On the Zeros, Initial Undershoot,
and Relative Degree of Collinear
Lumped-Parameter Structures

This paper considers collinear lumped-parameter structures where each mass in the
structure has a single degree of freedom. Specifically, we analyze the zeros and relative
degree of the single-input, single-output (SISO) transfer function from the force applied
to an arbitrary mass to the position, velocity, or acceleration of another mass. In par-
ticular, we show that every SISO force-to-motion transfer function of a collinear lumped-
parameter structure has no positive (real open-right-half-plane) zeros. In addition, every
SISO force-to-position transfer function of a spring-connected collinear lumped-
parameter structure has no non-negative (real closed-right-half-plane) zeros. As a con-
sequence, the step response does not exhibit initial undershoot. In addition, we derive an
expression for the relative degree of SISO force-to-position transfer functions. The for-
mula depends on the placement of springs and dashpots, but is independent of the values
of the spring constants and damping coefficients. Next, we consider the special case of
serially connected collinear lumped-parameter structures. In this case, we show that
every SISO force-to-position transfer function of a serially connected collinear lumped-
parameter structure is minimum phase, that is, has no closed-right-half-plane zeros. The
proofs of these results rely heavily on graph-theoretic techniques.

Jesse B. Hoagg

National Defense Science and Engineering
Graduate Fellow

e-mail: jhoagg@umich.edu

Jaganath Chandrasekar
Graduate Student

Dennis S. Bernstein

Professor

Department of Aerospace Engineering,
The University of Michigan,
Ann Arbor, MI 48109-2140

[DOLI: 10.1115/1.2719764]

1 Introduction

One of the main impediments to achievable performance in
linear time-invariant control systems is the presence of nonmini-
mum phase zeros, which contribute to peaking in the sensitivity
function and thus limit gain margins for robust stability [1-3].

The role of nonminimum phase zeros in limiting both achiev-
able performance and robust stability suggests the importance of
understanding the mechanisms that give rise to such zeros in flex-
ible structures. This issue is discussed in [4], where it is shown
that nonminimum phase zeros arise in noncolocated transfer func-
tions for beam models when multiple mechanisms are involved in
energy transfer, for example, bending and torsion. Furthermore, it
is shown in [5,6] that nonminimum phase zeros arise in noncolo-
cated transfer functions for beam models when the dynamics are
dispersive, as occurs in bending. In addition, [7,8] present pole-
zero interlacing results for multi-input, multi-output mass-spring-
dashpot structures, while [9,10] characterizes the transmission ze-
ros of lumped and distributed parameter structural systems as the
resonant frequencies of a constrained subsystem.

For noise and vibration control applications, stability robustness
benefits from sensor/actuator colocation, although achievable per-
formance can be improved by separating the control input from
the measurement signal [11]. For colocated hardware, it is well
known that the transfer function is minimum phase; in fact, force-
to-velocity transfer functions are positive real. However, for a
noncolocated arrangement of control hardware it is of interest to
know whether the resulting transfer function is minimum or non-
minimum phase. In [12,13], a class of noncolocated mass-spring-
dashpot structures are shown to be minimum phase. In particular,
[12,13] considers the system M{+Cg+Kg=Bu and y=C,q,
where M e RV*N is positive definite, C € R¥*N and K € R¥*N are
positive semidefinite, B € R¥*/s has full row rank, C € Rb*Y has
full column rank, and /,=/,. In this case, the system is minimum
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phase, that is, the transmission zeros from u to y are in the closed-
left-half-plane, if there exists I' € R/ such that B=CT [12,13].
However, this condition is equivalent to sensor/actuator coloca-
tion in the single-input single-output (SISO) [,=/,=1 case. Thus,
[12,13] do not consider the zero properties of noncolocated SISO
mass-spring-dashpot structures. In the present paper, we use
graph-theoretic tools to address the zero properties of noncolo-
cated SISO mass-spring-dashpot structures. Finally, the robustness
of the condition B=CTT is examined in [14], and minimum-phase
discrete-time mass-spring-dashpot systems are considered in
[15,16].

Graph theory can provide a systematic framework for analyzing
structures and dynamical systems [17-22]. In particular, [17] uses
graph theory to derive expressions for the component forces at the
ends of individual structural members. In [18-20], the dynamic
equations of motion for a class of rigid body systems are derived
using graph-theoretic tools.

In the present paper, we use graph-theoretic results to examine
the zeros and relative degree of collinear lumped-parameter struc-
tures. In particular, we consider lumped-parameter structures in
which each mass has a single degree of freedom with arbitrary
spring and dashpot connections to the remaining masses. For these
structures, we show that every SISO force-to-motion transfer
function has no positive (real open-right-half-plane) zeros. Fur-
thermore, we show that every SISO force-to-position transfer
function of a spring-connected collinear lumped-parameter struc-
ture has no non-negative (real closed-right-half-plane) zeros. As a
consequence of this result, the step response of every asymptoti-
cally stable SISO force-to-position transfer function of a spring-
connected collinear lumped-parameter structure does not exhibit
initial undershoot. We also derive a formula for the relative degree
of every SISO force-to-motion transfer function. The formula de-
pends on the placement of springs and dashpots, but does not
depend on the specific values of the spring constants and damping
coefficients.

As a special case of the general collinear lumped-parameter
structure, we consider asymptotically stable serially connected
collinear lumped-parameter structures. More specifically, we ana-
lyze the zeros and relative degree of a string of masses intercon-
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Fig. 1 4-mass structure with spring interconnections

nected by springs and dashpots. This structural configuration ap-
proximates a beam in compression, and is also useful for
modeling the dynamics of a string of vehicles with pairwise con-
trol loops and for determining string stability for a convoy of
automated vehicles [23-25]. In this special case, we show that all
SISO force-to-position transfer functions of serially connected
collinear lumped-parameter structures are minimum phase, that is,
have neither real nor complex zeros in the closed-right-half-plane.
We also obtain a specialization of the expression for the relative
degree.

The contents of the paper are as follows. In Sec. 2, we present
some basic graph-theoretic results used in later sections to analyze
collinear lumped-parameter structures. In Sec. 3, we review the
dynamics and stability properties of an N-mass collinear lumped-
parameter structure. Section 4 presents results concerning the ex-
istence of positive and non-negative zeros in collinear lumped-
parameter structures. The existence of complex non-minimum
phase zeros in collinear lumped-parameter structures is considered
in Sec. 5. Section 6 examines initial undershoot in collinear
lumped-parameter structures, and an example is given in Sec. 7.
In Sec. 8, we derive an expression for the relative degree of a
SISO force-to-position transfer function. In Sec. 9, we consider
the zeros and relative degree of asymptotically stable serially con-
nected collinear lumped-parameter structures. Conclusions are
given in Sec. 10. For the remainder of this paper, we only consider
collinear lumped-parameter structures and refer to them as
lumped-parameter structures.

2 Graph Theory Preliminaries

There is a natural relationship between lumped-parameter struc-
tures and graphs. The masses of a lumped-parameter structure
represent the vertices of a graph, while the springs and dashpots
connecting the masses represent the edges of the graph. For ex-
ample, the 4-mass structure in Fig. 1 is represented by the
4-vertex graph in Fig. 2. Furthermore, the stiffnesses and damping
coefficients can determine the weights associated with the edges.
For example, the stiffnesses of the springs in Fig. 1 are the

my mao

Fig. 2 4-vertex graph representing the 4-mass structure
shown in Fig. 1
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weights associated with the edges in Fig. 2. In this section, we
present definitions and basic results that are useful for analyzing
the zeros of lumped-parameter structures.

Let V={v,,v,,...,un}. The N elements of V are vertices, and V
is the vertex set. Define ££{{v;,v;}:v;,v;€V,i#j}, and let
ECZE. The elements of E are edges, and E is the edge set. Since
the elements of E are sets and thus are unordered, the edges do not
have directions. Thus all graphs considered in this paper are un-
directed graphs. Furthermore, we do not consider multiple edges
since the elements of E are distinct, and we do not consider loops
since, for all i=1,...,N,{v;,v;} € E. The restriction to nonre-
peated edges presents no loss of generality when analyzing
lumped-parameter structures since multiple springs or dashpots
connecting a pair of masses can be replaced by a single equivalent
spring or dashpot. As discussed later, springs and dashpots are
viewed as edges of different graphs.

DEFINITION 2.1. G=(V,E) is a graph. If, in addition, for all
{vi,vj} € E, a weight w; ;>0 is assigned to the edge {v;,v}}, then
G is a weighted graph.

DEFINITION 2.2. Let G=(V,E) be a graph, and let Uny>Un, € V be
distinct. A walk of length I from v, to v, is the (I+1)-tuple
UngsUnys - sU) €VX o XV such  that,  for —all i
=1,2,...,1, ,{v,li_l,v,,i}eE.

DEFINITION 2.3. The graph G=(V,E) is connected if, for all
distinct «, B €V, there exists a walk between a and .

The weighted adjacency matrix Ag e RNV associated with the
weighted graph G=(V,E) is defined as

0w wi WinN
Wi 0 Wa3 Wa N
A
Ag=| ws1 wzp O Wi N
_WN,] WN,Z WN,3 e O

where, for all {v;,v;} € E, w; j=w;;>0 is the weight assigned to
the edge {v;,v;} and, for all {v;,v;} & E, w; ;=0.

The Laplacian matrix Lg e RNXN associated with the weighted
graph G=(V,E) is defined as

Lg= Dg-Ag

where

N N-1
Dg £ diag(z Wi . ,E WN,i)
i=2 i=1

The following definitions for Z-matrices and M-matrices can be
found in [26].

DEFINITION 2.4. A € R"™" is a Z-matrix if every off-diagonal
entry of A is nonpositive.

DEFINITION 2.5. A € R"*" is an M-matrix if A can be written as
A=al-B, where B € R"*" is a non-negative matrix and a € R is
greater than or equal to the spectral radius of B.

N N
E Wois E W3 -+

i=1,i#2 i=1,i#3
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Since the spectral radius of B is also an eigenvalue of B, it
follows immediately that the M-matrix A is nonsingular if and
only if a is greater than the spectral radius of B.

Next, we present two results concerning the Laplacian matrix.
These results can be found in [27, p. 144] and [28, Theorem 3.16],
respectively. In this paper, a matrix is positive semidefinite if it is
symmetric with all nonnegative eigenvalues. Furthermore, a ma-
trix is positive definite if it is symmetric with all positive eigen-
values.

LEMMA 2.1. The Laplacian matrix Lg is a singular, positive-
semidefinite M-matrix.

LEMMA 2.2. The graph G=(V,E) is connected if and only if its
Laplacian matrix Lg is irreducible.

The following result, which concerns nonsingular M-matrices,
is given by [26, Theorem 2.7].

LEMMA 2.3. Let Ay, € RNV be an irreducible Z-matrix. Then
Ay is a nonsingular M-matrix if and only if every entry, A;,,l is
positive.

The next result of this section, which follows immediately from
Lemmas 2.1-2.3, is used to analyze the zeros of lumped-
parameter structures.

LEMMA 2.4. Assume the graph G=(V,E) is connected. Then the
Laplacian matrix Lg is an irreducible, singular, positive-
semidefinite M-matrix. Furthermore, let D € R¥N, be positive
definite and diagonal. Then D+Lg is an irreducible, nonsingular
M-matrix, and thus every entry of (D+Lg)™" is positive.

Now, we present results regarding the weighted adjacency ma-
trices of two different graphs having the same vertex set; these
results are used to analyze the relative degree of the transfer func-
tions for lumped-parameter structures. Let £, C £ and E, C &, and
consider the weighted graphs G,=(V,E;) and G,=(V,E,). Let
Ag, e RNV and Ag, e RV*N be the weighted adjacency matrices
associated with the weighted graph G,=(V,E,) and G,=(V,E,),
respectively.

LEMMA 2.5. Consider the graph G,=(V,E,UE,), and let
UpysUn, €V be distinct. Then there exists a walk (v,,o,vnl, s Up,
of length | on the graph G, between Un, and U, if and only if

€£®[®1_1 "'®le,zo>0 (2.1)
where, for all i=1,...,l, ©;¢e RNXN satisfies
=Ag, if fv,,_»vn} € Ey and {v,_.v,} & E,

0.

i

=Ag2 lf {vni_lvvnl.} € E2 and {Unl._lavni} & El

E{Ag]»Agz} otherwise

Proof. We prove this result by induction on the length / of the
walk. First, assume that /=1. It follows from the definition of the
adjacency matrix that e:|A916"0>0 if and only if {v, v, }€E,
and eZIAgze,,O>0 if and only if {v, v, } € E,. Therefore, there
exists a walk of length 1 between Un, and v, if and only if
e,{l®len0>0.

Now, for induction, assume that the result holds for walks of
length [-1=1.

Next, we prove that the result holds for walks of length /. Note
that there exists a walk (vno,vn],... ,vnl) of length / between L
and U, if and only if there exists a vertex v, € V such that there
exists a walk (v,,,v,,, ...,0, ) of length [~ 1 between v,, and v,,,
and a walk (v,,v,,) of length 1 between v, and v;.

Since the result holds for walks of length of /-1, it follows that
there exists a walk (v, ,v,,....,v,) of length /-1 between v,
and v, and only if
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T
en[®l®l_l te @28’11 >0

Furthermore, there exists a walk of length 1 between Un, and Up,
and only if e:l®1en0> 0.

Therefore, there exists a walk (v,,v,,,..,v,) of length [ be-
tween v, and Uy, if and only if there exists a vertex vy €V such
that

) >0

(e:]@l@[—l T ®zenl)(efl®1eno
Furthermore, note that
N
OO, 60 =E(T®...@ )el®e,)
€n,2191-1 1€n, En 2l 261\ € 1€y,
k=1
Thus, e,{lﬁ)l- '-®1e,10>0 if and only if there exists a k
e{l,...,N} such that (e,?@,-~-®zek)(e,{®,eno)>0.
Therefore, there exists a walk (v, 2Un,ys ,..,v,,l) of length / be-
tween v, and v, if and only if (2.1) is satisfied. d
The final result of this section is the contrapositive of the nec-
essary condition of Lemma 2.5.
COROLLARY 2.1. Consider the graph G,=(V,E|\UE,), and let
UnyUn, € V be distinct. For all i=1,...,1, let E;;je{E,Ey}. As-

sume that there does not exist a walk (v,,o,v,,l, ,vnl) of length |
between v, and v, such that, for all i=1,....1, {v, .v,}
€ E[;}. Then
e:[@l@[_l e @16,,0 =0
where, fori=1,...,l,
@ ~ Agl lf E[i]zEl
! Ag, if Ejn=E,

3 Dynamics and Stability of Lumped-Parameter
Structures

In this section, we present the dynamics of lumped-parameter
structures. Specifically, we consider mass-spring-dashpot struc-
tures in which every pair of masses may or may not be connected
by a spring, a dashpot, or a spring and dashpot in parallel. In
addition, each mass may or may not be connected to a fixed wall
by a spring, a dashpot, or a spring and dashpot in parallel. The N
masses of the structure are denoted by m, ... ,my. For all distinct
i,j=1,...,N ,Cij is the damping coefficient of the dashpot con-
necting the ith and jth masses, and k; ; is the stiffness of the spring
connecting the ith and jth masses. If ¢; ;=0 or k; ;=0, then the ith
and jth masses are not connected by a dashpot or a spring, respec-
tively. For all i=1,...,N,c; and k; are the damping coefficient and
spring stiffness, respectively, of the dashpot and spring connecting
the ith mass to the wall. If ¢;=0 or k;=0, then the ith mass is not
connected to the wall by a dashpot or a spring, respectively. For
all i=1,...,N,q,(t) is the position of the mass m;, relative to an
equilibria position, and u,() is the force acting on the mass m;.

We consider lumped-parameter structures that consist of physi-
cal masses, springs, and dashpots, that is, the system must have
positive masses, non-negative damping coefficients, and non-

negative spring stiffnesses. Specifically, for all i=1,...,N, m;
>0 and c¢;,k;=0 and, for all distinct i, j=1,... N,c;j=0, and

For N=3, Figure 3 shows a 3-mass structure with all possible
spring and dashpot connections. Figure 4 shows the possible
spring and dashpot connections for the nth mass in an N-mass
lumped-parameter structure.

The dynamics of the N-mass lumped-parameter structure are
given by
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Fig. 3 3-mass structure with all possible spring and dashpot connections

kp
" M(t) + C4(1) + Kq(t) = u(z), (3.1) —/\/\/¥‘ N
M & diag(my, ... ,my) (3.2) : N
CAC,+L¢ (3.3) _/\/\/\_j_ _/\/\/\—_j_
K2K,+Lg (3.4) Cl’." Moy Cnont1
q(1) £ [qi(1) -+~ qu(0)]" (3.5) . )
a .. T nobn N
-~ u(t) = [uy(2) - up(r)] (3.6) EAVAVAS _/\/cn\N/¥

C, 2 diag(cy, ....cy), K, = diag(k,, ....ky) (3.7)

N dn

22 ‘i Ta2 “as e Taw Fig. 4 Spring and dashpot connections to the nth mass of an

= . N-mass structure

—C2’| E C2.j —C2’3 e _CZ‘N

j=1j#2
Lo2 N (3.8) the wall, and a nondiagonal component L, which results from the
-3 -3 2 3 —Cy dashpot interconnections among the N masses. Similarly, the stiff-
Jj=1,j#3 ness matrix K has a diagonal component K,, and a nondiagonal
component L. This distinction will be important in the following
Mol section when we associate several graphs with the lumped-
parameter structure.

A ~CN2 TEN3 E ENj Next, we review the stability properties of lumped-parameter
L J=1 _ structures. The lumped-parameter structure (3.1)—(3.9) can be
o - written as the first-order linear state-space system

N

\=Ax+B 3.10
Ekl,j —kio —kiz ... —kiy rE AT ou (3.10)
j=2
N g=Cyx (3.11)
—koy Xk —kay . —kay where
J=Lj#2 0 Iy 0
L L
Lké N (39) A= |:—M_IK —M_IC:| B= |:M_1 :| (312)
ko cha Xk —hay
J=1#3 ‘ . c,2[1y 0] (3.13)
' N_l' and x2[q; gy ¢y gy ]". First, we characterize the eigenval-
ues of A in terms of the mass, stiffness, and damping matrices.

— k1 —kya —kns E k. This result can be found in [29, p. 203].

J=1 Lemma  3.1.  Consider the lumped-parameter system

Note that the damping matrix C has a diagonal component C,,,  (3.10)-(3.13) and let s € C. Then det(sI-A)=0 if and only if
which represents the dashpots connecting masses m,, ... ,my to  det(s>M+sC+K)=0.
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The following stability result is a direct consequence of [30,
Theorem 1].

LEMMA  3.2.  Consider the Ilumped-parameter
(3.10)—(3.13). Then the following statements are valid:

system

(i) A is Lyapunov stable if and only if K+C is positive defi-
nite.

(i) A is asymptotically stable if and only if (KM~"',C) is con-
trollable and K is positive definite.

4 Positive Zeros of Lumped-Parameter Structures

In this section, we analyze the zeros of lumped-parameter struc-
tures using the graph-theoretic tools presented in Sec. 2. To aid in
our analysis, we associate three weighted graphs with the lumped-
parameter structure (3.1)—(3.9). The masses are the vertices of the
graphs, and the edges of the graphs are the dashpots, the springs,
or the springs and dashpots. Furthermore, the weights associated
with each edge are functions of the damping coefficient and the

spring stiffness. Define the vertex set V= {m,,...,my} and the
edge sets
Ec&{{m,mp}:c;;>0, wherei,j=1,....,N and i# j}
Ex = {{m,m}:k;;>0, wherei,j=1,....,N and i#j}

Define the weighted graphs G2 (V,,Ec), where, for all
{m;,m;} € Ec, the weight c; ; is assigned to the edge {m,,m;}, and
Gk = (V. Eg), where, for all {m;,m;} € Eg, the weight k; ; is as-
signed to the edge {m;,m}.

By examining (3.8) and (3.9), it can be seen that L and Ly are
the Laplacian matrices associated with G- and Gy, respectively.
Then Lemma 2.1 implies that L. and Ly are positive-semidefinite
M-matrices. Since C,, and K,, are diagonal positive-semidefinite
matrices, we conclude that the damping matrix C=C,,+L and the
stiffness matrix K=K, +Lg are positive semidefinite. We have
thus proven the known fact that lumped-parameter structures of
the form (3.1)—(3.9) have positive-semidefinite damping and stiff-
ness matrices.

A notion of structural connectedness is needed to analyze the
zeros of lumped-parameter structures. Roughly speaking, a
lumped-parameter structure is structurally connected if it is a
single structure rather than two or more disjoint structures. To
formalize this idea, define the edge set Ecx2 EcU Ex.

DEFINITION 4.1. The lumped-parameter structure (3.1)—(3.9) is
structurally connected if the graph Geg2 (Vay,Eck) is connected.

Definition 4.1 intuitively implies that (3.1)—(3.9) is structurally
connected if and only if the force-to-motion transfer functions
between every pair of masses is nonzero. Next, we characterize
structural connectedness in terms of the damping and stiffness
matrices.

LEMMA 4.1. The lumped-parameter structure (3.1)—(3.9) is
structurally connected if and only if K+ C is irreducible.

Proof. Define the weighted graph Gex2 (V). Eck), where, for
all {m;,m;} € Ecg, the weight k; j+c;; is assigned to the edge
{m;,m;}. By examining (3.8) and (3.9), it follows that Lg+L is
the Laplacian matrix associated with Gx. Lemma 2.2 implies that
Lg+Lc is irreducible if and only if Gk is connected. Since K,
+C,, is diagonal, it follows that K+ C=Lg+L-+K,,+C,, is irre-
ducible if and only if Lg+L( is irreducible. Therefore, K+C is
irreducible if and only if Gk is connected. O

We now present our main result on the zeros of lumped-
parameter structures.

THEOREM 4.1. Assume that the system (3.10)—(3.13) is structur-
ally connected. Then, for all i,j=1,...,N, the transfer function
from u(t) to q{t) has no positive zeros. If, in addition, the graph
Gk is connected and K is positive definite, then, for all i,j
=1,...,N, the transfer function from uyt) to qt) has no non-
negative zeros.

Journal of Dynamic Systems, Measurement, and Control

Proof. The transfer function from the force input u; applied to
mass m; to the position g; of mass m; is

T _
G, (s) 2] Cy(sI-A) 'Bej

where, for i=1,...,N,e; is the ith column of /. Let z>0. For all
i,j=1,...,N,

G,‘J(Z) = e;rcp(ZI_A)ilBej = [elT 0]
zl -1 - 0
X[~ - » (4.1)
MK zZI+M C M e;

Since z>0, M is positive definite, and C and K are positive
semidefinite, it follows that z/ and (1/z)M~' (Mz?>+Cz+K) are
nonsingular. Hence, Proposition 2.8.7 of [29] implies that

[zl "y }“
MK zI+M~'C
B [ﬁ ()Nl + M\ C+ M7 K(zl) ™)™ ]

# #
2 —1 -1 -1
=[1; (PI+M C;+M K) ] 42)

where # denotes an inconsequential entry. Combining (4.1) and
(4.2) yields

S e K

# # M"lej
=el (M2 + Cz + K)_]ej
= eiT[(MZ2 + CWZ + Kw) + (LCZ + LK)]ilej (43)
Next, it follows from (3.8) and (3.9) that Loz + Ly is the Laplac-
ian matrix of the weighted graph Gex2 (V. Eck), Where, for all
{m;,m;} € E, the weight c; z+k;; is associated with the edge
{m;,m;}. Furthermore, Mz?+C,z+K,, is a diagonal positive-
definite matrix. Since Geg is connected and Mz*>+C,z+K,, is a
diagonal positive-definite matrix, Lemma 2.4 implies that (Mz>
+C,z+K,)+(Lcz+Lg) is an irreducible, nonsingular M-matrix
and every entry of (Mz?+Cz+K)'=[(Mz?+C,z+K,)+(Lcz
+LK):|‘1 is positive. Therefore, for all i,j=1,...,N, it follows
from (4.3) that G, ;(z) >0, and thus z is not a zero of G ;(s).
Now consider the case z=0. It follows from (4.1) that
0 -1

G j0)=[e] 0:||:M—]K M—IC] [qu.

Since M>0 and K>0 it follows that M~'K is nonsingular.
Hence, Fact 2.15.2 of [29] implies that

] (4.4)

[l I
MKk M'c| |4 ¢

Combining (4.4) and (4.5) yields

(4.5)

Gi,j(O) = ezTK_le_i = etr(Kw + LK)_lej

Since G is connected, it follows from Lemma 2.1 and Lemma 2.2
that Lg is an irreducible, singular, M-matrix. Since K,, is diagonal,
it follows that K=K, +Lg is an irreducible M-matrix. Further-
more, since K is positive definite, it follows that K is an irreduc-
ible, nonsingular, M-matrix. It then follows from Lemma 2.3 that
every entry of K~! is positive. Therefore, G; j(0)=¢;Ke; is posi-

tive and z=0 is not a zero of G, ;(s). |
COROLLARY 4.1. Assume that the system (3.10)—(3.13) is struc-
turally connected. Then, for all i,j=1,...,N, the transfer func-

tions from u(t) to q,(t) and from u,(t) to §(t) have no positive
zeros.
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5 Complex Nonminimum Phase Zeros of Lumped-
Parameter Structures

Theorem 4.1 and Corollary 4.1 guarantee that every force-to-
motion transfer function of a structurally connected lumped-
parameter structure has no positive zeros. However, these results
do not guarantee that every force-to-motion transfer function is
minimum phase; the force-to-motion transfer functions can have
complex zeros in the open right half plane. In fact, for N=3, there
exists lumped-parameter structures (3.1)—(3.9) that are structurally
connected and have a nonminimum phase force-to-motion transfer
function. Specifically, consider the 3-mass lumped-parameter
structure in Fig. 3, where m;=m,=ms=1 kg, k;=k3=0 kg/s?, k,
=k =k 3=ky3=5 kg/s?, c1=cy=c3=cy=c3=0kg/s, and c; 3
=5 kg/s. This system is structurally connected since the graph
Gk is connected. Furthermore, the transfer function from u,(7) to

q5(1), given by

553+ 557 + 755 + 100
5%+ 10s% + 35s5* + 200s* + 32552 + 2505 + 375
is nonminimum phase. The zeros of Gj;(s) are approximately
0.150+;3.92 and -1.30. In fact, for all N=3, there exists a
lumped-parameter structure (3.1)—(3.9) that is structurally con-

nected and has a nonminimum phase force-to-motion transfer
function.

G3,1(S) £

6 Initial Undershoot in Lumped-Parameter Structures

Initial undershoot describes the qualitative behavior of the step
response of a transfer function. A system has initial undershoot if
the step response initially moves in the direction that is opposite
to its asymptotic value. We now define initial undershoot and state
a result classifying the existence of initial undershoot. The defini-
tion and result are given in [31-33].

DEFINITION 6.1. Let H(s) be a single-input single-output asymp-
totically stable transfer function with relative degree r>0. Let
v(t) be the step response of H(s). Assume that H(0) # 0. Then the

step response of H(s) has initial undershoot if y?(0)lim, ..y (7)
<0.

LEMMA 6.1. Let H(s) be a single-input single-output asympitoti-
cally stable transfer function with relative degree r>0. Assume
that H(0) # 0. Then the step response of H(s) has initial under-
shoot if and only if H(s) has an odd number of positive zeros.

The main result of this section addresses the existence of initial
undershoot in a force-to-position transfer function of an asymp-
totically stable lumped-parameter structure.

THEOREM 6.1. Assume that the system (3.10)—(3.13) is structur-
ally connected. Furthermore, assume that A is asymptotically
stable and the graph G is connected. Then, for all i,j=1,...,N,
the step response of the transfer function from ut) to q(t) does
not exhibit initial undershoot.

Proof. Let G, j(s) be the transfer function from the force input
on mass m; to the position of mass m;. Since A is asymptotically
stable, Lemma 3.2 implies K>0. It follows from Theorem 4.1
that G, ;(s) has no non-negative zeros. Therefore, G, ;(0) #0 and
G, ;(s) has no positive zeros. Since A is asymptotically stable,
G, j(s) is asymptotically stable. Since G, ;(s) is an asymptotically
stable transfer function, G;;(0)#0, and G, (s) has no positive
zeros, it follows from Lemma 6.1 that G,-,j(s) does not exhibit
initial undershoot. (|

7 Example: 3-Mass Lumped-Parameter Structure

Consider the structurally connected 3-mass structure shown in
Fig. 3 whose dynamics are given by (3.1)—(3.9), where N=3. For
this example, the masses are m;=m,=m3=5 kg; the spring stiff-
nesses are ky=1 kg/s%, k,=2 kg/s?, k=3 kg/s?, ky,=12 kg/s?,
ki13=13 kg/s?, and k,3=23 kg/s% and the damping coefficients
are ¢;=10kg/s, ¢,=20kg/s, ¢3=30kg/s, ¢;,=120 kg/s, c;3
=130 kg/s, and ¢, 3=23 kg/s.

The transfer functions from u; to ¢y, from u; to ¢,, and from u;
to g3 are

0.25* + 30.45> + 734.245% + 146.24s5 +7.312

Gl,l(S) £

$0+2045° + 10328.45* + 39813.65° + 11428.68s” + 1132.565 + 37.752

4.85% +614.085% + 122.72s + 6.136

Gz,l(S) £

$0+2045° + 10328.45* + 39813.65° + 11428.68s> + 1132.565 + 37.752

5.253 + 606.12s% + 121.125 + 6.056

G3,1(S) £

respectively. The zeros of G (s) are approximately —121.9,
-29.86, —0.1001, and —0.1003. The zeros of G, i(s) are approxi-
mately —127.7, —0.1000, and —0.1001. The zeros of Gj (s) are
approximately —116.4, —=0.1000, and —0.1001. Therefore, G (s),
G,(s), and G3(s) have no non-negative zeros as guaranteed by
Theorem 4.1. Furthermore, Theorem 6.1 implies that the step re-
sponses of Gy 1(s), G,(s), and G3 1(s) do not have initial under-
shoot. Figure 5 verifies that the step responses do not have initial
undershoot.

8 Relative Degree of Lumped-Parameter Structures

In this section, we analyze the relative degree of the lumped-
parameter structure (3.10)—(3.13). If we assume that (3.10)—(3.13)
is structurally connected, then the ith and jth masses are con-
nected by means of at least one sequence of springs and dashpots.
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$0+ 2045 + 10328.45* + 39813.65° + 11428.68s> + 1132.56s + 37.752

To calculate the relative degree of the transfer function from u j(t)
to ¢;(r), we consider all sequences of springs and dashpots that
connect m; to m;. Equivalently, we consider all walks on the graph
Gex=Va, Ecg) from m; to m;. For all i,j=1,...,N such that i

# j, define

;£ {w:w is a walk on Gy from m; to m;}

and, for all i=j=1,...,N, define Q,«,jé@.

Let w=(m, ,m, ,....m,) be a walk of length / on Gcx from
m,, to m, . Now, let nc(w) denote the number of edges in  that
are dashpots only, let ng(w) denote the number of edges in w that
are springs only, and let nqg(w) denote the number of edges in
that are springs and dashpots, that is,
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Fig. 5 The step responses of G, 1(s) (solid), G, (s) (dashed),
and Gj 1(s) (dotted) do not display an initial undershoot

1 !
ng(w) = E Bi nex(w) = E Yi

i=1 i=1

1
ne(w) = E Q;
i=1

where, for i=1,...,1,
it {m,,_.m,} € Ec and{m,_.m,} ¢ Eg

otherwise

if {m, _.m,} € Ex and {m, .m,} ¢ Ec

otherwise

{1, it {m,_.m,} € ExNE¢
Yi=

0, otherwise

The next result provides an expression for the relative degree of
the transfer function from u;(f) to g(r) and characterizes the sign
of the first nonzero Markov parameter (often called the high-
frequency gain).

THEOREM 8.1. Assume that the system (3.10)—(3.13) is structur-
ally connected. Then, for all i,j=1,...,N, the relative degree of
the transfer function from u(t) to q(1) is

rij 2 min [2ng(w) + ne(w) + neg(w)]+2 (8.1)
wel);;
Furthermore, for all i,j=1,...,N, the first nonzero Markov pa-
rameter H ’,;jé eiTCpA’ i~ Be ' of the transfer function from u(t) to
q,(t) is positive.
Proof. Let i and j be positive integers between 1 and N, and let
we();; be the minimizer in (8.1) so that r;;=2ng(w)+nc(w)

+ncg(w)+2. For all n=1,...,N,

0 I ™' o
A T an-l T
H,=e¢;C,A""'Be;=|e; 0][—M_IK —M_IC] [M_lej]
(8.2)
To prove this result, it suffices to show that H,, Hy,...,H

T i_l
=0 and H,.l_j>0.
Performing the matrix multiplications in (8.2) implies

T, ][ 0
H, =[el 0
where # denotes an inconsequential entry, I'; 20, I',£1, and, for

all n=3,...N,I',2-M"'CT’,_,—M~'KT',_,. By manipulating the
terms of (8.3), it follows that

] =eiTF,,M"ej (8.3)
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1 _
T
¢, ¢,

Nmgm;

H,=e/M™"T,M "¢, =

where fléO, fzél, and, for all n=3,... N,

fn £ an—l + an—Z

where P2 -M~"2CM~'? and Q& -M~"2KM~17,

Since I';=0, it follows that H,;=0. Since I';=1, it follows that
H,>0 if and only if i=j, which is equivalent to H, >0 if and only
if Qi,jz @ Thus, H2>0 if and Only if ri’j=2.

Now, consider the case in which (), ;# & and thus r; ;>2. Note
that P and Q can each be expressed as the sum of a weighted
adjacency matrix and a diagonal negative-semidefinite matrix, that
is,

(8.4)

PZAgC+DC (85)
Q=AgK+DK (8.6)
where
N N
cii ¢ Co i c
D% =—diag L4 —I’J-, 2 4 —2’1,.. ,—N
m j=2 my myp Jj=1,j#2 my my
N
> N
j=1,j=N "IN
. ki k k k
Dy =—d1ag(—1+ ki =2 = -
1 Jj=2 my mp j=1,j#2 my my

are diagonal negative semidefinite, Agc is the weighted adjacency
matrix associated with G, where, for all {my,,m,} € Ec, the
weight ¢, ./ \s“’mpmq>0 is assigned to the edge {m,,m,}, and Ag,
is the weighted adjacency matrix asMed with Gg, where, for
all {m,,m,} € Eg, the weight k, ,/\m,m,>0 is assigned to the
edge {m,,,m,}.
It follows from the recursion (8.4) that, for all n=3,...,N,
r = E' PPIQT1 -+ PPu-3Qn-3 PP (8.7)

where X’ denotes the sum over all distinct products such that
Dlsee sPnensqis---+qn3€10,1}  and E_;’:_lzpj+22';:_l3qj+2=n.
Combining (8.5)—(8.7) and performing the multiplications yields

— ’
T,=2 (Ag,+ D) (Ag + DM+ (Ag_+De)'(Ag,
!
+ D) H(Ag, + D)2 = D, ABLAY - ALSAG-AD + A,

(8.8)

where, for all n=3,...,N,
A, = 2 DIEIA&(. “A@’fA"gﬂle”gZ
+ 2 DPCID;I(I .. 'A%qud;BApdgz 4 -
!
+ 2 AZICD;I(I .. .Alé,gsAqd;.%Alégz 4o
+ E’ D‘é 1 D‘]I(] cen Diénf:i D?(g)*} Diénf'l
Since w is a minimizer of (8.1), there does not exist a walk @

€;; such that 2ng(®)+nc(®)+nc(®) <2ng(w)+nc(w)

+ncg(w). Thus, Corollary 2.1 implies that, for all n=3,....r;;
-1,
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ClAGLAY -+ A-AL-A2e; =0 (8.9)
where pi,....pu2.q1s - qu3 €{0, 1} satisfy 277 1pj+22” 14,

+2=n. By combining (8.8) and (8.9), it follows that for all n

=3,...,r—1,
= _ T
e;le;=ei\e;
Next, note that every term of eiTA,,ej of the form
T q1. .. 1)Pn-3)4n-3Pn-2, . i ;
e; D{!DY - --Dn=3D{r-3Din=2¢; is zero because D¢ and Dy are di-

agonal and i # j. The remaining terms of e[-TAnej have the form of
(8.9) where a negative semidefinite matrix D, or Dy may appear
between the matrices Ag,. and Ag Therefore, Lemma A.1 and
(8.9) imply that for all n=3,. ~1,elA, e;=0. Thus, for all
n=3,...,r,,J—l,eiTl:nej=0, which 1mp11es that H,=0.

Now, it suffices to show that H,i.j>0. Again, note that every
term of e/ A,e ; of the form eiTDIélD}]g -+ Dp=3DP=3D2e is zero
because D and D are diagonal and i # j. The remaining terms of
e; A, e; have the form of (8.9) where a negative semidefinite ma-
tr1x DC or Dg may appear between the matrices Ag and Ag, .
Therefore, Lemma A.1 and (8.9) imply that ¢, A G =0. There-
fore,

T_ !
e; r’i,;efzz e
Furthermore, note that each product eiTA’é1 Al -
Yk

is non-negative.
Since there exists a walk @ such that r;;=2ng(w)+nc(w)

JAGLAG - ApAg=AG=e;  (8.10)

AGTAGSAG e

+ncg(w)+2, it follows from Lemma 2.5 that there exists
PseeosPr 25q1s 54, _3€{0,1} such that E"_ 14 +2§‘,/w1 q;
=r;j—2 and

T Dp—. 13 -2
el ABLAY -+ Al AG-AD2e; > 0

Therefore, at least one term in the summation (8.10) is positive.

Thus, e; T, ¢;>0, which implies that H, >0. O

Notlce th]at the formula for relative degree provided by Theo-
rem 8.1 does not depend on the specific values of the masses,
spring constants, or damping coefficients. In fact, the relative de-
gree depends only on the placement of the springs and dashpots.

9 Zeros and Relative Degree of Serially Connected
Lumped-Parameter Structures

In this section, we consider the special case of a serially con-
nected structure in which adjacent masses are connected by
springs and dashpots, but nonadjacent masses are not connected to
each other. This structure is shown in Fig. 6. The dynamics of the
N-mass lumped-parameter structure shown in Fig. 6 are given by

M(1) + Cq() + K, (1) = u(r) (9.1)
where
M £ diag(m,, ... ,my) 9.2)
q(1) £ [q:(1) av@ 1" (9.3)
U1 Uo UN
k k kn—
v IO - I - s AR
[&] m C12 ma CN—-1,N my CN
— e —j— ——

}_7]1 “Ga }_'qn

Fig. 6 Serially connected lumped-parameter structure
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u(t) = [uy (1) uy(r) 1" 9.4)
and
k1+k12 _kl,2 0 e 0 O
—kip kigtkyy  —kyzoo o 0 0
K é 0 - k2’3 k2,3 + k3,4 te e 0
0 0 0 —kyan kyointky
9.5)
Cl+Cl,2 _Cl,2 0 T 0 0
—Cip CiptC3  —C63 0 0 0
C‘é 0 —C3 C2,3+C3,4 te e 0
0 0 0 —CN-1N CN-inNtCN

(9.6)

We assume that all spring constants and damping coefficients
appearing in (9.5) and (9.6) are positive. It follows from [29, Fact
8.7.35] that C and K are positive definite. The lumped-parameter
structure (9.1)—(9.6) can be written as the first-order linear state-
space system (3.10)—(3.13). Since C and K are positive definite, it
follows from Lemma 3.2 that A is asymptotically stable.

For all i,j=1,...,N, the transfer function from the force input
on mass m; to the position of mass m; is

G, ,(s) £ e[ C,(sI—A)'Be;

Now, we present our main result on the zeros of serially con-
nected lumped-parameter structures.

THEOREM 9.1. For all i,j=1,...,N, G,-,j(s) has no closed-right-
half-plane zeros.

Proof. Tt follows from Theorem 4.1 that G, ;(s) has no non-
negative zeros. Therefore, it suffices to consider complex non-
minimum phase zeros. Let z € C such that Re z=0 and Im z#0.
For all i,j=1,...,N,

G, (z) =] Cplzl = A)'Be;

| . k)
=l ol 7 | C 9.7)
MK d+MC| (Ml

Since z# 0, M is positive definite, and C and K are positive defi-
nite, it follows that z/ and (1/z2)M~'(Mz?+Cz+K) are invertible.
Hence, Proposition 2.8.7 of [29] implies that

zl -1 Tl I+ M'Cz+ M)
MK Z+M'C| |4 #
(9.8)
where # denotes an inconsequential entry. Combining (9.7) and
(9.8) yields

G (2) =€/ (M + Cz+K)'e;.
Next, we show that the leading (and trailing) principal subde-
terminants of Mz>+Cz+K are nonzero. Let v be an integer be-

tween 1 and N, and let M, C, and K be the vX v leading (or
trailing) principal submatrices of M, C, and K, respectively, so

that Mz>+Cz+K is a leading (or trailing) principal submatrix of
Mz2+Cz+K. Note that 1\71, 6‘, and K have the same form as M, C,

and K. More precisely, M R C‘, and K are the mass, damping, and
stiffness matrices of a serially connected lumped-parameter struc-
ture with v masses. Therefore, M, C, and K are positive definite.

Lemma 3.2 implies that
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— . 0 I
A= _
-M'K -MC
is asymptotically stable, and thus det(z/—A)# 0. Then, Lemma

3.1 implies that det(Mz2+Cz+K) # 0. Therefore, the leading (and
trailing) principal subdeterminants of Mz?+Cz+K are nonzero.
Furthermore, Mz*>+Cz+K is a tridiagonal matrix all of whose
superdiagonal and subdiagonal entries are nonzero. It thus follows
from Lemma B.1 with A=Mz>+Cz+K that every entry of (Mz>
+Cz+K)™" is nonzero. Hence, G,-,j(z)=e[-T(Mz2+Cz+K)‘lej#O,
and thus, z is not a zero of G ;(s). O

The next result, which follows immediately from Theorem 8.1,
provides a simple formula for the relative degree of G, (s) for
serially connected structures.

THEOREM 9.2. For all, i,j=1,...,N, the relative degree of
G, j(s) is

A . .

r[’j=|l—]|+2
Furthermore, for all i,j=1,...,N, the first nonzero Markov pa-
rameter HrijéeiTCpA’i».f‘lBej of G, j(s) is positive.

10 Conclusions

This paper showed that every SISO force-to-motion transfer
function of a lumped-parameter structure has no positive (real
open-right-half-plane) zeros. In addition, every SISO force-to-
position transfer function of a spring-connected lumped-parameter
structure has no nonnegative (real closed-right-half-plane) zeros.
As a consequence, the step response of every asymptotically
stable SISO force-to-position transfer function does not exhibit
initial undershoot. In addition, we obtained a formula for the rela-
tive degree of the SISO force-to-motion transfer functions. This
formula depends on the placement of springs and dashpots, but
does not depend on the specific values of the spring constants and
damping coefficients. Finally, we showed that every SISO force-
to-position transfer function of a serially connected lumped-
parameter structure is minimum phase.

Appendix A

LEMMA A.1. Let X,X € RNV pe non-negative. Let pq, ...
and py, ...

DI
,p; all be non-negative integers, and let Dy, ...D

e RYN and Dy, ... ,l_)l e RY*N ull be diagonal positive or nega-
tive semidefinite. Assume that

(A2)

Proof. It follows from (A1) that tr(XP1XP1XP2XP2- -~X”’)_(ﬁ/eiejT)
=0. Since X and X are non-negative, it follows that
XPIXPIXP2XP2 - -Xp’)?ﬁle,-ejT has all zero entries along the diagonal.
Since D;is diagonal positive (or negative) semidefinite, it follows
that Dlxpl)?ﬁlxm)?@-~-X”1)?’7/e,-ejT has all zero entries along the
diagonal and is non-negative (or nonpositive). Thus
tr(DIXpl)?’ﬂXm)?EZ-~-X1”)?E’e,~e}-r)=0, which implies tr(XP1XP2XP2
~XPiXPie;e[ D XP1)=0. Since XPIXP2XP2---XPIXPle;e[D\XP1 s
non-negative (or nonpositive), it has all zero entries along the
diagonal. Since D is diagonal positive (or negative) semidefinite,
it follows that D, X71XP2XP2- - -Xpl}?ﬁleiejTDlX” I has all zero entries
along the diagonal and is non-negative (or non-negative).

Continuing with this analysis implies that
)?F/giejTD]xmﬁ])?1711)2)(17252)?172. --D;XP! has all zero entries along
the diagonal. Then since D; is diagonal, it follows that
ﬁlfﬁleieiTDIXPlﬁlfﬁlDzXWﬁz)?ﬁZ- DX has all zero entries
along the diagonal. Therefore,
tr(Bl)?ﬁleiejTD1Xp'[_)1)?171D2Xp252)?ﬁz' : -DZXPI) =0, which lmplles
(A2). d

ejTDlxplﬁl)?ﬁ]szﬂzﬁz)?ﬁz .. Dlxﬂzﬁl)_(mei =0

Appendix B

LEMMA B.1. Let A € C"" pe tridiagonal, and assume that ev-
ery entry of the superdiagonal and subdiagonal of A is nonzero.
Furthermore, assume that every leading principal subdeterminant
and every trailing principal subdeterminant of A is nonzero. Then
every entry of A”' is nonzero.

Proof. Let
a; b
¢y a; by
¢ az bs
A= o
Cp—2 dp-| bn—l
Cp-1 a,

For i,j=1,...,n, et A denote the (i,)) ent-ry of A. Since
(A j=(1/det A)(-1)"* det A[; ;1 where A[;,q is the cofactor
of A(; ;). by assigning A is nonsingular, it suffices to show that the

Txep 1 YP1YP2XP2 « oo XPIXPlp. — K .
e; XPIXPIXP2X XViXPle; =0 (A1) determinant of every cofactor is nonzero.
Then Assume that i=j, and write
- -
a; b
c
aj b,
Ciop aiy biy
¢ Ay by
A= ¢j3 aj2 bjo
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Cjioy A
cjo1| b;
Ajy
Cjr1 bys
Ay bn—l
c a
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where the horizontal line shows where the ith row has been re-
moved, and the vertical line shows where the jth column has been
removed. Therefore,

Qy Qp 0
det A[i,j] =det| O sz 923 = (det Q] 1)(det sz) (det 933)
(B1)
where
a; b
Q0,2 €l e (l=1xG-1)
aj biy
Cia Qi
0,2 e CU-DXG-)
0 O
b,_, 0 - 0

922 = Cj_3 Llj_z bj—Z € ‘C(i_i)x(j_i)
Cj,z aj,l
Cj-1
00 --0
02 e (U-Dx(n=j)
by 0 = 0
Ajy bj+l
033 A Cj+l c C(n—j)X(n—j)
[ bn—l
Cn-1 ay

Since (); is a leading principal submatrix of A and ()33 is a
trailing principal submatrix of A, it follows that det {);; #0 and
det Q33 #0. Furthermore, det{),,#0 since )y, is an upper-
triangular matrix with nonzero diagonal entries c;, ...,c;_;. Since
det Q,; #0, det Q,, # 0, and det Q33 # 0, it follows from (B1) that
det 'A[I,]] #0.

Next, assume that i>j. Then

ﬂll 0 0
det Ap; ;= det Q, O, 0 |=(det ﬁl ) (det ﬁzz)(det (_);3)
0 Qs QO

where Q,, is a leading principal submatrix of A, Q45 is a trailing

principal submatrix of A, and ,, is a lower-triangular matrix
with nonzero diagonal entries. Thus, for i > j, det A[,-, Nika 0. There-
fore, for i,j=1,...,n, det Aj; 770, and every entry of Al s
nonzero. O
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