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On the Zeros, Initial Undershoot,
and Relative Degree of Collinear
Lumped-Parameter Structures
This paper considers collinear lumped-parameter structures where each mass in the
structure has a single degree of freedom. Specifically, we analyze the zeros and relative
degree of the single-input, single-output (SISO) transfer function from the force applied
to an arbitrary mass to the position, velocity, or acceleration of another mass. In par-
ticular, we show that every SISO force-to-motion transfer function of a collinear lumped-
parameter structure has no positive (real open-right-half-plane) zeros. In addition, every
SISO force-to-position transfer function of a spring-connected collinear lumped-
parameter structure has no non-negative (real closed-right-half-plane) zeros. As a con-
sequence, the step response does not exhibit initial undershoot. In addition, we derive an
expression for the relative degree of SISO force-to-position transfer functions. The for-
mula depends on the placement of springs and dashpots, but is independent of the values
of the spring constants and damping coefficients. Next, we consider the special case of
serially connected collinear lumped-parameter structures. In this case, we show that
every SISO force-to-position transfer function of a serially connected collinear lumped-
parameter structure is minimum phase, that is, has no closed-right-half-plane zeros. The
proofs of these results rely heavily on graph-theoretic techniques.
�DOI: 10.1115/1.2719764�
Introduction
One of the main impediments to achievable performance in

inear time-invariant control systems is the presence of nonmini-
um phase zeros, which contribute to peaking in the sensitivity

unction and thus limit gain margins for robust stability �1–3�.
The role of nonminimum phase zeros in limiting both achiev-

ble performance and robust stability suggests the importance of
nderstanding the mechanisms that give rise to such zeros in flex-
ble structures. This issue is discussed in �4�, where it is shown
hat nonminimum phase zeros arise in noncolocated transfer func-
ions for beam models when multiple mechanisms are involved in
nergy transfer, for example, bending and torsion. Furthermore, it
s shown in �5,6� that nonminimum phase zeros arise in noncolo-
ated transfer functions for beam models when the dynamics are
ispersive, as occurs in bending. In addition, �7,8� present pole-
ero interlacing results for multi-input, multi-output mass-spring-
ashpot structures, while �9,10� characterizes the transmission ze-
os of lumped and distributed parameter structural systems as the
esonant frequencies of a constrained subsystem.

For noise and vibration control applications, stability robustness
enefits from sensor/actuator colocation, although achievable per-
ormance can be improved by separating the control input from
he measurement signal �11�. For colocated hardware, it is well
nown that the transfer function is minimum phase; in fact, force-
o-velocity transfer functions are positive real. However, for a
oncolocated arrangement of control hardware it is of interest to
now whether the resulting transfer function is minimum or non-
inimum phase. In �12,13�, a class of noncolocated mass-spring-

ashpot structures are shown to be minimum phase. In particular,
12,13� considers the system Mq̈+Cq̇+Kq=Bu and y=Cpq,
here M �RN�N is positive definite, C�RN�N and K�RN�N are
ositive semidefinite, B�RN�lu has full row rank, C�Rly�N has
ull column rank, and lu� ly. In this case, the system is minimum
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phase, that is, the transmission zeros from u to y are in the closed-
left-half-plane, if there exists ��Rly�lu such that B=CT� �12,13�.
However, this condition is equivalent to sensor/actuator coloca-
tion in the single-input single-output �SISO� lu= ly =1 case. Thus,
�12,13� do not consider the zero properties of noncolocated SISO
mass-spring-dashpot structures. In the present paper, we use
graph-theoretic tools to address the zero properties of noncolo-
cated SISO mass-spring-dashpot structures. Finally, the robustness
of the condition B=CT� is examined in �14�, and minimum-phase
discrete-time mass-spring-dashpot systems are considered in
�15,16�.

Graph theory can provide a systematic framework for analyzing
structures and dynamical systems �17–22�. In particular, �17� uses
graph theory to derive expressions for the component forces at the
ends of individual structural members. In �18–20�, the dynamic
equations of motion for a class of rigid body systems are derived
using graph-theoretic tools.

In the present paper, we use graph-theoretic results to examine
the zeros and relative degree of collinear lumped-parameter struc-
tures. In particular, we consider lumped-parameter structures in
which each mass has a single degree of freedom with arbitrary
spring and dashpot connections to the remaining masses. For these
structures, we show that every SISO force-to-motion transfer
function has no positive �real open-right-half-plane� zeros. Fur-
thermore, we show that every SISO force-to-position transfer
function of a spring-connected collinear lumped-parameter struc-
ture has no non-negative �real closed-right-half-plane� zeros. As a
consequence of this result, the step response of every asymptoti-
cally stable SISO force-to-position transfer function of a spring-
connected collinear lumped-parameter structure does not exhibit
initial undershoot. We also derive a formula for the relative degree
of every SISO force-to-motion transfer function. The formula de-
pends on the placement of springs and dashpots, but does not
depend on the specific values of the spring constants and damping
coefficients.

As a special case of the general collinear lumped-parameter
structure, we consider asymptotically stable serially connected
collinear lumped-parameter structures. More specifically, we ana-

lyze the zeros and relative degree of a string of masses intercon-

JULY 2007, Vol. 129 / 493
07 by ASME

E license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



n
p
m
t
a
S
c
h
W
d

s
c
d
p
i
p
p
i
l
I
S
t
n
g
c
l

2

t
r
c
a
4
c
F

F
s

4

Downloa
ected by springs and dashpots. This structural configuration ap-
roximates a beam in compression, and is also useful for
odeling the dynamics of a string of vehicles with pairwise con-

rol loops and for determining string stability for a convoy of
utomated vehicles �23–25�. In this special case, we show that all
ISO force-to-position transfer functions of serially connected
ollinear lumped-parameter structures are minimum phase, that is,
ave neither real nor complex zeros in the closed-right-half-plane.
e also obtain a specialization of the expression for the relative

egree.
The contents of the paper are as follows. In Sec. 2, we present

ome basic graph-theoretic results used in later sections to analyze
ollinear lumped-parameter structures. In Sec. 3, we review the
ynamics and stability properties of an N-mass collinear lumped-
arameter structure. Section 4 presents results concerning the ex-
stence of positive and non-negative zeros in collinear lumped-
arameter structures. The existence of complex non-minimum
hase zeros in collinear lumped-parameter structures is considered
n Sec. 5. Section 6 examines initial undershoot in collinear
umped-parameter structures, and an example is given in Sec. 7.
n Sec. 8, we derive an expression for the relative degree of a
ISO force-to-position transfer function. In Sec. 9, we consider

he zeros and relative degree of asymptotically stable serially con-
ected collinear lumped-parameter structures. Conclusions are
iven in Sec. 10. For the remainder of this paper, we only consider
ollinear lumped-parameter structures and refer to them as
umped-parameter structures.

Graph Theory Preliminaries
There is a natural relationship between lumped-parameter struc-

ures and graphs. The masses of a lumped-parameter structure
epresent the vertices of a graph, while the springs and dashpots
onnecting the masses represent the edges of the graph. For ex-
mple, the 4-mass structure in Fig. 1 is represented by the
-vertex graph in Fig. 2. Furthermore, the stiffnesses and damping
oefficients can determine the weights associated with the edges.
or example, the stiffnesses of the springs in Fig. 1 are the

Fig. 1 4-mass structure w

ig. 2 4-vertex graph representing the 4-mass structure

hown in Fig. 1
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weights associated with the edges in Fig. 2. In this section, we
present definitions and basic results that are useful for analyzing
the zeros of lumped-parameter structures.

Let V= �v1 ,v2 , . . . ,vN�. The N elements of V are vertices, and V
is the vertex set. Define E� ��vi ,v j� :vi ,v j �V , i� j�, and let
E�E. The elements of E are edges, and E is the edge set. Since
the elements of E are sets and thus are unordered, the edges do not
have directions. Thus all graphs considered in this paper are un-
directed graphs. Furthermore, we do not consider multiple edges
since the elements of E are distinct, and we do not consider loops
since, for all i=1, . . . ,N , �vi ,vi��E. The restriction to nonre-
peated edges presents no loss of generality when analyzing
lumped-parameter structures since multiple springs or dashpots
connecting a pair of masses can be replaced by a single equivalent
spring or dashpot. As discussed later, springs and dashpots are
viewed as edges of different graphs.

DEFINITION 2.1. G= �V ,E� is a graph. If, in addition, for all
�vi ,v j��E, a weight wi,j �0 is assigned to the edge �vi ,v j�, then
G is a weighted graph.

DEFINITION 2.2. Let G= �V ,E� be a graph, and let vn0
,vnl

�V be
distinct. A walk of length l from vn0

to vnl
is the �l+1�-tuple

�vn0
,vn1

, . . . ,vnl
��V� ¯ �V such that, for all i

=1,2 , . . . , l , , �vni−1
,vni

��E.
DEFINITION 2.3. The graph G= �V ,E� is connected if, for all

distinct �, ��V, there exists a walk between � and �.
The weighted adjacency matrix AG�RN�N associated with the

weighted graph G= �V ,E� is defined as

AG � �
0 w1,2 w1,2 . . . w1,N

w2,1 0 w2,3 . . . w2,N

w3,1 w3,2 0 w3,N

� � � �
wN,1 wN,2 wN,3 . . . 0

	
where, for all �vi ,v j��E, wi,j =wj,i�0 is the weight assigned to
the edge �vi ,v j� and, for all �vi ,v j��E, wi,j =0.

The Laplacian matrix LG�RN�N associated with the weighted
graph G= �V ,E� is defined as

LG � DG − AG

where

DG � diag
�
i=2

N

w1,i, �
i=1,i�2

N

w2,i, �
i=1,i�3

N

w3,i, . . . ,�
i=1

N−1

wN,i�
The following definitions for Z-matrices and M-matrices can be
found in �26�.

DEFINITION 2.4. A�Rn�n is a Z-matrix if every off-diagonal
entry of A is nonpositive.

DEFINITION 2.5. A�Rn�n is an M-matrix if A can be written as
A=aI−B, where B�Rn�n is a non-negative matrix and a�R is

spring interconnections
ith
greater than or equal to the spectral radius of B.
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Since the spectral radius of B is also an eigenvalue of B, it
ollows immediately that the M-matrix A is nonsingular if and
nly if a is greater than the spectral radius of B.

Next, we present two results concerning the Laplacian matrix.
hese results can be found in �27, p. 144� and �28, Theorem 3.16�,

espectively. In this paper, a matrix is positive semidefinite if it is
ymmetric with all nonnegative eigenvalues. Furthermore, a ma-
rix is positive definite if it is symmetric with all positive eigen-
alues.

LEMMA 2.1. The Laplacian matrix LG is a singular, positive-
emidefinite M-matrix.

LEMMA 2.2. The graph G= �V ,E� is connected if and only if its
aplacian matrix LG is irreducible.
The following result, which concerns nonsingular M-matrices,

s given by �26, Theorem 2.7�.
LEMMA 2.3. Let AM �RN�N be an irreducible Z-matrix. Then

M is a nonsingular M-matrix if and only if every entry, AM
−1 is

ositive.
The next result of this section, which follows immediately from

emmas 2.1–2.3, is used to analyze the zeros of lumped-
arameter structures.

LEMMA 2.4. Assume the graph G= �V ,E� is connected. Then the
aplacian matrix LG is an irreducible, singular, positive-
emidefinite M-matrix. Furthermore, let D�RN�N, be positive
efinite and diagonal. Then D+LG is an irreducible, nonsingular
-matrix, and thus every entry of �D+LG�−1 is positive.
Now, we present results regarding the weighted adjacency ma-

rices of two different graphs having the same vertex set; these
esults are used to analyze the relative degree of the transfer func-
ions for lumped-parameter structures. Let E1�E and E2�E, and
onsider the weighted graphs G1= �V ,E1� and G2= �V ,E2�. Let

G1
�RN�N and AG2

�RN�N be the weighted adjacency matrices
ssociated with the weighted graph G1= �V ,E1� and G2= �V ,E2�,
espectively.

LEMMA 2.5. Consider the graph G12= �V ,E1�E2�, and let

n0
,vn1

�V be distinct. Then there exists a walk �vn0
,vn1

, . . . ,vnl
�

f length l on the graph G12 between vn0
and vnl

if and only if

enl

T �l�l−1 ¯ �1en0
� 0 �2.1�

here, for all i=1, . . . , l, �i�RN�N satisfies

�i

=AG1

if �vni−1
,vni

� � E1 and �vni−1
,vni

� � E2

=AG2
if �vni−1

,vni
� � E2 and �vni−1

,vni
� � E1

��AG1
,AG2

� otherwise

Proof. We prove this result by induction on the length l of the
alk. First, assume that l=1. It follows from the definition of the

djacency matrix that en1

T AG1
en0

�0 if and only if �vn0
,vn1

��E1

nd en1

T AG2
en0

�0 if and only if �vn0
,vn1

��E2. Therefore, there
xists a walk of length 1 between vn0

and vn1
if and only if

n1

T �1en0
�0.

Now, for induction, assume that the result holds for walks of
ength l−1�1.

Next, we prove that the result holds for walks of length l. Note
hat there exists a walk �vn0

,vn1
, . . . ,vnl

� of length l between vn0
nd vnl

if and only if there exists a vertex vn1
�V such that there

xists a walk �vn1
,vn2

, . . . ,vnl
� of length l−1 between vn1

and vnl
,

nd a walk �vn0
,vn1

� of length 1 between vn0
and v1.

Since the result holds for walks of length of l−1, it follows that
here exists a walk �vn1

,vn2
, . . . ,vnl

� of length l−1 between vn1

nd vnl

and only if

ournal of Dynamic Systems, Measurement, and Control
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enl

T �l�l−1 ¯ �2en1
� 0

Furthermore, there exists a walk of length 1 between vn0
and vn1

and only if en1

T �1en0
�0.

Therefore, there exists a walk �vn0
,vn1

, . . . ,vnl
� of length l be-

tween vn0
and vnl

if and only if there exists a vertex vn1
�V such

that

�enl

T �l�l−1 ¯ �2en1
��en1

T �1en0
� � 0

Furthermore, note that

enl

T �l�l−1 ¯ �1en0
= �

k=1

N

�enl

T �l ¯ �2ek��ek
T�1en0

�

Thus, enl

T �l¯�1en0
�0 if and only if there exists a k

� �1, . . . ,N� such that �enl

T �l¯�2ek��ek
T�1en0

��0.
Therefore, there exists a walk �vn0

,vn2
, . . . ,vnl

� of length l be-
tween vn0

and vnl
if and only if �2.1� is satisfied. �

The final result of this section is the contrapositive of the nec-
essary condition of Lemma 2.5.

COROLLARY 2.1. Consider the graph G12= �V ,E1�E2�, and let
vn0

,vnl
�V be distinct. For all i=1, . . . , l, let E�i�� �E1 ,E2�. As-

sume that there does not exist a walk �vn0
,vn1

, . . . ,vnl
� of length l

between vn0
and vnl

such that, for all i=1, . . . , l , �vni−1
,vni

�
�E�i�. Then

enl

T �l�l−1 ¯ �1en0
= 0

where, for i=1, . . . , l,

�i � �AG1
if E�i� = E1

AG2
if E�i� = E2

3 Dynamics and Stability of Lumped-Parameter
Structures

In this section, we present the dynamics of lumped-parameter
structures. Specifically, we consider mass-spring-dashpot struc-
tures in which every pair of masses may or may not be connected
by a spring, a dashpot, or a spring and dashpot in parallel. In
addition, each mass may or may not be connected to a fixed wall
by a spring, a dashpot, or a spring and dashpot in parallel. The N
masses of the structure are denoted by m1 , . . . ,mN. For all distinct
i , j=1, . . . ,N ,ci,j is the damping coefficient of the dashpot con-
necting the ith and jth masses, and ki,j is the stiffness of the spring
connecting the ith and jth masses. If ci,j =0 or ki,j =0, then the ith
and jth masses are not connected by a dashpot or a spring, respec-
tively. For all i=1, . . . ,N ,ci and ki are the damping coefficient and
spring stiffness, respectively, of the dashpot and spring connecting
the ith mass to the wall. If ci=0 or ki=0, then the ith mass is not
connected to the wall by a dashpot or a spring, respectively. For
all i=1, . . . ,N ,qi�t� is the position of the mass mi, relative to an
equilibria position, and ui�t� is the force acting on the mass mi.

We consider lumped-parameter structures that consist of physi-
cal masses, springs, and dashpots, that is, the system must have
positive masses, non-negative damping coefficients, and non-
negative spring stiffnesses. Specifically, for all i=1, . . . ,N, mi
�0 and ci ,ki�0 and, for all distinct i, j=1, . . . ,N ,ci,j �0, and
ki,j �0.

For N=3, Figure 3 shows a 3-mass structure with all possible
spring and dashpot connections. Figure 4 shows the possible
spring and dashpot connections for the nth mass in an N-mass
lumped-parameter structure.

The dynamics of the N-mass lumped-parameter structure are

given by
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Mq̈�t� + Cq̇�t� + Kq�t� = u�t� , �3.1�
here

M � diag�m1, . . . ,mN� �3.2�

C � Cw + LC �3.3�

K � Kw + LK �3.4�

q�t� � �q1�t� ¯ qN�t��T �3.5�

u�t� � �u1�t� ¯ uN�t��T �3.6�
nd

Cw � diag�c1, . . . ,cN�, Kw � diag�k1, . . . ,kN� �3.7�

LC � �
�
j=2

N

c1,j − c1,2 − c1,3 . . . − c1,N

− c2,1 �
j=1,j�2

N

c2,j − c2,3 . . . − c2,N

− c3,1 − c3,2 �
j=1,j�3

N

c3,j − c3,N

� � � �

− cN,1 − cN,2 − cN,3 . . . �
j=1

N−1

cN,j

	 �3.8�

LK � �
�
j=2

N

k1,j − k1,2 − k1,3 . . . − k1,N

− k2,1 �
j=1,j�2

N

k2,j − k2,3 . . . − k2,N

− k3,1 − k3,2 �
j=1,j�3

N

k3,j − k3,N

� � � �

− kN,1 − kN,2 − kN,3 . . . �
j=1

N−1

kN,j

	 �3.9�

Note that the damping matrix C has a diagonal component Cw,

Fig. 3 3-mass structure with all pos
hich represents the dashpots connecting masses m1 , . . . ,mN to
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the wall, and a nondiagonal component LC, which results from the
dashpot interconnections among the N masses. Similarly, the stiff-
ness matrix K has a diagonal component Kw and a nondiagonal
component LK. This distinction will be important in the following
section when we associate several graphs with the lumped-
parameter structure.

Next, we review the stability properties of lumped-parameter
structures. The lumped-parameter structure �3.1�–�3.9� can be
written as the first-order linear state-space system

ẋ = Ax + Bu �3.10�

q = Cpx �3.11�
where

A � � 0 IN

− M−1K − M−1C
� B � � 0

M−1 � �3.12�

Cp � �IN 0 � �3.13�

and x� �q1¯qN q̇1¯ q̇N �T. First, we characterize the eigenval-
ues of A in terms of the mass, stiffness, and damping matrices.
This result can be found in �29, p. 203�.

LEMMA 3.1. Consider the lumped-parameter system
�3.10�–�3.13� and let s�C. Then det�sI−A�=0 if and only if

2

Fig. 4 Spring and dashpot connections to the nth mass of an
N-mass structure

le spring and dashpot connections
sib
det�s M +sC+K�=0.
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The following stability result is a direct consequence of �30,
heorem 1�.
LEMMA 3.2. Consider the lumped-parameter system

3.10�–�3.13�. Then the following statements are valid:

�i� A is Lyapunov stable if and only if K+C is positive defi-
nite.

�ii� A is asymptotically stable if and only if �KM−1 ,C� is con-
trollable and K is positive definite.

Positive Zeros of Lumped-Parameter Structures
In this section, we analyze the zeros of lumped-parameter struc-

ures using the graph-theoretic tools presented in Sec. 2. To aid in
ur analysis, we associate three weighted graphs with the lumped-
arameter structure �3.1�–�3.9�. The masses are the vertices of the
raphs, and the edges of the graphs are the dashpots, the springs,
r the springs and dashpots. Furthermore, the weights associated
ith each edge are functions of the damping coefficient and the

pring stiffness. Define the vertex set VM � �m1 , . . . ,mN� and the
dge sets

EC � ��mi,mj�:ci,j � 0, where i, j = 1, . . . ,N and i � j�

EK � ��mi,mj�:ki,j � 0, where i, j = 1, . . . ,N and i � j�

efine the weighted graphs GC� �VM ,EC�, where, for all
mi ,mj��EC, the weight ci,j is assigned to the edge �mi ,mj�, and

K� �VM ,EK�, where, for all �mi ,mj��EK, the weight ki,j is as-
igned to the edge �mi ,mj�.

By examining �3.8� and �3.9�, it can be seen that LC and LK are
he Laplacian matrices associated with GC and GK, respectively.
hen Lemma 2.1 implies that LC and LK are positive-semidefinite
-matrices. Since Cw and Kw are diagonal positive-semidefinite
atrices, we conclude that the damping matrix C=Cw+LC and the

tiffness matrix K=Kw+LK are positive semidefinite. We have
hus proven the known fact that lumped-parameter structures of
he form �3.1�–�3.9� have positive-semidefinite damping and stiff-
ess matrices.

A notion of structural connectedness is needed to analyze the
eros of lumped-parameter structures. Roughly speaking, a
umped-parameter structure is structurally connected if it is a
ingle structure rather than two or more disjoint structures. To
ormalize this idea, define the edge set ECK�EC�EK.

DEFINITION 4.1. The lumped-parameter structure �3.1�–�3.9� is
tructurally connected if the graph GCK� �VM ,ECK� is connected.

Definition 4.1 intuitively implies that �3.1�–�3.9� is structurally
onnected if and only if the force-to-motion transfer functions
etween every pair of masses is nonzero. Next, we characterize
tructural connectedness in terms of the damping and stiffness
atrices.
LEMMA 4.1. The lumped-parameter structure �3.1�–�3.9� is

tructurally connected if and only if K+C is irreducible.
Proof. Define the weighted graph GCK� �VM ,ECK�, where, for

ll �mi ,mj��ECK, the weight ki,j +ci,j is assigned to the edge
mi ,mj�. By examining �3.8� and �3.9�, it follows that LK+LC is
he Laplacian matrix associated with GCK. Lemma 2.2 implies that
K+LC is irreducible if and only if GCK is connected. Since Kw
Cw is diagonal, it follows that K+C=LK+LC+Kw+Cw is irre-
ucible if and only if LK+LC is irreducible. Therefore, K+C is
rreducible if and only if GCK is connected. �

We now present our main result on the zeros of lumped-
arameter structures.

THEOREM 4.1. Assume that the system �3.10�–�3.13� is structur-
lly connected. Then, for all i , j=1, . . . ,N, the transfer function
rom uj�t� to qi�t� has no positive zeros. If, in addition, the graph

K is connected and K is positive definite, then, for all i , j
1, . . . ,N, the transfer function from uj�t� to qi�t� has no non-

egative zeros.
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Proof. The transfer function from the force input uj applied to
mass mj to the position qi of mass mi is

Gi,j�s� � ei
TCp�sI − A�−1Bej

where, for i=1, . . . ,N ,ei is the ith column of IN. Let z�0. For all
i , j=1, . . . ,N,

Gi,j�z� = ei
TCp�zI − A�−1Bej = �ei

T 0 �

�� zI − I

M−1K zI + M−1C
�−1� 0

M−1ej
� �4.1�

Since z�0, M is positive definite, and C and K are positive
semidefinite, it follows that zI and �1/z�M−1 �Mz2+Cz+K� are
nonsingular. Hence, Proposition 2.8.7 of �29� implies that

� zI − I

M−1K zI + M−1C
�−1

= �� �zI�−1�zI + M−1C + M−1K�zI�−1�−1

� �
�

= �� �z2I + M−1Cz + M−1K�−1

� �
� �4.2�

where � denotes an inconsequential entry. Combining �4.1� and
�4.2� yields

Gi,j�z� = �ei
T 0 ��� �z2I + M−1Cz + M−1K�−1

� �
�� 0

M−1ej
�

= ei
T�Mz2 + Cz + K�−1ej

= ei
T��Mz2 + Cwz + Kw� + �LCz + LK��−1ej �4.3�

Next, it follows from �3.8� and �3.9� that LCz+LK is the Laplac-
ian matrix of the weighted graph GCK� �VM ,ECK�, where, for all
�mi ,mj��E, the weight ci,jz+ki,j is associated with the edge

�mi ,mj�. Furthermore, Mz2+Cwz+Kw is a diagonal positive-
definite matrix. Since GCK is connected and Mz2+Cwz+Kw is a
diagonal positive-definite matrix, Lemma 2.4 implies that �Mz2

+Cwz+Kw�+ �LCz+LK� is an irreducible, nonsingular M-matrix
and every entry of �Mz2+Cz+K�−1= ��Mz2+Cwz+Kw�+ �LCz
+LK��−1 is positive. Therefore, for all i , j=1, . . . ,N, it follows
from �4.3� that Gi,j�z��0, and thus z is not a zero of Gi,j�s�.

Now consider the case z=0. It follows from �4.1� that

Gi,j�0� = �ei
T 0 �� 0 − I

M−1K M−1C
�−1� 0

M−1ej
� �4.4�

Since M �0 and K�0 it follows that M−1K is nonsingular.
Hence, Fact 2.15.2 of �29� implies that

� 0 − I

M−1K M−1C
�−1

= �� K−1M

� �
� �4.5�

Combining �4.4� and �4.5� yields

Gi,j�0� = ei
TK−1ej = ei

T�Kw + LK�−1ej

Since GK is connected, it follows from Lemma 2.1 and Lemma 2.2
that LK is an irreducible, singular, M-matrix. Since Kw is diagonal,
it follows that K=Kw+LK is an irreducible M-matrix. Further-
more, since K is positive definite, it follows that K is an irreduc-
ible, nonsingular, M-matrix. It then follows from Lemma 2.3 that
every entry of K−1 is positive. Therefore, Gi,j�0�=ei

TK−1ej is posi-
tive and z=0 is not a zero of Gi,j�s�. �

COROLLARY 4.1. Assume that the system �3.10�–�3.13� is struc-
turally connected. Then, for all i , j=1, . . . ,N, the transfer func-
tions from uj�t� to q̇i�t� and from uj�t� to q̈i�t� have no positive

zeros.
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Complex Nonminimum Phase Zeros of Lumped-
arameter Structures
Theorem 4.1 and Corollary 4.1 guarantee that every force-to-
otion transfer function of a structurally connected lumped-

arameter structure has no positive zeros. However, these results
o not guarantee that every force-to-motion transfer function is
inimum phase; the force-to-motion transfer functions can have

omplex zeros in the open right half plane. In fact, for N=3, there
xists lumped-parameter structures �3.1�–�3.9� that are structurally
onnected and have a nonminimum phase force-to-motion transfer
unction. Specifically, consider the 3-mass lumped-parameter
tructure in Fig. 3, where m1=m2=m3=1 kg, k1=k3=0 kg/s2, k2
k1,2=k1,3=k2,3=5 kg/s2, c1=c2=c3=c1,2=c2,3=0 kg/s, and c1,3
5 kg/s. This system is structurally connected since the graph
CK is connected. Furthermore, the transfer function from u1�t� to

3�t�, given by

G3,1�s� �
5s3 + 5s2 + 75s + 100

s6 + 10s5 + 35s4 + 200s3 + 325s2 + 250s + 375

s nonminimum phase. The zeros of G3,1�s� are approximately
.150± j3.92 and −1.30. In fact, for all N�3, there exists a
umped-parameter structure �3.1�–�3.9� that is structurally con-
ected and has a nonminimum phase force-to-motion transfer
unction.

Initial Undershoot in Lumped-Parameter Structures
Initial undershoot describes the qualitative behavior of the step

esponse of a transfer function. A system has initial undershoot if
he step response initially moves in the direction that is opposite
o its asymptotic value. We now define initial undershoot and state
result classifying the existence of initial undershoot. The defini-

ion and result are given in �31–33�.
DEFINITION 6.1. Let H�s� be a single-input single-output asymp-

otically stable transfer function with relative degree r�0. Let
�t� be the step response of H�s�. Assume that H�0��0. Then the
ected by means of at least one sequence of springs and dashpots.
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step response of H�s� has initial undershoot if y�r��0�limt→	y�t�

0.

LEMMA 6.1. Let H�s� be a single-input single-output asymptoti-
cally stable transfer function with relative degree r�0. Assume
that H�0��0. Then the step response of H�s� has initial under-
shoot if and only if H�s� has an odd number of positive zeros.

The main result of this section addresses the existence of initial
undershoot in a force-to-position transfer function of an asymp-
totically stable lumped-parameter structure.

THEOREM 6.1. Assume that the system �3.10�–�3.13� is structur-
ally connected. Furthermore, assume that A is asymptotically
stable and the graph GK is connected. Then, for all i , j=1, . . . ,N,
the step response of the transfer function from uj�t� to qi�t� does
not exhibit initial undershoot.

Proof. Let Gi,j�s� be the transfer function from the force input
on mass mj to the position of mass mi. Since A is asymptotically
stable, Lemma 3.2 implies K�0. It follows from Theorem 4.1
that Gi,j�s� has no non-negative zeros. Therefore, Gi,j�0��0 and
Gi,j�s� has no positive zeros. Since A is asymptotically stable,
Gi,j�s� is asymptotically stable. Since Gi,j�s� is an asymptotically
stable transfer function, Gi,j�0��0, and Gi,j�s� has no positive
zeros, it follows from Lemma 6.1 that Gi,j�s� does not exhibit
initial undershoot. �

7 Example: 3-Mass Lumped-Parameter Structure
Consider the structurally connected 3-mass structure shown in

Fig. 3 whose dynamics are given by �3.1�–�3.9�, where N=3. For
this example, the masses are m1=m2=m3=5 kg; the spring stiff-
nesses are k1=1 kg/s2, k2=2 kg/s2, k3=3 kg/s2, k1,2=12 kg/s2,
k1,3=13 kg/s2, and k2,3=23 kg/s2; and the damping coefficients
are c1=10 kg/s, c2=20 kg/s, c3=30 kg/s, c1,2=120 kg/s, c1,3
=130 kg/s, and c2,3=23 kg/s.

The transfer functions from u1 to q1, from u1 to q2, and from u1
to q are
3
G1,1�s� �
0.2s4 + 30.4s3 + 734.24s2 + 146.24s + 7.312

s6 + 204s5 + 10328.4s4 + 39813.6s3 + 11428.68s2 + 1132.56s + 37.752

G2,1�s� �
4.8s3 + 614.08s2 + 122.72s + 6.136

s6 + 204s5 + 10328.4s4 + 39813.6s3 + 11428.68s2 + 1132.56s + 37.752

G3,1�s� �
5.2s3 + 606.12s2 + 121.12s + 6.056

s6 + 204s5 + 10328.4s4 + 39813.6s3 + 11428.68s2 + 1132.56s + 37.752
espectively. The zeros of G1,1�s� are approximately −121.9,
29.86, −0.1001, and −0.1003. The zeros of G2,1�s� are approxi-
ately −127.7, −0.1000, and −0.1001. The zeros of G3,1�s� are

pproximately −116.4, −0.1000, and −0.1001. Therefore, G1,1�s�,
2,1�s�, and G3,1�s� have no non-negative zeros as guaranteed by
heorem 4.1. Furthermore, Theorem 6.1 implies that the step re-
ponses of G1,1�s�, G2,1�s�, and G3,1�s� do not have initial under-
hoot. Figure 5 verifies that the step responses do not have initial
ndershoot.

Relative Degree of Lumped-Parameter Structures
In this section, we analyze the relative degree of the lumped-

arameter structure �3.10�–�3.13�. If we assume that �3.10�–�3.13�
s structurally connected, then the ith and jth masses are con-
To calculate the relative degree of the transfer function from uj�t�
to qi�t�, we consider all sequences of springs and dashpots that
connect mj to mi. Equivalently, we consider all walks on the graph
GCK= �VM ,ECK� from mj to mi. For all i , j=1, . . . ,N such that i
� j, define

�i,j � ��:� is a walk on GCK from mj to mi�

and, for all i= j=1, . . . ,N, define �i,j��.
Let �= �mn0

,mn1
, . . . ,mnl

� be a walk of length l on GCK from
mn0

to mnl
. Now, let nC��� denote the number of edges in � that

are dashpots only, let nK��� denote the number of edges in � that
are springs only, and let nCK��� denote the number of edges in �

that are springs and dashpots, that is,
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nC��� = �
i=1

l

�i nK��� = �
i=1

l

�i nCK��� = �
i=1

l


i

here, for i=1, . . . , l,

�i = �1, if �mni−1
,mni

� � EC and �mni−1
,mni

� � EK

0, otherwise

�i = �1, if �mni−1
,mni

� � EK and �mni−1
,mni

� � EC

0, otherwise


i = �1, if �mni−1
,mni

� � EK � EC

0, otherwise

The next result provides an expression for the relative degree of
he transfer function from uj�t� to qi�t� and characterizes the sign
f the first nonzero Markov parameter �often called the high-
requency gain�.

THEOREM 8.1. Assume that the system �3.10�–�3.13� is structur-
lly connected. Then, for all i , j=1, . . . ,N, the relative degree of
he transfer function from uj�t� to qi�t� is

ri,j � min
���i,j

�2nK��� + nC��� + nCK���� + 2 �8.1�

urthermore, for all i , j=1, . . . ,N, the first nonzero Markov pa-
ameter Hri,j

�ei
TCpAri,j−1Bej of the transfer function from uj�t� to

i�t� is positive.
Proof. Let i and j be positive integers between 1 and N, and let
��i,j be the minimizer in �8.1� so that ri,j =2nK���+nC���
nCK���+2. For all n=1, . . . ,N,

Hn � ei
TCpAn−1Bej = �ei

T 0 �� 0 I

− M−1K − M−1C
�n−1� 0

M−1ej
�

�8.2�

o prove this result, it suffices to show that H0, H1 , . . . ,Hri,j−1

0 and Hri,j
�0.

Performing the matrix multiplications in �8.2� implies

Hn = �ei
T 0 ��� �n

� �
�� 0

M−1ej
� = ei

T�nM−1ej �8.3�

here � denotes an inconsequential entry, �1�0, �2� I, and, for
ll n=3, . . .N ,�n�−M−1C�n−1−M−1K�n−2. By manipulating the

ig. 5 The step responses of G1,1„s… „solid…, G2,1„s… „dashed…,
nd G3,1„s… „dotted… do not display an initial undershoot
erms of �8.3�, it follows that
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Hn = ei
TM�−1/2��̄nM�−1/2�ej =

1
�mimj

ei
T�̄nej

where �̄1�0, �̄2� I, and, for all n=3, . . . ,N,

�̄n � P�̄n−1 + Q�̄n−2 �8.4�

where P�−M−1/2CM−1/2 and Q�−M−1/2KM−1/2.
Since �1=0, it follows that H1=0. Since �2= I, it follows that

H2�0 if and only if i= j, which is equivalent to H2�0 if and only
if �i,j =�. Thus, H2�0 if and only if ri,j =2.

Now, consider the case in which �i,j�� and thus ri,j �2. Note
that P and Q can each be expressed as the sum of a weighted
adjacency matrix and a diagonal negative-semidefinite matrix, that
is,

P = AGC
+ Dc �8.5�

Q = AGK
+ DK �8.6�

where

DC � = − diag
 c1

m1
+ �

j=2

N
c1,j

m1
,

c2

m2
+ �

j=1,j�2

N
c2,j

m2
, . . . ,

cN

mN

+ �
j=1,j�N

N
cN,j

mN
�

DK � = − diag
 k1

m1
+ �

j=2

N
k1,j

m1
,

k2

m2
+ �

j=1,j�2

N
k2,j

m2
, . . . ,

kN

mN

+ �
j=1,j�N

N
kN,j

mN
�

are diagonal negative semidefinite, AGC
is the weighted adjacency

matrix associated with GC, where, for all �mp ,mq��EC, the
weight cp,q /�mpmq�0 is assigned to the edge �mp ,mq�, and AGK
is the weighted adjacency matrix associated with GK, where, for
all �mp ,mq��EK, the weight kp,q /�mpmq�0 is assigned to the
edge �mp ,mq�.

It follows from the recursion �8.4� that, for all n=3, . . . ,N,

�̄n = �� Pp1Qq1
¯ Ppn−3Qqn−3Ppn−2 �8.7�

where �� denotes the sum over all distinct products such that
p1 , . . . , pn−2 ,q1 , . . . ,qn−3� �0,1� and � j=1

n−2pj +2� j=1
n−3qj +2=n.

Combining �8.5�–�8.7� and performing the multiplications yields

�̄n = �� �AGC
+ DC�p1�AGK

+ DK�q1
¯ �AGC

+ DC�pn−3�AGK

+ DK�qn−3�AGC
+ DC�pn−2 = �� AGC

p1 AGK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2 + �n

�8.8�

where, for all n=3, . . . ,N,

�n = �� DC
p1AGK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2

+ �� DC
p1DK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2 + ¯

+ �� AGC

p1 DK
q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2 + ¯

+ �� DC
p1DK

q1
¯ DC

pn−3DK
qn−3DC

pn−2

Since � is a minimizer of �8.1�, there does not exist a walk �̄
��i,j such that 2nK��̄�+nC��̄�+nCK��̄�
2nK���+nC���
+nCK���. Thus, Corollary 2.1 implies that, for all n=3, . . . ,ri,j

−1,
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ei
TAGC

p1 AGK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2ej = 0 �8.9�

here p1 , . . . , pn−2 ,q1 , . . . ,qn−3� �0,1� satisfy � j=1
n−2pj +2� j=1

n−3qj

2=n. By combining �8.8� and �8.9�, it follows that, for all n
3, . . . ,ri,j −1,

ei
T�̄nej = ei

T�nej

Next, note that every term of ei
T�nej of the form

i
TDC

p1DK
q1
¯DC

pn−3DK
qn−3DC

pn−2ej is zero because DC and DK are di-
gonal and i� j. The remaining terms of ei

T�nej have the form of
8.9� where a negative semidefinite matrix DC or DK may appear
etween the matrices AGC

and AGK
. Therefore, Lemma A.1 and

8.9� imply that for all n=3, . . . ,ri,j −1,ei
T�nej =0. Thus, for all

=3 , . . . ,ri,j −1,ei
T�̄nej =0, which implies that Hn=0.

Now, it suffices to show that Hri,j
�0. Again, note that every

erm of ei
T�nej of the form ei

TDC
p1DK

q1
¯DC

pn−3DK
qn−3DC

pn−2ej is zero
ecause DC and DK are diagonal and i� j. The remaining terms of

i
T�nej have the form of �8.9� where a negative semidefinite ma-
rix DC or DK may appear between the matrices AGC

and AGK
.

herefore, Lemma A.1 and �8.9� imply that ei
T�ri,j

ej =0. There-
ore,

ei
T�̄ri,j

ej = �� ei
TAGC

p1 AGK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2ej �8.10�

urthermore, note that each product ei
TAGC

p1 AGK

q1
¯AGC

pn−3AGK

qn−3AGC

pn−2ej

s non-negative.
Since there exists a walk � such that ri,j =2nK���+nC���

nCK���+2, it follows from Lemma 2.5 that there exists

1 , . . . , pri,j−2 ,q1 , . . . ,qri,j−3� �0,1� such that � j=1
ri,j−2pj +2� j=1

ri,j−3qj

ri,j −2 and

ei
TAGC

p1 AGK

q1
¯ AGC

pn−3AGK

qn−3AGC

pn−2ej � 0

herefore, at least one term in the summation �8.10� is positive.

hus, ei
T�̄ri,j

ej �0, which implies that Hri,j
�0. �

Notice that the formula for relative degree provided by Theo-
em 8.1 does not depend on the specific values of the masses,
pring constants, or damping coefficients. In fact, the relative de-
ree depends only on the placement of the springs and dashpots.

Zeros and Relative Degree of Serially Connected
umped-Parameter Structures
In this section, we consider the special case of a serially con-

ected structure in which adjacent masses are connected by
prings and dashpots, but nonadjacent masses are not connected to
ach other. This structure is shown in Fig. 6. The dynamics of the
-mass lumped-parameter structure shown in Fig. 6 are given by

Mq̈�t� + Cq̇�t� + Kq�t� = u�t� �9.1�
here

M � diag�m1, . . . ,mN� �9.2�

q�t� � �q1�t� ¯ qN�t� �T �9.3�
Fig. 6 Serially connected lumped-parameter structure
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u�t� � �u1�t� ¯ uN�t� �T �9.4�

and

K � �
k1 + k1,2 − k1,2 0 ¯ 0 0

− k1,2 k1,2 + k2,3 − k2,3 ¯ 0 0

0 − k2,3 k2,3 + k3,4 ¯ ¯ 0

� � � � � �
0 0 0 ¯ − kN−1,N kN−1,N + kN

	
�9.5�

C � �
c1 + c1,2 − c1,2 0 ¯ 0 0

− c1,2 c1,2 + c2,3 − c2,3 ¯ 0 0

0 − c2,3 c2,3 + c3,4 ¯ ¯ 0

� � � � � �
0 0 0 ¯ − cN−1,N cN−1,N + cN

	
�9.6�

We assume that all spring constants and damping coefficients
appearing in �9.5� and �9.6� are positive. It follows from �29, Fact
8.7.35� that C and K are positive definite. The lumped-parameter
structure �9.1�–�9.6� can be written as the first-order linear state-
space system �3.10�–�3.13�. Since C and K are positive definite, it
follows from Lemma 3.2 that A is asymptotically stable.

For all i , j=1, . . . ,N, the transfer function from the force input
on mass mj to the position of mass mi is

Gi,j�s� � ei
TCp�sI − A�−1Bej

Now, we present our main result on the zeros of serially con-
nected lumped-parameter structures.

THEOREM 9.1. For all i , j=1, . . . ,N ,Gi,j�s� has no closed-right-
half-plane zeros.

Proof. It follows from Theorem 4.1 that Gi,j�s� has no non-
negative zeros. Therefore, it suffices to consider complex non-
minimum phase zeros. Let z�C such that Re z�0 and Im z�0.
For all i , j=1, . . . ,N,

Gi,j�z� = ei
TCp�zI − A�−1Bej

= �ei
T 0 �� zI − I

M−1K zI + M−1C
�−1� 0

M−1ej
� �9.7�

Since z�0, M is positive definite, and C and K are positive defi-
nite, it follows that zI and �1/z�M−1�Mz2+Cz+K� are invertible.
Hence, Proposition 2.8.7 of �29� implies that

� zI − I

M−1K zI + M−1C
�−1

= �� �z2I + M−1Cz + M−1K�−1

� �
�
�9.8�

where � denotes an inconsequential entry. Combining �9.7� and
�9.8� yields

Gi,j�z� = ei
T�Mz2 + Cz + K�−1ej .

Next, we show that the leading �and trailing� principal subde-
terminants of Mz2+Cz+K are nonzero. Let � be an integer be-

tween 1 and N, and let M̄, C̄, and K̄ be the ��� leading �or
trailing� principal submatrices of M, C, and K, respectively, so

that M̄z2+ C̄z+ K̄ is a leading �or trailing� principal submatrix of

Mz2+Cz+K. Note that M̄, C̄, and K̄ have the same form as M, C,

and K. More precisely, M̄, C̄, and K̄ are the mass, damping, and
stiffness matrices of a serially connected lumped-parameter struc-

ture with � masses. Therefore, M̄, C̄, and K̄ are positive definite.

Lemma 3.2 implies that
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Ā � � 0 I

− M̄−1K̄ − M̄C̄
�

s asymptotically stable, and thus det�zI− Ā��0. Then, Lemma

.1 implies that det�M̄z2+ C̄z+ K̄��0. Therefore, the leading �and
railing� principal subdeterminants of Mz2+Cz+K are nonzero.
urthermore, Mz2+Cz+K is a tridiagonal matrix all of whose
uperdiagonal and subdiagonal entries are nonzero. It thus follows
rom Lemma B.1 with A=Mz2+Cz+K that every entry of �Mz2

Cz+K�−1 is nonzero. Hence, Gi,j�z�=ei
T�Mz2+Cz+K�−1ej�0,

nd thus, z is not a zero of Gi,j�s�. �

The next result, which follows immediately from Theorem 8.1,
rovides a simple formula for the relative degree of Gi,j�s� for
erially connected structures.

THEOREM 9.2. For all, i , j=1, . . . ,N, the relative degree of
i,j�s� is

ri,j � �i − j� + 2

urthermore, for all i , j=1, . . . ,N, the first nonzero Markov pa-
ameter Hri,j

�ei
TCpAri,j−1Bej of Gi,j�s� is positive.

0 Conclusions
This paper showed that every SISO force-to-motion transfer

unction of a lumped-parameter structure has no positive �real
pen-right-half-plane� zeros. In addition, every SISO force-to-
osition transfer function of a spring-connected lumped-parameter
tructure has no nonnegative �real closed-right-half-plane� zeros.
s a consequence, the step response of every asymptotically

table SISO force-to-position transfer function does not exhibit
nitial undershoot. In addition, we obtained a formula for the rela-
ive degree of the SISO force-to-motion transfer functions. This
ormula depends on the placement of springs and dashpots, but
oes not depend on the specific values of the spring constants and
amping coefficients. Finally, we showed that every SISO force-
o-position transfer function of a serially connected lumped-
arameter structure is minimum phase.

ppendix A

LEMMA A.1. Let X , X̄�RN�N be non-negative. Let p1 , . . . , pl
nd p̄1 , . . . , p̄l all be non-negative integers, and let D1 , . . .Dl

RN�N and D̄1 , . . . , D̄l�RN�N all be diagonal positive or nega-
ive semidefinite. Assume that

ej
TXp1X̄p̄1Xp2X̄p̄2

¯ XplX̄p̄lei = 0 �A1�

hen
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ej
TD1Xp1D̄1X̄p̄1D2Xp2D̄2X̄p̄2

¯ DlX
plD̄lX̄

plei = 0 �A2�

Proof. It follows from �A1� that tr�Xp1X̄p̄1Xp2X̄p̄2
¯XplX̄p̄leiej

T�
=0. Since X and X̄ are non-negative, it follows that

Xp1X̄p̄1Xp2X̄p̄2
¯XplX̄p̄leiej

T has all zero entries along the diagonal.
Since D1is diagonal positive �or negative� semidefinite, it follows

that D1Xp1X̄p̄1Xp2X̄p̄2
¯XplX̄p̄leiej

T has all zero entries along the
diagonal and is non-negative �or nonpositive�. Thus

tr�D1Xp1X̄p̄1Xp2X̄p̄2
¯XplX̄p̄leiej

T�=0, which implies tr�X̄p̄1Xp2X̄p̄2

¯XplX̄p̄leiej
TD1Xp1�=0. Since X̄p̄1Xp2X̄p̄2

¯XplX̄p̄leiej
TD1Xp1 is

non-negative �or nonpositive�, it has all zero entries along the
diagonal. Since D1 is diagonal positive �or negative� semidefinite,

it follows that D̄1X̄p̄1Xp2X̄p̄2
¯XplX̄p̄leiej

TD1Xp1 has all zero entries
along the diagonal and is non-negative �or non-negative�.

Continuing with this analysis implies that

X̄p̄leiej
TD1Xp1D̄1X̄p̄1D2Xp2D̄2X̄p̄2

¯DlX
pl has all zero entries along

the diagonal. Then since D̄l is diagonal, it follows that

D̄lX̄
p̄leiej

TD1Xp1D̄1X̄p̄1D2Xp2D̄2X̄p̄2
¯DlX

pl has all zero entries
along the diagonal. Therefore,

tr�D̄lX̄
p̄leiej

TD1Xp1D̄1X̄p̄1D2Xp2D̄2X̄p̄2
¯DlX

pl�=0, which implies
�A2�. �

Appendix B
LEMMA B.1. Let A�Cn�n be tridiagonal, and assume that ev-

ery entry of the superdiagonal and subdiagonal of A is nonzero.
Furthermore, assume that every leading principal subdeterminant
and every trailing principal subdeterminant of A is nonzero. Then
every entry of A−1 is nonzero.

Proof. Let

A = �
a1 b1

c1 a2 b2

c2 a3 b3

� � �

cn−2 an−1 bn−1

cn−1 an

	
For i , j=1, . . . ,n, let A�i,j� denote the �i , j� entry of A. Since
�A−1��i,j�= �1/det A��−1�i+j det A�j,i�, where A�j,i� is the cofactor
of A�i,j�, by assigning A is nonsingular, it suffices to show that the
determinant of every cofactor is nonzero.

Assume that i� j, and write
A�i,j� =�
a1 b1

c1 � �

� a1−2 bi−2

ci−2 ai−1 bi−1

ci ai+1 bi+1

� � �

cj−3 aj−2 bj−2

cj−2 aj−1

cj−1 bj

aj+1 �

cj+1 � bn−2

� an−1 bn−1

	

cn−1 an
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here the horizontal line shows where the ith row has been re-
oved, and the vertical line shows where the jth column has been

emoved. Therefore,

det A�i,j� = det��11 �12 0

0 �22 �23

0 0 �33
	 = �det �11��det �22��det �33�

�B1�

here

�11 � �
a1 b1

c1 � �

� a1−2 bi−2

ci−2 ai−1

	 � C�i−1���i−1�

�12 � �
0 0 ¯ 0

� � � �
0 0 ¯ 0

bi−1 0 ¯ 0
	 � C�i−1���j−i�

�22 � �
ci ai+1 bi+1

� � �

cj−3 aj−2 bj−2

cj−2 aj−1

cj−1

	 � C�j−i���j−i�

�23 � �
0 0 ¯ 0

� � � �
0 0 ¯ 0

bj 0 ¯ 0
	 � C�j−i���n−j�

�33 � �
aj+1 bj+1

cj+1 � �

� an−1 bn−1

cn−1 an

	 � C�n−j���n−j�

ince �11 is a leading principal submatrix of A and �33 is a
railing principal submatrix of A, it follows that det �11�0 and
et �33�0. Furthermore, det �22�0 since �22 is an upper-
riangular matrix with nonzero diagonal entries ci , . . . ,cj−1. Since
et �11�0, det �22�0, and det �33�0, it follows from �B1� that
et A�i,j��0.

Next, assume that i� j. Then

det A�i,j� = det��̄11 0 0

�̄21 �̄22 0

0 �̄32 �̄33

	 = �det �̄11��det �̄22��det �̄33�

here �̄11 is a leading principal submatrix of A, �̄33 is a trailing

rincipal submatrix of A, and �̄22 is a lower-triangular matrix
ith nonzero diagonal entries. Thus, for i� j, det A�i,j��0. There-

ore, for i , j=1, . . . ,n, det A�i,j��0, and every entry of A−1 is

onzero. �
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