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Battery State of Health
Monitoring by Estimation
of Side Reaction Current
Density Via Retrospective-Cost
Subsystem Identification
This paper introduces a new method to monitor battery state of health (SOH). In particu-
lar, the side reaction current density is estimated as a direct SOH indicator for the first
time and its estimation is formulated as an inaccessible subsystem identification problem,
where the battery health subsystem is treated as an inaccessible subsystem with the side
reaction current density as the output. Inaccessibility in this context refers to the fact that
the inputs and outputs of the subsystem are not measurable in situ. This subsystem is
identified using retrospective-cost subsystem identification (RCSI) algorithm, and the out-
put of the identified battery health subsystem provides an estimate for the side reaction
current density. Using an example parameter set for a LiFePO4 battery, simulations are
performed to obtain estimates under various current profiles. These simulations show
promising results in identifying the battery health subsystem and estimating the side reac-
tion current density with RCSI under ideal conditions. Robustness of the algorithm under
nonideal conditions is analyzed. Estimation of the side reaction current density using
RCSI is shown to be sensitive to nonideal conditions that cause errors in the measurement
or estimation of the battery voltage. A method for quantitatively assessing the impact of
nonideal conditions on the side reaction current estimation accuracy is provided. The
proposed estimation technique, including the method for estimating the side reaction cur-
rent density using RCSI and the framework analyzing its robustness, can also be applied
to other parameter sets and other battery chemistries to monitor the SOH change result-
ing from any electrochemical-based degradation mechanism that consumes cyclable
Li-ions. [DOI: 10.1115/1.4036030]

1 Introduction

State of health (SOH) monitoring provides critical information
to battery management for balancing the tradeoff between maxi-
mizing system performance and minimizing battery degradation.
However, the SOH is an abstract concept that needs to be deduced
from other quantities that are correlated with battery health. This
paper refers to these quantities as SOH indicators.

Based on the choice of the SOH indicator, the SOH monitoring
literature can be divided into two categories. Most of the literature
uses battery degradation effects, such as capacity fade [1–8] and
power fade [9,10], as the SOH indicator. Empirical models, such
as equivalent circuit models, are often sufficient for these applica-
tions as the mapping between the SOH indicator and the battery
voltage, current, and temperature. The simplicity of these models
is the key advantage to these techniques. However, degradation
effects can be inaccurate in representing the SOH because they
are not only related to the battery SOH but are also affected by
environmental conditions and use patterns [11].

The second category uses health-relevant electrochemical vari-
ables as the SOH indicator. The benefit of using these variables is
that they can uniquely indicate the level of degradation independ-
ent of environmental conditions and use patterns. Some example
electrochemical variables used as SOH indicators are the number

of cyclable Li-ions [12,13], the solid-electrolyte-interphase (SEI)
film resistance [14–19], and lithium deposition [20].

In this paper, an alternative electrochemical variable, namely
the side reaction current density, is introduced as the SOH indica-
tor. The side reaction current density is a measure of the rate of
cyclable Li-ion consumption, which contributes to capacity fade
in all electrochemical-based degradation mechanisms that con-
sume cyclable Li-ions [21]. Moreover, these electrochemical
mechanisms are identified to be the primary degradation mecha-
nisms for the LiFePO4 battery, which is the battery chemistry that
is investigated in this research [22–24].

Although the side reaction current density is known to be asso-
ciated with the degradation process [21,23], it has not been used
to directly indicate the battery health in battery management appli-
cations. This paper argues that the side reaction current density is a
logical choice as a direct SOH indicator in various situations
because the side reaction current density provides information
regarding both the degradation rate and the overall degradation
level. In situations where the instantaneous degradation rate is con-
cerned, for example where controllers are designed with avoiding
dramatic degradation rate as an objective or constraint [25], the
side reaction current density provides the direct measure of the
degradation rate. In situations where the overall degradation level
over time is concerned, such as the estimation of remaining mile-
ages of electric vehicle batteries, the integral of the side reaction
current density across the whole battery and over time provides
the total loss in cyclable Li-ions, which is an electrochemical
measure of the capacity loss. For degradation mechanisms that
result in byproducts such as SEI film, the aforementioned integral
is also proportional to the growth in internal resistance. Therefore,
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this paper proposes the idea of using the side reaction current den-
sity as a direct indicator of the SOH, and provides a method to
estimate the side reaction current density directly.

Compared to the other electrochemical SOH indicators [12,14,15],
the side reaction current density has two advantages. First, the
side reaction current density measures the rate of Li-ion consump-
tion, thus giving an instantaneous sense of how fast a battery is
degrading at each instant in time. Second, as opposed to the SEI
film resistance and Lithium deposition, which are mechanism-
specific indicators that apply only to the degradation mechanism
of SEI film formation and Lithium plating, respectively, the side
reaction current density can be applied to all Li-ion-consuming
degradation mechanisms [21].

A major challenge of estimating the electrochemical SOH indi-
cators is that they are available only from invasive or destructive
methods. This paper addresses this challenge by treating the bat-
tery health system as an inaccessible subsystem of the overall bat-
tery system, and using retrospective-cost subsystem identification
(RCSI) to identify this subsystem and estimate its output, namely,
the side reaction current density.

This paper focuses on the following research questions:

(1) Can the side reactions that consume cyclable Li-ions and
thus degrade battery health be formulated as an inaccessible
subsystem in the battery?

(2) Is it possible to estimate the side reaction current density as
the output of the inaccessible subsystem using RCSI?

(3) How robust is this estimation against various nonideal
conditions?

This paper builds on the work in Ref. [26] with the following
additional novelties. Instead of using the single particle model
(SPM) [27–29] to represent the battery state of charge (SOC) sys-
tem as in Ref. [26], a more detailed and accurate model, the
Doyle–Fuller–Newman (DFN) model, is used in this paper. More-
over, unlike in Ref. [26] where estimation is considered only
under ideal conditions, robustness of the estimation algorithm
under a selection of nonideal conditions is discussed in detail in
this paper to give an expectation for the performance of the algo-
rithm in practice. These nonideal conditions include measurement
noise, SOC estimation errors, modeling errors in the main system
model, and form discrepancies between the subsystem and subsys-
tem model.

The rest of the paper is organized as follows: Section 2 presents
the battery model used in this paper. Section 3 discusses RCSI
and its application to the estimation of the SOH. Simulation
results and discussion of estimation under ideal conditions are
given in Sec. 4. Section 5 provides the simulation results and dis-
cussions about robustness of the algorithm against nonideal condi-
tions. Summary and conclusions are given in Sec. 6.

2 Battery Model

A battery model is necessary in this study for two reasons. First,
the inaccessible subsystem estimation algorithm RCSI requires a
map relating the inaccessible quantity to the signals that are meas-
urable in practice. In this work, this map is a battery model that
relates the side reaction current density to the battery terminal
voltage and current. Second, because the investigation in this
paper is simulation based, a battery model is required to represent
a battery.

This section presents the battery model used in this work. An
electrochemical model is adopted to support the use of an electro-
chemical SOH indicator. Two forms of this model are given. The
first form, the electrochemical form, includes the electrochemical
equations. However, this form is too complicated for estimation.
Therefore, this form is simplified to obtain a form that is suitable
for estimation. This form is referred to as the estimation form.

2.1 The Electrochemical Form. For the purposes of this
work, a battery model is partitioned into two parts: the SOC model

representing the SOC system and the SOH model representing the
SOH subsystem. The SOC system governs the battery SOC
dynamics and determines the battery voltage as its output. The
SOH subsystem governs the health process, with its output being
the side reaction current density.

2.1.1 Battery State of Charge Model. The SOC model in this
paper is the DFN model [30] as depicted in Fig. 1. In the DFN
model, the structure of the solid phase in each electrode is mod-
eled with a series of spherical particles, leading to spatial discreti-
zation along the thickness of the anode–separator–cathode
sandwich, which is defined as the x dimension. The r dimension
represents the direction along the radius of each spherical particle.
The SOC is measured by the Li-ion concentration in the solid par-
ticles. Notice that the DFN model contains not only the SOC
dynamics but also the dynamics regarding the Li-ion concentra-
tion in the electrolyte phase and potential. However, for simplic-
ity, this model is referred to as the SOC model in this paper to
differentiate it from the SOH model. The electrochemical equa-
tions of the DFN model are briefly summarized here for complete-
ness, and the interested reader is referred to Ref. [31] for a
detailed description.

Diffusion of Li-ions inside each electrode particle is governed
by Fick’s law along the r dimension, while diffusion within the
electrolyte is along the x dimension, i.e.,

@cs;j

@t
¼ rr Ds;jrrcs;jð Þ (1)

@ce
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¼ @

@x
De;j

@ce

@x
þ 1� tþ

ee;jF
ie

" #
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with the boundary conditions
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Fig. 1 The schematic of the electrochemical model of a LiFePO4

battery
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ceðLn; tÞ ¼ ceð0sep; tÞ (8)

ceðLsep; tÞ ¼ ceðLp; tÞ (9)

The SOC is computed from cs;n through

hn ¼
cs;n

cs;max;j
(10)

which measures the percentage of the solid concentration with
respect to the theoretical maximal Li-ion concentration. Then the
SOC is computed as

SOC ¼ hn � hn;0%

hn;100% � hn;0%

� 100% (11)

where hn;100% and hn;0% are hn at the full-charge and depleted
states, respectively [29].

The distributions of the potential in both the solid and electro-
lyte phases are along the x dimension

@/s;j

@x
¼ ie � itotal

reff
j

(12)

@/e

@x
¼ 2RT

F
1� tþð Þ 1þ d ln fj

d ln ce

� �
@ ln ce

@x
� ie

jeff
(13)

with the boundary conditions

@/s;j

@x
Ljð Þ ¼ 0 (14)

/eð0n; tÞ ¼ 0 (15)

/eðLn; tÞ ¼ /eð0sep; tÞ (16)

/eðLsep; tÞ ¼ /eðLp; tÞ (17)

The total superficial current density itotal in Eq. (12) is obtained by
averaging the current I over the total area of electrodes A

itotal ¼
I

A
(18)

where positive I indicates discharge. The superficial current den-
sity ie is governed by

@ie
@x
¼ Jtotal;j (19)

ieð0j; tÞ ¼ 0 (20)

where Jtotal;j represents the sum of the current densities of all elec-
trochemical reactions in the battery, including the intercalation
reaction that governs the SOC process and the side reactions that
govern the SOH process. Notice that there is neither an intercala-
tion reaction nor a side reaction in the separator, i.e., Jtotal;sep ¼ 0,
and thus ieðx; tÞ ¼ itotal for all x 2 ½0sep;Lsep�.

The exchange of Li-ions between the solid electrodes and elec-
trolyte is referred to as the intercalation reaction (represented by
the double-sided arrows in Fig. 1). The intercalation reaction is
reversible, and thus the Li-ions used in this reaction can be
recycled for future reactions. This reaction is governed by the
Butler–Volmer equation

J1;j ¼ i0;jas;j exp
aa;jF

RT
gj

� �
� exp � ac;jF

RT
gj

� �� �
(21)

where

i0;jðx; tÞ ¼ kjðcs;jðRj; tÞÞac;j

½ceðx; tÞðcs;max;j � cs;jðRj; tÞÞ�aa;j (22)

gp ¼ /p;s � /p;e � Uref;p (23)

gn ¼ /n;s � /n;e � Uref;n �
Jtotal;n

as;j
Rfilm (24)

The intercalation current density J1;j indicates the speed of the
charge and discharge process. The SEI film, whose resistance is
captured by Rfilm in Eq. (24), is assumed to accumulate only on
the anode [23].

The SPM, a simplified version of the DFN model, is also used
in this paper when we examine the robustness against modeling
error. The SPM models each electrode with only one particle, thus
eliminating the representation of the distribution of Li-ions along
the x direction. Since uniform distribution of the electrolyte con-
centration is assumed, Eqs. (2) and (5)–(9) can be eliminated.
Compared with the SPM, the DFN model can represent charge
and discharge dynamics more accurately for high current rates.
Details about the SPM used in this paper can be found in Refs.
[26] and [29].

2.1.2 Battery State of Health Model. The Arora model [21] is
used to model the SOH subsystem in this work due to its ability to
capture all electrochemical-based degradation mechanisms that
consume cyclable Li-ions. The health model in Refs. [14,15]
adopted from Ref. [23] is an example of the Arora model used
specifically for the SEI film formation mechanism. The form of
the Arora model also provides insight on how to choose the form
of the subsystem model in RCSI.

In the Arora model, each degradation mechanism is captured
by the Butler–Volmer equation for the corresponding irreversible
side reaction [21] (represented by the one-way arrow in Fig. 1).
The irreversibility of the side reactions leads to the consumption
of cyclable Li-ions, causing capacity fade of the battery. The rate
of the side reaction is captured with the side reaction current den-
sity Jsd;j. For LiFePO4 batteries, degradation is assumed to happen
only in the anode [23]. Hence, in the cathode

Jsd;p ¼ 0 (25)

while in the anode

Jsd;n ¼ �i0;sdas;n exp � ac;nF

RT
gsd

� �
(26)

where the overpotential gsd can be obtained by

gsd ¼ /s;n � /e;n � Uref;sd �
Jtotal;n

F
Rfilm (27)

where Jtotal;j is the total current density, whose distribution is
determined only by I, as shown in Eqs. (18)–(20).

The SOC and SOH processes are related through the total cur-
rent density Jtotal;j, i.e.,

Jtotal;j ¼ J1;j þ Jsd;j (28)

Hence, the side reactions affect the SOC process by reducing the
available current density for the intercalation.

2.2 The Estimation Form. The form of the battery model in
Sec. 2.1 is simplified in this section to obtain a form that is suita-
ble for estimation. Moreover, since degradation is assumed to
occur only in the anode [23], the side reaction current density in
the cathode is always zero. Hence, in the rest of the paper, we are
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concerned only with the side reaction current density in the anode,
Jsd;n, and represent it with a shorter notation, Jsd.

The SOC model is simplified into the state space form with two
inputs and two outputs. First, the partial differential equations
(PDEs) contained in the SOC model are reduced to finite dimen-
sion as a group of ordinary differential equations (ODEs). Specifi-
cally, the PDE (1) governing diffusion in the solid phase is
reduced to finite dimension through a third-order Pad�e approxima-
tion of the Laplace transformation of Eq. (1) [32], whereas the
spatial dimension of the PDE (2) governing diffusion in the elec-
trolyte phase is discretized with the central difference method.
Therefore, the state equations of the SOC model are obtained by
stacking the ODEs reduced from PDEs (2) and (1). Then, the
inputs to the SOC model are reformulated to be the exogenous
input I and output of the SOH model Jsd. In the electrochemical
form of the SOC model, the inputs are J1;j and I. However, in the
simplified form, by applying (28) combined with the fact that
Jtotal;j can be calculated from the current I alone, J1;j is expressed
as a function of Jsd and I. Finally, two outputs are calculated from
the SOC model, namely, the exogenous output V and the input y/
to the SOH model. The exogenous output V is the difference
between the potential of the solid phases of the two electrodes,
i.e.,

VðtÞ ¼ /s;pð0p; tÞ � /s;nð0n; tÞ (29)

The input y/ to the SOH model is defined in Eq. (32).
The electrochemical equations of the SOH model can be sim-

plified into a linear static equation with only one parameter and
one input y/, which is computed in the SOC model. Substituting
Eq. (27) into Eq. (26) yields

Jsd ¼ KSOHy/ (30)

where

KSOH¢� i0;sdas;n exp
ac;nF

RT
Uref;sd

� �
(31)

y/¢ exp � ac;nF

RT
/s;n � /e;n �

Jtotal;n

as;n
Rfilm

� �� �
(32)

Note that KSOH is a function of the parameters of the battery
model among which i0;sd and Uref;sd are associated with the SOH
process.

One of the benefits of the linear static formulation of the SOH
model is that under the presence of several side-reaction-based
degradation mechanisms, the total side reaction current density
can be easily obtained by summing all the side reaction current
densities. Assume that a total of j side reactions happen simulta-
neously. Then, each side reaction follows

Jsd;i ¼ KSOH;iy/; i ¼ 1;…;j (33)

where Jsd;i and KSOH;i are the side reaction current density and the
health parameter for the ith side reaction, respectively. Because
the input y/ is computed in the SOC model, all side reactions
share the same y/. Therefore, the total side reaction current den-
sity is

Jsd ¼
Xj

i¼1

Jsd;i ¼
Xj

i¼1

KSOH;iy/ ¼ KSOHy/ (34)

where KSOH ¼
Pj

i¼1 KSOH;i. Therefore, Eq. (34) is the counterpart
of Eq. (30) when several side reactions are present.

Above all, the SOH model has the form

J sdðkÞ ¼ KSOHY/ðkÞ (35)

where the vectors J sdðkÞ and Y/ðkÞ are constructed by stacking
Jsd and y/ for every particle in the anode. Assuming the anode
contains N particles, J sd and Y/ are given by

J sd¢

J1
sd

�

JN
sd

2
664

3
775; Y/¢

y1
/

�

yN
/

2
664

3
775 (36)

The gain KSOH is the diagonal matrix

KSOH¢

K1
SOH

. .
.

KN
SOH

2
664

3
775 (37)

where the superscripts 1;…;N in Eqs. (36) and (37) are the parti-
cle indices.

If K1
SOH ¼ � � � ¼ KN

SOH¢Kunif
SOH, then KSOH can be reduced to the

scalar gain Kunif
SOH. In this case, there is no need to differentiate the

degradation processes in different particles, and the SOH model
can be simplified from Eq. (35) to

Jave
sd ¼ Kunif

SOHyave
/ (38)

where

Jave
sd ¢

1

N

XN

m¼1

Jm
sd; yave

/ ¢
1

N

XN

m¼1

ym
/ (39)

In Eq. (38), the average of the side reaction current densities
among all particles is used instead of J sd to represent the total
degradation rate of the battery.

In summary, the simplified form can be depicted by the block
diagram in Fig. 2(a). The signals in Fig. 2(a) are defined as fol-
lows: (i) the measurable input w and output y0 of the overall
model are the current I and the voltage V, respectively; (ii) the
output of the SOH model u is the side reaction current density Jsd;
and (iii) the input y to the SOH model is y/. The equations for the
SOC model are then put into the discrete form for computation
purpose, i.e.,

xðk þ 1Þ ¼ f ðxðkÞ; uðkÞ;wðkÞÞ (40)

yðkÞ ¼ gðxðkÞ; uðkÞ;wðkÞÞ (41)

y0ðkÞ ¼ g0ðxðkÞ; uðkÞ;wðkÞÞ (42)

where states xðkÞ 2 Rn reflect the battery SOC, the electrolyte
concentration, and the potential distribution in the solid and elec-
trolyte phase. The function f ð�Þ in Eq. (40) represents Eqs. (1),
(2), (12), (13), and (19), while gð�Þ in Eq. (41) and g0ð�Þ in Eq.
(42) are static relationships represented by Eqs. (32) and (29),
respectively. The SOH model is a linear static equation in the
form of either Eq. (35) or Eq. (38). Both Eqs. (35) and (38) can be
written as

u ¼ hT/ (43)

where u, h, and / represent J sd; KSOH, and Y/ in Eq. (35), or
Jave

sd ; Kunif
SOH, and yave

/ in Eq. (38). Notice that the SOC model and the
SOH model interact with each other through the signals u and y.

Similarly, the SPM also follows the form of Eqs. (40)–(43) with
the same definitions for all the signals. However, compared with the
DFN model, the SPM has only four states (i.e., xðkÞ 2 R4), while
the DFN model with 50 particles per electrode has 725 states (i.e.,
xðkÞ 2 R725). Finally, Eq. (42) in the SPM can be simplified as [26]
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V ¼ Uref;p þ
RT

aF
ln

itotal
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itotal

2as;pLpi0;p

� �2

þ 1
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A
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I

ALnas;n
Rfilm

� �

� 1

2A

Ln

jeff;n
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Lsep

jeff;sep
þ Lp

jeff;p

� �
I � I

ALnas;n
Rfilm (44)

3 Retrospective-Cost Subsystem Identification

3.1 Problem Setup. Figure 2(b) presents the architecture of
RCSI formulated for the proposed battery health estimation prob-
lem. The true system in the upper block contains a known main
system and an unknown subsystem. The subsystem output, u, is
the inaccessible signal to be estimated. This representation of the
true system has the same architecture as the battery model in
Fig. 2(a). The lower block, labeled “system model”, is the model
of the true system. The main system model is based on knowledge
of the main system. The form of the subsystem model is assumed
to be a mathematical approximation of the form of the true sub-
system. The difference between the output of the true system and
the system model is computed to identify the subsystem model
parameter and thus estimate the subsystem output, the inaccessi-
ble signal of interest.

In the context of the battery health estimation problem, the true
system is a battery, where the main system represents the battery
SOC system, which is assumed to be known, and the unknown
subsystem represents the battery SOH system to be identified. For
the simulation study presented in this paper, the true system is rep-
resented by the battery model. The main system is the SOC model
represented by Eqs. (40)–(42), while the subsystem is the SOH
model represented by Eq. (43), where h is assumed to be
unknown.

Similarly, the system model is the battery model, where the
main system model is the SOC model and the subsystem model is
the SOH model. The SOC model in the main system model has
the form

x̂ðk þ 1Þ ¼ f̂ ðx̂ðkÞ; ûðkÞ;wðkÞÞ (45)

ŷðkÞ ¼ ĝðx̂ðkÞ; ûðkÞ;wðkÞÞ (46)

ŷ0ðkÞ ¼ ĝ0ðx̂ðkÞ; ûðkÞ;wðkÞÞ (47)

If accurate knowledge of the main system is assumed, then the
number of particles per electrode, which determines the number
of states in Eqs. (40)–(42), and the parameters in the main system
model are identical to those of the main system. In this case, f̂ ð�Þ
and f ð�Þ; ĝð�Þ and gð�Þ, and ĝ0ð�Þ and g0ð�Þ are identical. When
modeling error between the main system model and the main sys-
tem is considered, f̂ ð�Þ and f ð�Þ; ĝð�Þ and gð�Þ, and ĝ0ð�Þ and g0ð�Þ
are not identical.

For simplification in estimation, the SOH parameters for all of
the particles in the subsystem model are assumed to be identical;
thus, the form of the subsystem model is assumed to be a linear
static equation as (38)

Ĵ
ave

sd ¼ K̂
unif

SOHŷave
/ (48)

where Ĵ
ave

sd and ŷave
/ are the estimates of the average of J sd and

Y/, respectively; and K̂
unif

SOH is an estimate of the average of KSOH

weighted by the subsystem input in each particle. When the SOH
parameters are assumed identical for all of the particles in the true
subsystem as well, that is, Km

SOH are identical and Eq. (38) is used

to represent the true SOH system, Ĵ
ave

sd ; K̂
unif

SOH, and ŷave
/ are the

estimates of Jave
sd ; Kunif

SOH, and yave
/ , respectively.

Define the output and input of the subsystem model as

û¢Ĵ
ave

sd (49)

ŷ¢ŷave
/ (50)

Then, the subsystem model can be expressed in the ARMAX form

ûðkÞ ¼ ĥ
TðkÞŷðkÞ (51)

where ĥðkÞ 2 Rlu�ly is the parameter of the subsystem model

ĥðkÞ¢K̂
unif

SOHðkÞ (52)

where lu and ly are the dimension of û and ŷ, respectively. In this

paper, ĥ and /̂ are both scalars, and thus lu¼ 1 and ly¼ 1.

3.2 Algorithm Development. RCSI is developed under the
assumption that both the main system and the subsystem are in
discrete-time linear form. However, with a proper choice of
parameters, the algorithm can also be applied to discrete-time
nonlinear systems [14,15,33]. In this section, we present the
development of RCSI in the linear context with guidelines to
choose the parameters in nonlinear applications.

A two-stage Kalman filter version of RCSI is presented in this
section, which is a variation of Refs. [14], [15], [33], and [34].

Fig. 2 The architectures of (a) the battery model and (b)
retrospective-cost subsystem identification for estimation of
the side reaction current density. Note that the output of the
SOH model in (a) is the side reaction current density Jsd.
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This version of RCSI operates recursively, where each time step
contains two stages. In the first stage, the estimates of the inacces-
sible signal u in past time steps are constructed from the differ-
ence between the measurable signal y0 and its estimate ŷ0 using
knowledge of the main system. These constructed estimates of u
in the past time steps are referred to as retrospective-cost signals,
and this stage is called retrospective-cost-based signal construc-
tion. Although the full model of the main system is assumed avail-
able, only the Markov parameters of this model are used in the
signal construction, which simplifies the algorithm. In the second
stage, the subsystem parameter is identified with the constructed
estimates of u in past time steps using the Kalman filter. This
identified subsystem parameter is then used in the subsystem
model to generate û as a prediction of u in the next time step.
These two stages are described next in detail.

3.2.1 Retrospective-Cost-Based Signal Construction. The main
system is assumed to be linear and discrete-time with the form

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þ FwðkÞ (53)

yðkÞ ¼ CxðkÞ þ DuðkÞ þ JwðkÞ (54)

y0ðkÞ ¼ E1xðkÞ þ E2uðkÞ þ E3wðkÞÞ (55)

where xðkÞ 2 Rn is the state, wðkÞ 2 Rlw is the external input,
uðkÞ 2 Rlu is the output of the subsystem, yðkÞ 2 Rly is the input
to the subsystem, and y0ðkÞ 2 Rly0 is the measurable output.

The main system is assumed known, and thus the model of the
main system is constructed as

x̂ðk þ 1Þ ¼ Âx̂ðkÞ þ B̂ûðkÞ þ F̂wðkÞ (56)

ŷðkÞ ¼ Ĉx̂ðkÞ þ D̂ûðkÞ þ ĴwðkÞ (57)

ŷ0ðkÞ ¼ Ê1x̂ðkÞ þ Ê2ûðkÞ þ Ê3wðkÞ (58)

zðkÞ ¼ ŷ0ðkÞ � y0ðkÞ (59)

where x̂ðkÞ 2Rn; ŷðkÞ 2Rly ; zðkÞ 2Rlz ; ŷ0ðkÞ 2Rly0 ; ûðkÞ 2Rlu .
The known information of the main system is reflected through
matrices Â;…; Ê3. If there is no modeling error in the main system
model, then Â;…; Ê3 are identical to A;…;E3, respectively. For
nonlinear systems such as Eqs. (40)–(42), the linear equations
(53), (54), and (55) are specializations of Eqs. (40), (41), and (42),
respectively. Similarly, Eqs. (56), (57), and (58) are specializa-
tions of Eqs. (45), (46), and (47), respectively.

The main system model relates the subsystem model output û
to the estimated output signal ŷ0 using Markov parameters
between û and ŷ0, which are defined as

Ĥi¢
Ê2; i ¼ 0

Ê1Â
i�1

B̂; i � 1

(
(60)

Markov parameters reflect the impact of the past input û on the
current output ŷ0 as in

ŷ0ðkÞ ¼ Ê1Â
k
x̂ð0Þ þ Ê3wðkÞ þ

Xk�1

i¼0

Ê1Â
i
F̂wðk � i� 1Þ

þ
Xk

i¼0

Hiûðk � iÞ (61)

For nonlinear systems, the Markov parameters serve as tunable
parameters in the algorithm, which also reflects the influence of
ûðk � iÞ on ŷ0ðkÞ. One way to tune Ĥ i for nonlinear applications

is to linearize the system around a point and use the linearization
to determine Ĥ i.

A set of dominant Markov parameters is defined that corre-
sponds to the set of ûðk � iÞ that has the largest impact on the
output ŷ0ðkÞ. The dominant Markov parameters and the corre-
sponding ûðk � iÞ can be put into the matrix form

H¢½Hi0 � � � Hir � 2 Rlz�rlu (62)

Uðk � 1Þ¢½ûTðk � i0Þ � � � ûTðk � irÞ�T (63)

where r is a positive integer indicating the size of the set of domi-
nant Markov parameters, and i0;…; ir are indices of the dominant
Markov parameters.

Combining Eqs. (59) and (61)–(63) yields

zðkÞ ¼ SðkÞ þ HUðk � 1Þ (64)

where

SðkÞ¢Ê1Â
k
x̂ð0Þ þ Ê3wðkÞ þ

Xk�1

i¼0

Ê1Â
i
F̂wðk � i� 1Þ

�y0ðkÞ þ H0U0ðk � 1Þ (65)

H0 is the matrix containing all the Markov parameters Hi except
the dominant ones and U0ðk � 1Þ is the matrix containing uðk � iÞ
corresponding to the entries inH0.

To utilize the information from several time steps, Eq. (64) can
be rewritten with a delay of kj time steps in the form

zðk � kjÞ ¼ Sjðk � kjÞ þ HjUjðk � kj � 1Þ (66)

where 0 � j � s and 0 � k1 < k2 < � � � < ks. Notice that the dom-
inant Markov parameters can be different for different steps, i.e.,
Hj is not a constant with respect to j. The extended performance
is defined by stacking zðk � k1Þ;…; zðk � ksÞ into

ZðkÞ¢½zTðk � k1Þ � � � zTðk � ksÞ�T 2 Rslz (67)

Therefore

ZðkÞ¢~SðkÞ þ ~H ~Uðk � 1Þ (68)

where

~SðkÞ¢½Sðk � k1Þ � � � Sðk � ksÞ�T 2 Rslz (69)

~H 2 Rslz�l ~U and ~Uðk � 1Þ 2 Rl ~U . ~Uðk � 1Þ is formed by stack-
ing U1ðk � k1 � 1Þ;…;Usðk � ks � 1Þ and removing repetitions

in the components. ~H consists of the entries of H1;…;Hs

arranged according to the structure of ~Uðk � 1Þ.
The extended retrospective performance is defined by

Z�ðkÞ¢ZðkÞ � ~H ~Uðk � 1Þ þ ~H ~U
�ðk � 1Þ (70)

where the actual past subsystem model outputs ~Uðk � 1Þ in Eq.
(68) are replaced by the retrospectively optimized subsystem out-
puts ~U

�ðk � 1Þ. Since the retrospective subsystem outputs serve
as estimates of the true subsystem outputs in corresponding past
steps, replacing ~Uðk � 1Þ with ~U

�ðk � 1Þ is expected to yield the
smallest extended retrospective performance at the past steps.
Therefore, the retrospective subsystem outputs can be found by
minimizing the retrospective cost function defined as

�JðkÞ¢Z�TðkÞRZðkÞZ�ðkÞ þ ~U
�Tðk � 1ÞRUðkÞ ~U

�ðk � 1Þ (71)

where RZðkÞ 2 Rlz�lz and RUðkÞ 2 Rlu�lu are positive-definite

weightings. In Eq. (71), ~U
�TðkÞRUðkÞ ~U

�ðkÞ is the regularization

term, which is included in �JðkÞ to ensure that AðkÞ is invertible.
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The unique global minimizer of Eq. (71) is

~U
�

k � 1ð Þ ¼ � 1

2
A�1 kð ÞB kð Þ (72)

where

AðkÞ¢ ~HT
RZðkÞ ~H þ RUðkÞ (73)

BðkÞ¢2 ~HT
RZðkÞ½ZðkÞ � ~H ~Uðk � 1Þ� (74)

3.2.2 Kalman Filter Update of the Subsystem Parameter.
Denote the component in ~U

�ðj� 1Þ that estimates u(k), where
k � j, with ~u�ðkÞ. By replacing ûðkÞ in Eq. (35) with ~u�ðkÞ, identi-
fication of the subsystem becomes identification of the parameters
in the ARMAX model

~u�ðkÞ ¼ ĥ
TðkÞŷðkÞ (75)

where ĥðkÞ is defined in Eq. (52). If there are multiple choices of j
such that ~U

�ðj� 1Þ contains a component that estimates uðkÞ,
then the selection of ~u�ðkÞ is chosen to be the latest estimate.

The Kalman filter updating law for the ARMAX model parame-
ters is

ĥðk þ 1Þ ¼ ½1� aðkÞ�½ĥðkÞ þ ðPðk þ 1Þ þ QÞŷðk þ 1Þ
� ½Rk þ ŷðk þ 1ÞTðPðk þ 1Þ þ QÞŷðk þ 1Þ��1

� ðu�ðk þ 1Þ � ŷðk þ 1ÞĥðkÞÞ� þ aðkÞĥð0Þ (76)

The error covariance P is updated by

Pðk þ 1Þ ¼ ½1� aðkÞ�½ðPðkÞ þ QÞ � ðPðkÞ þ QÞ
� ðRk þ ŷðk þ 1ÞðPðkÞ þ QÞŷTðk þ 1ÞÞ�1 þ R1�
þ aðkÞPð0Þ ð77Þ

where Q, Rk, and R1 are the preset parameters. aðkÞ 2 f0; 1g is an
algorithm reset, that is, hðkÞ and P(k) are reset to their initial val-
ues when aðkÞ ¼ 1, otherwise aðkÞ ¼ 0. The error covariance
matrix is initialized as Pð0Þ ¼ bI, where b > 0.

4 Simulation Results Under Ideal Conditions

This section presents simulation results of RCSI-based estima-
tion of the side reaction current density under ideal conditions.
The ideal conditions refer to the following conditions: (i) meas-
urements of the input current and the output voltage contain no
noise; (ii) exact knowledge of the battery SOC is assumed, and
thus the initial SOC in the true system and the system model are
set to be exactly the same; and (iii) no modeling error exists in
both the main system model and the subsystem model.

The simulation results are obtained using two types of excita-
tion signals. The first type is the constant current charge and dis-
charge (CCCD) cycles. In every cycle, the battery model operates
under the constant current charge (CCC) mode followed immedi-
ately by the constant current discharge (CCD) mode. The mode
switches from CCD to CCC when the voltage reaches 2.0 V and
from CCC to CCD at 3.6 V. Since the charge and discharge cur-
rent for electric vehicles is below 10 C, 1 C and 10 C CCCD cycles
are chosen to test the slow and fast charge/discharge cases, respec-
tively [1]. For both cases, the SOC is initialized at 1%. Constant
voltage modes are not included because the battery degradation is
insignificant during constant voltage modes, which results in the
unidentifiability of the SOH indicator [14,15].

The second type of excitation signals is the current profile gener-
ated from an electric vehicle following the Urban Dynamometer
Driving Schedule (UDDS). This current profile evaluates the

effectiveness of the algorithm under dynamic battery loading condi-
tions typical for electric vehicle applications. In this paper, this
UDDS current profile is generated by the Advisor software [35]
with the default electric vehicle settings. The Li-ion battery in
Advisor has a capacity of 7 Ah, while the rated capacity of the bat-
tery model in this paper is 2.5 Ah. Therefore, the current magnitude
is scaled down to match the C rates and ensure that the battery is
not overdischarged. The initial battery voltage is set to 3.6 V.

The parameters of the SOC model are adopted from Ref. [36],
where the parameters are identified from the cycling data of com-
mercial LiFePO4 (Richmond, CA) batteries. The parameters of the
SOH model are adopted from Ref. [23]. The number of particles in
each electrode is obtained by increasing the number starting from
ten at increments of ten until a further increment yields a voltage
response difference less than 5 mV for the 10 C CCC mode. The
number of particles is selected to be 50 per electrode. A sampling
time of 0.2 s is chosen because the chemical reaction has slow
dynamics. The results below also confirm that this sampling rate is
fast enough to achieve accurate simulation and estimation.

For RCSI, the weights in the retrospective cost function (71)
are set as RU¼ 0 and RZ¼ 1, and the parameters for Kalman filter
update (76) and (77) are set as Q ¼ 0:1;Rk ¼ 0:5, and R1 ¼ 0.
The parameter estimate and error covariance matrix are initialized
at hð0Þ ¼ 0 and Pð0Þ ¼ 100, respectively. The Markov parameter
is set as ~H ¼ H0 ¼ 2� 10�7 X m3.

The performance of RCSI is determined by the relative estima-
tion errors of the side reaction current density and the subsystem
parameter defined as

eJsd
¢

Jsd � Ĵ sd

Jsd

(78)

eh¢
h� ĥ

h
(79)

where Jsd and Ĵ sd are the true and estimated values of the side
reaction current density, respectively; h and ĥ are the true and
estimated values of the subsystem parameter, respectively.

To begin with, it is assumed that no discrepancy exists between
the forms of the subsystem and subsystem model. Therefore, the
SOH parameters Km

SOH are set identical among all anode particles
in the subsystem, and the form of the subsystem also follows Eq.
(38). In this case, the variables to be estimated are Kunif

SOH and Jave
sd ,

whose estimates are K̂
unif

SOH and Ĵ
ave

sd , respectively. Therefore, the
variables in Eqs. (78) and (79) are named as follows:

Jsd ¼ Jave
sd ; Ĵ sd ¼ Ĵ

ave

sd (80)

h ¼ Kunif
SOH; ĥ ¼ K̂

unif

SOH (81)

y ¼ yave
/ ; ŷ ¼ ŷave

/ (82)

4.1 Constant Current Charge and Discharge Cycles. Figure
3(a) shows the estimates obtained with one 1 C CCCD cycle. The
estimated parameter ĥ converges to the true parameter h in less
than 1000 s after initialization at zero. Meanwhile, the estimated
side reaction current density also converges to the true value. The
relative estimation errors eJsd

and eh are bounded within 62�
10�4% after the transient phase.

Figure 3(b) presents the estimates obtained with one 10 C
CCCD cycle. The estimates of the subsystem parameter and the
side reaction current density converge to their true values in less
than 100 s. The relative estimation errors are bounded within
61% after the transient phase.

The relative estimation errors show that the estimates diverge
from their true values during the discharge mode. This divergence
is due to the fact that the side reaction current density is near zero
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during the discharge mode, which is consistent with the assump-
tion in Ref. [23] that the degradation is negligible during dis-
charge. As a result, the impact of the subsystem output on the
output voltage is negligible; hence the identifiability of the sub-
system parameter is weak. The divergence is more evident under
the 10 C discharge rate, because the side reaction current density
is smaller under the higher discharge C rate. During the 1 C dis-
charge mode, the side reaction current density is on the order of
100 A/m3, while it is on the order of 10 A/m3 during the 10 C dis-
charge mode. This divergence agrees with the conclusions in
Refs. [14], [15], and [26].

It can be concluded from Figs. 3(a) and 3(b) that accurate esti-
mates of the side reaction current density and health subsystem
parameter can be obtained in both slow (1 C) and fast (10 C) con-
stant current charge modes under ideal conditions. However, dur-
ing the discharge modes, the estimates slowly diverge from their
true values, due to the weak identifiability caused by the negligi-
ble side reaction current density.

4.2 The Urban Dynamometer Driving Schedule Test
Cycles. Figure 3(c) shows the parameter estimates with the
UDDS current profile. With ĥð0Þ ¼ 0, the parameter estimate ĥ
converges to the true parameter h within 10 s. The estimate of the
side reaction current density can also track the true value through-
out the cycle. The relative estimation errors of both the side reac-
tion current density and the subsystem parameter are bounded
within 60:1% after the transient phase. This result suggests that
RCSI can estimate both the side reaction current density and the
subsystem parameter effectively under the dynamic operating
condition of electric vehicles under ideal conditions. The estima-
tion errors show fluctuations when the true side reaction current
density is small and the degradation is negligible, which agrees
with the results in Sec. 4.1. The relative estimation errors also
diverge at the end of the UDDS cycle. This divergence is due to
the decrease of the battery SOC throughout the UDDS cycle
except several brief moments of charging by regenerative braking.
The SOC level drops to only 14% by the end of the cycle. The
true side reaction current density is small when the battery SOC is
low, which also leads to the weak identifiability.

In Fig. 3, the relative estimation errors in the side reaction cur-
rent density and the health subsystem parameter are similar. On

the one hand, x and x̂ are close under ideal conditions. On the
other hand, it can also be observed from Fig. 3 that convergence
of the estimated side reaction current density is fast, so that û and
u are close after the transient phase. Then, according to Eqs. (41)
and (46), ŷ and y are close when both x and x̂, and u and û are
close. Therefore

eJsd
¼ hy� ĥŷ

hy
	 hy� ĥy

hy
¼ h� ĥ

h
¼ eh (83)

Note that Eq. (83) holds as long as ŷðkÞ 	 yðkÞ. Hence, Eq. (83)
may be true, even without assuming the ideal conditions, when
the differences between y and ŷ caused by the discrepancies
between x and x̂, and Jsd and Ĵ sd are small. However, if there is
large measurement noise, or state or modeling errors that lead to a
large difference between y and ŷ, the relative estimation errors in
the side reaction current density and the health subsystem parame-
ter may be different.

5 Robustness to Nonideal Conditions

In this section, robustness of the algorithm to nonideal condi-
tions is examined. First, we show that the voltage difference
between the true system and the system model caused by nonideal
conditions (e.g., measurement noise, SOC estimation errors, main
system modeling errors, and form discrepancy between the sub-
system and the subsystem model) degrades the performance of the
algorithm. Then, robustness against measurement noise, SOC esti-
mation errors, and modeling errors are examined in Secs. 5.2, 5.3,
and 5.4, respectively. Discussions of the simulation results are
given next. Expectations about the performance of RCSI in prac-
tice based on the analysis of the simulation results are highlighted.

5.1 The Relationship Between the Estimation Accuracy
and Voltage Errors. It can be observed from Eq. (71) that the
goal of RCSI is to drive the optimal voltage difference, which cor-
responds to Z�ðkÞ in Eq. (70), to zero, assuming that this zero volt-
age difference indicates that the optimal subsystem output
~U
�ðk � 1Þ is identical to the true subsystem output. This assump-

tion is not valid in the presence of a voltage difference caused by
additional sources.

Fig. 3 The estimates and relative estimation errors e of the subsystem parameter h and the side reaction current density Jsd

under ideal conditions with three input currents: (a) a 1 C CCCD cycle, (b) a 10 C CCCD cycle, and (c) a simulated current profile
generated by an electric vehicle following an UDDS
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The impact of the side reaction current density on the output
voltage is mainly through the intercalation reaction, and is mani-
fested as an instantaneous impact. Because this instantaneous
impact is small, the SOH estimation is sensitive to nonideal condi-
tions that cause errors in the voltage. These nonideal conditions
are the additional sources that cause an additional voltage differ-
ence, and this additional voltage difference is denoted by Vas.

Assuming Eq. (68) is corrected with Vas, it follows that

ZðkÞ ¼ ~SðkÞ þ ~H ~Uðk � 1Þ þ Vas (84)

Therefore, Eq. (70) is updated to

Z�ðkÞ ¼ ~SðkÞ þ ~H ~U
�ðk � 1Þ þ Vas (85)

According to the definition of dominant Markov parameters,
~H ~Uðk � 1Þ dominates ~SðkÞ; thus, ~SðkÞ is considered negligible.
Hence, Eq. (85) can be approximated as

Z�ðkÞ 	 ~H ~U
�ðk � 1Þ þ Vas (86)

When the impact of Vas on Z�ðkÞ is large, driving Z�ðkÞ to zero
induces an offset in ~U

�ðk � 1Þ that compensates for the impact of
Vas, which leads to an additional estimation error.

The additional relative estimation error aas caused by Vas is
given by

aas ¼ VasV
�1
Jsd

(87)

where

VJsd
¢Absð ~H ~U

�ðk � 1ÞÞ (88)

where AbsðAÞ denotes the matrix A with each entry replaced by
its absolute value. Then the total relative estimation error is

etotal ¼ eest þ aas (89)

where eest is the relative estimation error under ideal conditions.
Moreover, when aas is required to be within a bound aas;bd; Vas

needs to be within the bound

Vas;bd ¼ aas;bdVJsd
(90)

In this paper, Z�ðkÞ; ~H ¼ H0 and ~U
�ðk � 1Þ are scalars. Then

VJsd
¼ jH0JsdðkÞj (91)

For the parameter values used in this paper, H0 ¼ 2� 10�7 X m3;
and for 1 C CCC mode, jJsdj is on the order of 103 A m�3 for most
of the operating time. Therefore, VJsd

¼ jH0Jsdj is on the order of
10�4 V (0.1 mV) for most of the operating time. For this case,
according to Eq. (90), if a bound of 10% for aas is required, then
Vas;bd needs to be on the order of 0.01 mV. Similarly, when Vas;bd

is given, the corresponding aas;bd can be computed from

aas;bd ¼ Vas;bd=VJsd
(92)

In the rest of this section, the above analyses are verified by test-
ing the robustness to measurement noise, SOC estimation errors,
and modeling error, respectively. The 1 C CCCD cycle is used for
excitation in this section except in the cases shown in Figs. 9(b)
and 9(c) in Sec. 5.4.2. Based on the observation that the side reac-
tion current density is less identifiable in the CCD mode, only the
estimation results during the CCC mode are examined. Other
excitations, such as 10 C CCCD cycles and UDDS cycles, can be
analyzed in a similar manner.

The voltage differences between different battery models or dif-
ferent simulation situations are denoted as follows:

dVmod1=mod2¢Vmod2 � Vmod1 (93)

dVsit1=sit2¢Vsit2 � Vsit1 (94)

where the subscripts mod1 and mod2 denote two different models,
while sit1 and sit2 denote two different simulation situations.

For simplicity, the names of different models are denoted as
follows. The name DFNn denotes the DFN model with n particles
per electrode. For example, the DFN model with 50 particles per
electrode, which is the model used in Sec. 4, is denoted by DFN50.
The name SPM denotes the single particle model.

5.2 Robustness to Measurement Noise. In this section, the
input and output measurement noise levels are determined indi-
vidually based on the desired relative estimation error bounds.

As an example, normal distributions with zero mean and tuna-
ble standard deviation are assumed for both the input and output
measurement noise, i.e.,

Inoise 
 Nð0; r2
InÞ ðmAÞ (95)

Vnoise 
 Nð0; r2
VnÞ ðmVÞ (96)

rIn and rVn can be tuned based on the analysis in Sec. 5.1 and the
desired relative estimation error bound. Here, a relative estimation
error bound on the order of 10% is chosen as the desired estima-
tion accuracy, and thus jVasj must be on the order of 0.01 mV.

Computing the effect of current measurement noise on voltage
analytically is difficult because of the nonlinearity of the battery
model. Hence, rIn is selected numerically based on the simulated
voltage response of DFN50 driven by a constant charge current
that is 1 C with a perturbation DI. The battery model is simulated
11 times with DI set to 0 mA, 6100 mA, 610 mA, 61 mA,
60.1 mA, and 60.01 mA. The first simulation with DI ¼ 0 mA is
the nominal case that records the voltage response of 1 C CCC mode
without any perturbation in the input current. DVi (i ¼ 2;…; 11) is
defined as the absolute voltage difference between the ith simulation
and the first simulation, that is

DViðkÞ¢jViðkÞ � V1ðkÞj (97)

Figure 4 presents the box-and-whisker plots of DVi corresponding
to different DI. It can be observed that, in the cases that DI ¼ 61
mA, DV6;7ðkÞ are generally on the order of 0.01 mV. Therefore,
rIn is chosen to be 1 mA.

Fig. 4 The voltage difference DV of the DFN50 model caused
by the current perturbation DI during the 1 C CCC mode
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Figure 5(a) shows the estimation results in the presence of input
measurement noise with rIn ¼ 1 mA. The relative estimation
errors are both bounded within 612% after the initial transient
phase, which is on the desired order of 10% for the relative esti-
mation error bound.

The standard deviation of output measurement noise can be
directly set to the level of required jVasj, in this case 0.01 mV.
Figure 5(b) presents the estimation results under output measure-
ment noise with rVn ¼ 0:01 mV. The relative estimation errors
are both bounded within 618% after the initial transient phase,
which is also on the desired order of 10%.

Therefore, assuming that the input and output measurement
noise are zero mean, Gaussian, and white, the standard deviation
for input and output measurement noise must be on the order of
1 mA and 0.01 mV, respectively, in the case where a relative esti-
mation error bound on the order of 10% is required. For other rela-
tive estimation error bounds, the tolerable levels of measurement
noise can be obtained in the same manner.

5.3 Robustness to State of Charge Estimation Errors. The
estimation error in the SOC corresponds to the difference between
the state of the main system and the state of the main system
model. Because of the energy storage nature of batteries, the
dynamics of solid concentration in each electrode contains a sin-
gle integrator, hence the battery system is marginally stable with
one eigenvalue at 1 for each electrode. Moreover, the states are
not significantly affected by the subsystem, because the feedback
from the side reaction current density on the main system dynam-
ics is negligible. Therefore, the difference in the states that corre-
spond to eigenvalues at 1 is persistent. The persistent state
difference also causes a voltage difference between the true sys-
tem and the system model, which causes error in the estimates of
the side reaction current density and health subsystem parameter.

In this section, a 1% SOC estimation error is assumed because
an error on this level is often expected in the SOC estimation
[3,10,29]. The SOC in the true system is initialized at 1% as in
Sec. 4, while the SOC in the system model is initialized at 2%.
The estimation results are presented in Fig. 6(a). Both eJsd

and eh
are on the order of 1000% for most of the operating time. Figure
6(b) presents the difference between the cases with 1% and 2%
initial SOC levels in the voltage responses of DFN50 during the
1 C CCC mode. It can be observed that the voltage difference is
on the order of 1 mV for most of the operating time. This level of

voltage difference leads to a value of aas on the order of 1000%,
which agrees with the estimation results. The results indicate that
the presence of an SOC estimation error can degrade the perform-
ance of RCSI in the estimation of side reaction current density.
Therefore, an accurate estimation of the SOC is required to mini-
mize the estimation error of the side reaction current density.
Alternatively, co-estimation of the SOC and the side reaction cur-
rent density can be pursued.

5.4 Robustness Against Modeling Error

5.4.1 Modeling Error in Main System Model. Many factors
can contribute to the modeling error in the main system model,
such as the truncation errors caused by approximating an infinite

Fig. 5 The estimates and relative estimation errors e of the subsystem parameter h and the side reaction current density Jsd

under the presence of (a) input and (b) output measurement noise. The bounds of the relative estimation errors are on the
order of 10% as required.

Fig. 6 (a) The relative estimation errors e of the subsystem
parameter h and the side reaction current density Jsd and (b)
the voltage difference under the presence of a 1% SOC error.
The bound of the relative estimation errors in (a) is on the same
order as expected from the voltage difference in (b).
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dimensional system with a finite-dimensional system, parameter
uncertainties, and discrepancies between the physical effects
included in the mathematical model and the true physics.

5.4.1.1 Error in model structure. In this section, the impact of
the main system modeling errors caused by the finite-dimensional
approximation is analyzed as an example of the error in model
structure. DFN50 is used as the true main system in the simula-
tion, while either SPM or the DFN model with fewer particles per
electrode (e.g., DFN30 and DFN10) is used as the main system
model. The estimation errors caused by these modeling errors are
compared with the anticipated estimation errors based on the volt-
age differences between different models to confirm the analysis
in Sec. 5.1.

Figures 7(a)–7(c) present the relative estimation errors in cases
with DFN30, DFN10, and SPM as the main system model, which
are on the order of 100%, 1000%, and 104% for most of the oper-
ating time, respectively. Figures 7(d)–7(f) show the voltage differ-
ence under 1 C CCC mode between DFN50 and DFN30, DFN10,
as well as SPM, which are on the order of 0.1 mV, 1 mV, and
10 mV for most of the operating time, respectively. Based on
these voltage differences, according to Eq. (92), the anticipated
estimation errors in the three cases are on the order of 100%,
1000%, and 104%, respectively. Therefore, the levels of antici-
pated estimation errors from the voltage differences in the three
cases are all in accordance with the observed levels of the corre-
sponding relative estimation errors.

Unlike all the other examples in this paper, Fig. 7(c) shows an
appreciable discrepancy between eJsd

and eh. This is an example
where a large modeling error in the main system model yields dif-
ferent relative estimation errors in the side reaction current density
and health subsystem parameter by causing a large difference
between y and ŷ. This result illustrates that the accuracy of the
identified health subsystem parameter and of the estimated side
reaction current density are not necessarily the same.

The results show that the modeling errors in the main system
models degrade the accuracy of the estimated side reaction current
density. The estimation is less accurate with a smaller number of
particles per electrode in the main system model. Therefore, the
estimation of the side reaction current density using RCSI requires

a high fidelity battery model with very small voltage difference
from the real battery.

A competing requirement for a high fidelity model is low com-
putation complexity for real-time simulation and online estima-
tion. For the DFN50 model used in this paper, the simulation is
five times faster than the real-time on average. This time differ-
ence indicates that the computation required by the estimation
algorithm designed in this paper can be done within a much
shorter time than required for online estimation. The simulations
in this paper are performed using MATLAB 2014 a on a 64-bit com-
puter with 2.7 GHz processor. Although practical applications
may not have this computational power, the computational speed
gained by switching to a compiled language can partially offset
the loss in the computational power. Methods also exist to signifi-
cantly reduce the computational complexity of numerically solv-
ing the DFN model [32,37]. Therefore, even with the requirement
of using a high fidelity model, the proposed method is still poten-
tially suitable for online estimation.

5.4.1.2 Error in model parameters. In this section, we study
the impact of parametric error caused by battery degradation on
the estimation accuracy. Two parameters, Rfilm and Ds;n, are
selected as the example parameters with error because they are
reported to change as the LiFePO4 battery degrades [16,18]. In
particular, [18] reports 100% and 560% increase in Rfilm and dif-
fusion coefficients Ds, respectively, after 600 hybrid pulse power
characterization cycles at 25 �C. For the diffusion coefficients,
only the one at the anode, namely, Ds;n, is increased because
changes in the diffusion coefficient are caused by accumulation of
the SEI film [18] and the SEI is herein assumed to grow only at
the anode [23]. In this paper, we use the parameters for the fresh
battery in the system model and increase Rfilm and Ds;n in the true
system according to the percentages reported in Ref. [18] to simu-
late the estimation of the side reaction current density in a
degraded battery using the parameters for the fresh battery in the
model.

Figures 8(a)–8(c) show the estimation results when the errors in
Rfilm and Ds;n are considered. It can be observed that the estimates
Ĵ sd and ĥ stay close to their true values after 1000 s, and the rela-
tive estimation errors eh and eJsd

are both bounded within [�15, 0]%

Fig. 7 The relative estimation errors e of the subsystem parameter h and the side reaction current density Jsd

under the 1 C CCC mode with DFN50 as the true main system and (a) DFN30, (b) DFN10, and (c) SPM as the main
system model. The differences in the voltage responses during 1 C CCC mode between DFN50 and (d) DFN30, (e)
DFN10, and (f) SPM. The bounds of the relative estimation errors in (a), (b), and (c) are on the same orders as
expected from the voltage differences in (d), (e), and (f), respectively.
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after 1200 s. Figure 8(d) shows the voltage difference, dVDegraded=Fresh,
between the DFN50 model with values of Rfilm and Ds;n in fresh and
degraded batteries during 1 C CCC mode. It can be observed that
dVDegraded=Fresh starts on a level as high as 20 mV at the beginning of
1 C CCC mode, which corresponds to the region where the estima-
tion errors are large. After 1200 s, when the relative estimation
errors are on the order of 10% in Figs. 8(a)–8(c), dVDegraded=Fresh is
on the order of 0.01–0.1 mV. Hence, the relative estimation error is
on the same order as (when dVDegraded=Fresh is on the order of
0.01 mV) or one order of magnitude more accurate than (when
dVDegraded=Fresh is on the order of 0.1 mV) what is expected from the
analysis in Sec. 5.1. This is because Jsd and Rfilm are highly corre-
lated, while the analysis in Sec. 5.1 assumes independence between
Jsd and additional sources. Hence, dVDegraded=Fresh is a combined
effect of the parametric errors and the change in Jsd caused by the
parametric errors, which is larger than the voltage difference caused
by the parametric errors alone. At the end of the 1 C CCC mode,
although the voltage difference dVDegraded=Fresh increases to slightly
over 1 mV, neither the magnitude nor the duration of this increase is
significant enough to cause large changes in the estimates and thus
the relative estimation errors stay below 10%. This result shows that
the estimation of the side reaction current density is still accurate
even under the considered parametric errors in Ds;n and Rfilm intro-
duced by battery aging.

5.4.2 Form Discrepancy Between Subsystem and Subsystem
Model. It is hitherto assumed that the forms of the subsystem and
the subsystem model are exactly the same. However, this assump-
tion is usually not satisfied in practice. Moreover, representing a
subsystem with a subsystem model of different form causes

difficulty in subsystem identification, and results in less accurate esti-
mates of the side reaction current density.

In this section, the performance of RCSI is examined when the
form of the subsystem model is different from the form of the true
subsystem. In particular, an example is provided to show how a
subsystem model with identical SOH parameters can be used to
estimate a true subsystem with nonidentical SOH parameters.
Hence, the true subsystem follows the form as in Eq. (35), while
the form of the subsystem model still follows (48). The following
distribution of Km

SOH is arbitrarily chosen for the true subsystem as
an example:

km
SOH 
 Nðk0; 25k2

0Þ (98)

Km
SOH ¼ jkm

SOHj (99)

where k0 equals to the value of Kunif
SOH in Sec. 4. Simulations show

that distributions with higher covariances can lead to larger esti-
mation error.

Furthermore, after removing the assumption in Eqs. (80)–(82)
that no form discrepancy exists between the subsystem and the sub-
system model, the following variables are re-defined in this section:

Jsd¢
1

N

XN

m¼1

Jm
sd; Ĵ sd¢Ĵ

ave

sd (100)

h¢

XN

m¼1

Km
SOHym

/

XN

m¼1

ym
/

; ĥ¢K̂
unif

SOH (101)

y¢
1

N

XN

m¼1

ym
/ ; ŷ¢ŷave

/ (102)

Figure 9(a) presents the estimation results with 1 C CCC mode.
Both eJsd

and eh are within 620% after the transient phase. Simu-
lations show that the voltage difference is generally on the order
of 10�3 V between DFN50 with the health subsystem parameters
following the distribution in Eqs. (98) and (99) and DFN50 with
the health parameters all equal to the weighted average of the true
parameters. This indicates that the relative estimation errors are
expected to be on the order of 10%, which agrees with the 620%
bound in the estimates.

Besides the 1 C CCC mode, the UDDS cycle is also used as the
excitation to examine the impact of form discrepancy in the sub-
system model. Figure 9(b) presents the estimation results with the
UDDS cycle, where the relative estimation errors are both within
620% during the whole cycle. Oscillations during the whole
cycle and divergence at the end of the cycle are present due to the
weak identifiability caused by high discharge C-rate and low SOC
level as in Fig. 3(c).

The estimation errors can be reduced by shutting down the esti-
mation algorithm during high C-rate discharge when the true side
reaction current density is small. In this case, the algorithm oper-
ates only when the input current can produce a large true side
reaction current density, which is also the time when an estimate
of the side reaction current density is needed. The threshold of the
discharge C-rate for which the algorithm is shut down is chosen
based on the particular current profile to balance the number of effec-
tive data points for estimation and the identifiability. Figure 9(c)
presents the estimation results of the same case as in Fig. 9(b), but
with the algorithm shut down whenever the discharge current is
above 5 C. Comparison between Figs. 9(b) and 9(c) shows an
improvement in the bound for the relative estimation errors from
620% to ½�15; 10�%. This improvement in the estimation accu-
racy can be more significant when the excitation current is more
aggressive.

Fig. 8 The estimates of (a) the subsystem parameter h and (b)
the side reaction current density Jsd, and (c) relative estimation
errors e under parametric errors in Rfilm and Ds;n. (d) presents
the voltage difference between the DFN50 model with values of
Rfilm and Ds;n in fresh and degraded batteries during 1 C CCC
mode.
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Similarly, to address the identifiability issue associated with
low SOC, limiting the SOC region during which the estimation
algorithm is operated can further improve the estimation accuracy
near the end of the UDDS cycle. Because a low-accuracy SOC
estimate suffices to determine the time to shut down the estima-
tion algorithm, a possible method to estimate the true SOC level
is Coulomb counting.

5.5 Discussions and Extensions of the Simulation Results.
For all the results in this section, similar results can be obtained
for other types of excitation current. The numerical results depend
on VJsd

for the particular excitation type and the voltage errors
caused by additional sources. Notice that even if one excitation
type has a higher VJsd

, it does not necessarily yield more robust
estimation results, because the voltage difference caused by addi-
tional sources also varies among different excitation types. For
example, in 10 C CCC mode, VJsd

is generally ten times higher
than that for 1 C CCC mode. However, the expected bound for the
relative estimation error in the 10 C case is not 1/10 of the bound
for the 1 C case when there is modeling error in the main system
model, because the voltage differences among the SPM and the
DFN models are also larger for high C-rate. Therefore, the
expected bound for the relative estimation error for one excitation
type cannot be extrapolated to other excitation types. The robust-
ness level for an excitation type can be obtained by following the
framework developed in Sec. 5.1.

Furthermore, the expected performance of RCSI on real-life
battery cycling data can be deduced by analyzing the difference
between voltage responses of battery models and real-life battery
measurement data. The result in Ref. [36], which identifies the
parameter set used in this paper from experimental data, shows
that the absolute error between the voltage measurements and the
simulated voltage of the DFN model with this parameter set is
below 40 mV for 80% of the time. This voltage error is about 103

larger than Vas;bd identified in Sec. 5.1 that corresponds to the rela-
tive estimation error bound of 10%. This analysis indicates that
estimation of the side reaction current density for the same battery
under the same experimental condition in Ref. [36] is expected to
be difficult given that the modeling error is relatively large com-
pared to the voltage difference caused by the side reaction.

However, this does not mean that the side reaction current den-
sity cannot be estimated in practice. The results from the numerical
analyses in Sec. 5 is applicable only to this particular battery
parameter set, with this particular cycling profile, under this partic-
ular experimental condition. The side reaction current density can

still be estimated successfully in other cases with different battery
parameter sets, cycling profiles, or experimental conditions as long
as they can make the corresponding Vas below the desired Vas;bd.
Meanwhile, according to Eq. (90), given a desired aas;bd; Vas;bd is a
function of VJsd

. Therefore, the side reaction current density can be
successfully estimated within a reasonable aas;bd even under the
presence of practical nonideal conditions for scenarios where the
battery parameters or the cycling profile yield a large VJsd

.
The main generalizable conclusion that can be drawn from Sec.

5 is that the side reaction current density can be very sensitive to
nonideal conditions that cause errors in the measurement or esti-
mation of the voltage, because the side reaction current density is
a small value that has a limited impact on the voltage. When this
algorithm is applied to battery experiment data for the estimation
of side reaction current density, the analysis in Sec. 5.1 needs to
be followed in order to predict the margin for robustness.

Various methods can be applied to improve the robustness in
estimation of the side reaction current density. To improve the
robustness under the presence of measurement noise and model-
ing errors, very accurate sensors and models with higher fidelity
are needed to obtain a value of Vas that satisfies the required
Vas;bd. To improve the estimation accuracy of the side reaction
current density under the presence of SOC estimation errors, the
two step filter (TSF), a new inaccessible subsystem estimation
algorithm, is developed and applied to a linearized single particle
model in Ref. [38]. The application of the TSF to a nonlinear bat-
tery model requires additional research.

6 Summary and Conclusions

In this paper, the effectiveness of RCSI in estimation of the side
reaction current density is explored. The side reaction current den-
sity is estimated directly for the first time as the SOH indicator.
The battery SOH process that produces the side reaction current
density is formulated as an inaccessible subsystem in the battery.
The estimate of the side reaction current density is obtained by
identifying the inaccessible battery SOH subsystem using RCSI.
Robustness of the side reaction current density estimation is
examined under various nonideal conditions, such as measure-
ment noise, SOC estimation errors, modeling errors in the main
system model, and the form discrepancy between the subsystem
and the subsystem model.

When the ideal condition (i.e., no measurement noise, no SOC
estimation error, and no modeling error) is assumed, the results
show that RCSI can accurately and quickly estimate the side

Fig. 9 The relative estimation errors e of the subsystem parameter h and the side reaction current density Jsd under (a) the 1 C
CCC mode and (b) the UDDS cycle under the presence of form discrepancy between the subsystem and the subsystem model. (c)
presents the relative estimation errors under the same UDDS cycle as in (b), but with the estimation algorithm shut down whenever
discharge current is above 5 C. Note that shutting down the estimation algorithm during high C-rate discharge reduces estimation
errors.
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reaction current density when the degradation effect is significant.
An accurate estimation can be made throughout slow (1 C) and fast
(10 C) CCCD cycles, and the UDDS cycle, with relative estimation
errors bounded within 60:1%;61%, and 60:3%, respectively.

This paper also explores the robustness of estimation of the side
reaction current density to measurement noise, SOC estimation
errors, modeling errors in the main system model, and the form
discrepancy between the subsystem and the subsystem model sep-
arately. With the parameter set used in this work, the threshold for
the voltage error caused by nonideal conditions is identified to be
Oð0:01Þ mV so that the bound of the relative estimation errors is
on the order of 10% under 1 C CCC mode. Based on this small
threshold value, the algorithm is expected to be sensitive to noni-
deal conditions, which is a result of the side reaction current density
having a small impact on the battery output voltage. However,
these numerical results are specific to the particular parameter set
and the cycling profiles considered in this paper. For other scenar-
ios where the combination of the battery parameters and the
cycling profile yield a larger VJsd

or a smaller Vas, the side reaction
current density can be estimated with a smaller aas;bd even under
the presence of nonideal conditions. This paper also provides a
procedure to predict the robustness margin given the particular
battery parameter set and the cycling profile. Based on the results
obtained, high fidelity models and accurate sensors would be
needed in practice.

A potential limitation regarding the results in this paper is that
the simulations are performed under the isothermal condition.
Changes in operating temperature affect the degradation process
[4,24,39,40], and thus a changing temperature may result in a
changing health subsystem parameter, h, which can affect the
accuracy of the estimation of the side reaction current density.
However, given the very fast convergence shown in the results
herein, it is expected that the challenge presented by this changing
parameter to the estimation of the side reaction current density is
limited. To test this hypothesis, a more complete study can be per-
formed incorporating thermal dynamics and cooling conditions by
applying similar methods to electrochemical-thermal models
[41,42].

The proposed method for estimating the side reaction current
density is generally applicable to various Li-ion battery types and
chemistries to monitor degradation caused by side reactions that
consume cyclable Li-ions. Although all the numerical results in
this paper are obtained from simulations using a parameter set for
a LiFePO4 battery, the proposed estimation technique, including
the method for estimating the side reaction current density using
RCSI and the framework analyzing its robustness, can also be
applied to other parameter sets and other battery chemistries to
monitor the SOH change resulting from any electrochemical-
based degradation mechanism that consumes cyclable Li-ions.

In summary, this paper makes four main contributions. First,
the side reaction current density is estimated as a direct SOH indi-
cator for the first time. Second, the electrochemical model of the
SOH subsystem is formulated as one linear static equation with all
parameters lumped into one. This formulation provides a simple
representation of the complicated SOH process, which in turn
simplifies the design of the identification algorithm and facilitates
the accurate identification of the SOH subsystem. The linearity of
the subsystem model also allows easy combinations of several
degradation mechanisms. Third, the side reaction current density
and the SOH subsystem parameter are estimated using RCSI.
Finally, a framework is provided to analyze the robustness of esti-
mating the side reaction current density to nonideal conditions.
The analyses from the framework are confirmed with simulation
results, based on which predictions are made on the robustness of
estimating the side reaction current density in practice.
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Nomenclature

A ¼ total area of sections, m2

as;j ¼ specific surface area of porous electrodes, m�3

ch;j ¼ Li-ion concentration, mol m�3

cs;max;j ¼ maximum concentration in the solid phase, mol m�3

Dh;j ¼ diffusion coefficient, m2 s�1

F ¼ Faraday constant, 96,487 C mol�1

fj ¼ activity coefficient
I ¼ current, A

ih=total ¼ phasic/total superficial current density, A m�2

i0;j=sd ¼ intercalation/side reaction exchange-current density,
A m�2

J1=sd=total;j ¼ intercalation/side reaction/total current density, A m�3

kj ¼ reaction rate, A m4 mol�2

r ¼ coordinate along the radius of particles, m
R ¼ universal gas constant, 8.314 J mol�1

Rj ¼ radius of electrode particles, m
Rfilm ¼ solid-electrolyte-interphase film resistance, X m2

t ¼ time, s
T ¼ temperature, K

tþ ¼ transference number
Uref;j=sd ¼ equilibrium potential for intercalation/side reaction,

V
V ¼ voltage, V
x ¼ coordinate along the thickness of the

anode–separator–cathode sandwich, m
0r ¼ the coordinate at the center of particles along r

direction, m
0j/Lj ¼ the coordinate at the starting/ending point of an

electrode along the x direction, m

Greek Symbols

aa=c;j ¼ anodic/cathodic transfer coefficients of electrochemical
reaction

eh;j ¼ volume fraction
gj=sd ¼ overpotential for intercalation/side reaction, V

hj ¼ stoichiometry of the solid electrode
hj;0% ¼ stoichiometry corresponding to a depleted battery

hj;100% ¼ stoichiometry corresponding to a fully charged
battery

jeff=reff
j ¼ conductivity of electrolyte/solid phase, S m–1

/h;j ¼ potential, V

Subscripts

h ¼ phase name, where s and e stand for solid phase and
electrolyte phase, respectively

j ¼ section name, where p; n, and sep stand for cathode,
anode, and separator, respectively
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