2 Nominal
control cost

1.9189
1.7801
1.7937
1.8463

Stability
boundary

1.4318
1.1533
-1015

-1013

1.4655
1015

1014

1014

Table 2 Compensator comparison—noncolocated case

&2

0 (LQG)
0.2
0.5
1.0

Stable?
Yes
Yes
Yes
Yes

Minimum
phase?

Yes
Yes
No
No

Positive
real?
Yes
No
No
No

^2 Nominal
state cost
772.9009
776.1827
786.9195
816.7371

^2 Nominal
control cost

11.0468
10.4267
8.5317
5.4372

Stability
boundary

1.4245
1.3242
1.1482
1.0300

1.4341
1.4887
1.7400
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Fig. 3 H2 state cost for the perturbed system.

that the notch center frequency moves to the right to avoid
possible overlap with the lower modal frequency. For these
designs the performance/robustness tradeoff curves are shown
in Fig. 3 and the stability boundaries are given in Table 2.

Despite the fact that phase no longer appears to be the princi-
pal means of robustification in the noncolocated case, the maxi-
mum entropy synthesis method does adjust the phase of the
compensator. In particular, as 82 increases, the compensator
transitions from minimum phase to nonminimum phase, as seen
in Fig. 2. This change in phase increases the phase margin near
the second mode as in the colocated case.

V. Conclusions
The purpose of this note was to contrast the robustness of

maximum entropy controllers in the colocated and noncolocated
cases, and to demonstrate a new computational technique for
maximum entropy controller synthesis. Based on these exam-
ples, we can conclude that maximum entropy controllers
achieve robustness by tending toward phase stabilization in the
colocated case and employing robustified notch filters in the
noncolocated case. The starting point for these designs was
LQG theory, which, in this case, yielded rather sensitive control-
lers. There exist, of course, alternative methods for robustifying
LQG designs, such as loop shaping, frequency weighting, and
3^oo theory. A comparison of these techniques with maximum
entropy controllers remains a topic for future investigation.

C= [-0.1063 0.1597 0.0018 -0.0419] (23)
Also the matrix E} in Eq. (22) is increased by a factor of
10, so as to enhance the notching characteristics of the LQG
compensator and to better demonstrate the properties of the
maximum entropy controllers. As will be seen, this increase
also led to the use of lower values of 82 to achieve levels of
robustification comparable to those obtained in the colocated
case.

Because the plant is not positive real, the maximum entropy
method can no longer guarantee closed-loop stability by
adjusting the phase of the compensator. Instead, the method
robustifies the LQG design by widening and deepening the
notch at the second mode. In addition, it can be seen that the
center notch frequency moves to the right, which makes the
stability region asymmetric for larger 82. On the other hand,
we found that the notch can be centered at the nominal damped
natural frequency by decreasing the nominal design frequency.
However, experience shows that this approach also does not
necessarily lead to a symmetric stability region. We suspect
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Introduction

I N recent years, eigenstructure assignment has been an active
topic of research in multivariable control theory. Since the

degrees of freedom are available over and above pole assign-
ment using state or output feedback,1 respectively, numerous
researchers have exercised those degrees of freedom to make
the systems have good insensitivity to perturbations in the
system parameter matrices via eigenstructure assignment.1"5

Most eigenstructure assignment techniques in the last decade
only pay attention to the optimal solutions for some special
performance indices, e.g., HFflHalUVlb, where VR is the right
eigenvector matrix. However, many practical control systems
are required to have the ability to satisfy simultaneously differ-
ent and often conflicting performance criteria, for instance,
closed-loop stability, low feedback gains, and insensitivity to
model parameter variations.

In this Note, we provide a new approach to make the closed-
loop system satisfy a set of required performance criteria with
less conservatism, using eigenstructure assignment and the
method of inequalities.6

Multiobjective Controller Design
Consider a linear multivariable time-invariant, completely

controllable, state feedback system:

x = Ax + Bu, u = Kx (D

where x e (Rn is the state vector, u e Rm is the control input
vector, A e R"x", B e Rn x m, and K e Rm x". Then the closed-
loop system representation is given by x = (A 4- BK)x. Intro-
ducing an n X n-dimensional eigenvector matrix VR =
[Vn, V«, . . . , V R n ] , where VK (/ = 1, 2, . . . , n) is the right
eigenvector corresponding to the eigenvalue \h a general solu-
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tion for this problem can be given in the form of a parametric
expression, AT (A, V/?), for all feedback gain matrices AT which
assign the self-conjugate set of eigenvalues A = [X,, X2, . . . ,
XJ to the closed-loop system. If both the vector A and the right
eigenvector matrix VR of (A + BK) are specified, the controller
AT is determined.

In practice, it is usually intended to locate the eigenvalue
vector A in a well-defined set to meet the requirements of the
practical control system (e.g., stability, speed of response, etc.).
This leads to eigenvalue constraints, for example of the form
XL . ^ X/ ^ \uu where \Li E R and \Uf e IR are the lower
bound vector and the upper bound vector, respectively. These
constraints may be removed by considering the change of vari-
ables given by

with v, e IR. Since the system is assumed to be completely
controllable, the /th closed right eigenvector VRi is given by

VRi = (X,-/ - A)-lBWi9 i = 1, 2, . , n (3)

where Wt e RmX ' and the matrix W = [ W,, W2, . . . , WJ.
For the case when the matrix (X// - A ) is not invertible, for

example when one or more closed-loop eigenvalues are required
to be identical to open-loop values, then the following alterna-
tive to Eq. (3) by Roppenecker5 and Liu and Patton7 can be
used without loss of generality. Clearly, the right eigenvector
matrix VK is a function of Y = [vb v2, . . . , vn] and W, i.e.,
VR( Y, W). Thus, the parametric formula of the controller matrix
K can be described by AT(Y, W). A parametric representation
of the control matrix AT is given by5

AT(Y, W) = mV(Y, W) (4)

In most parameter insensitive design methods using eigens-
tructure assignment, the performance indices are given on the
basis of the right eigenvector matrix. For example, a very
common performance index is given by

<KY, (5)

where \\VR\\2 — (maximum eigenvalue of VRVR)112.
Though the performance index 4>(Y, W) can be used to

represent an upper bound of the eigenvalue sensitivities, it is
often conservative because of the following relations:

<KY, W) > maxfcMX W) : i e {1,2, . . . , n } } (6)

where 4>/( Y, W) is the individual sensitivity of the eigenvalue
\i to perturbations in any of the elements of the matrices A
and B, defined by

<t>KX W) = , i = 1 , 2 , . . . , n (7)

where the superscript * denotes "conjugate-transposed," VLi is
the /th closed-loop left eigenvector given by the relation
VI = VR

l with the left eigenvector matrix VL = [VL|, V/2,
.. . , VLn]. Hence, to reduce the conservatism the problem
becomes to find a pair (Y, W) such that

Y, W
for i = 1, 2, (8)

To give a feel for the usefulness of the multiobjective
approach as opposed to single-objective design techniques, let
us consider the minimization of the cost functions ct>,(Y, W)
( / = ! , 2, . . . , n ) . Let the minimum value of <)>,• be given by
<|>f, for i = 1, 2, . . . , n, respectively. For these optimal values
<(>*, there exist corresponding values given by 4> ;(4>f) (j =£ i,


