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We augment retrospective cost adaptive control (RCAC) with auxiliary nonlinearities to address a command-following
problem for uncertain Hammerstein systems with possibly non-monotonic input nonlinearities. We assume that only one
Markov parameter of the linear plant is known and that the input nonlinearity is uncertain. Auxiliary nonlinearities are used
within RCAC to create a globally non-decreasing composite input nonlinearity. The required modelling information for the
input nonlinearity includes the intervals of monotonicity as well as values of the nonlinearity that determine overlapping
segments of the range of the nonlinearity within each interval of monotonicity.

Keywords: adaptive control; Hammerstein system; uncertain input nonlinearity; command-following problem

1. Introduction

A Hammerstein system consists of linear dynamics pre-
ceded by an input nonlinearity as considered in Haddad
and Chellaboina (2001), Zaccarian and Teel (2011), and
Giri and Bai (2010). This nonlinearity may represent the
properties of an actuator, such as saturation to reflect mag-
nitude restrictions on the control input, dead zone to rep-
resent actuator stiction, or a signum function to represent
on–off operation. The ability to invert the input nonlinearity
is often precluded in practice by the fact that the nonlinear-
ity may be neither one-to-one nor onto, and it may also be
uncertain.

If the input nonlinearity is uncertain, then adaptive con-
trol may be useful for learning the characteristics of the
nonlinearity online and compensating for the distortion that
it introduces. Adaptive inversion control of Hammerstein
systems with uncertain input nonlinearities and linear dy-
namics is considered in Kung and Womack (1984a, 1984b)
and Tao and Kokotović (1996).

In the present paper, we apply retrospective cost adap-
tive control (RCAC) along with auxiliary nonlinearities that
account for the presence of the input nonlinearity. RCAC is
applicable to linear plants that are possibly Multiple-input
multiple-output (MIMO), non-minimum phase (NMP), and
unstable as shown in Venugopal and Bernstein (2000),
Hoagg, Santillo, and Bernstein (2008), Santillo and Bern-
stein (2010), Hoagg and Bernstein (2010, 2011, 2012), and
D’Amato, Sumer, and Bernstein (2011a, 2011b). RCAC
relies on the knowledge of Markov parameters and, for
NMP open-loop unstable plants, estimates of the NMP ze-
ros. This information can be obtained from either analytical

∗Corresponding author. Email: dsbaero@umich.edu

modelling or system identification, see Fledderjohn, Holzel,
Palanthandalam-Madapusi, Fuentes, and Bernstein (2010).
As shown in D’Amato et al. (2011a), the Markov parame-
ters provide an approach to matching the phase of the plant
at the frequencies present in the command and disturbances.
Alternative phase-matching techniques are given in Sumer,
Holzel, D’Amato, and Bernstein (2012).

To address input nonlinearities, we make no attempt to
identify or invert the input nonlinearity. The purpose of the
auxiliary nonlinearities is to ensure that RCAC is applied
to a Hammerstein system with a globally non-decreasing
composite input nonlinearity. In particular, if the input non-
linearity is not non-decreasing, then an auxiliary blocking
nonlinearity Nb, an auxiliary sorting nonlinearity Ns , and
an auxiliary reflection nonlinearity Nr are used to create
a composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb that is non-
decreasing, thus preserving the signs of the Markov pa-
rameters of the linearised system. An additional auxiliary
saturation nonlinearity Nsat, which is used to tune the tran-
sient response of the closed-loop system, may depend on
estimates of the range of the input nonlinearity and the gain
of the linear dynamics.

In Kung and Womack (1984a, 1984b), Tao and
Kokotović (1996), the input nonlinearities are assumed to
be piecewise linear. The present paper does not impose this
restriction. A preliminary version of some of the results in
this paper is given in Yan, D’Amato, Sumer, Hoagg, and
Bernstein (2012) and Yan and Bernstein (2013).

The contents of the paper are as follows. In Section 2, we
describe the Hammerstein command-following problem. In
Section 3, we summarise the RCAC algorithm. In Section 4,

C© 2013 Taylor & Francis
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484 J. Yan and D.S. Bernstein

Figure 1. Adaptive command-following problem for a Hammerstein plant with input nonlinearity N . We assume that measurements of
z(k) are available for feedback; however, measurements of v(k) = N (u(k)) and w(k) are not available.

we apply an extension of RCAC using auxiliary nonlin-
earities to the Hammerstein command-following problem
with non-monotonic input nonlinearities. Next, we present
examples to illustrate the construction of the auxiliary non-
linearities. Numerical simulation results are presented in
Sections 5–7. In Section 5, we consider the case where the
input nonlinearities are odd. In Section 6, we propose two
approaches for the case where input nonlinearities are even.
In Section 7, we present examples for the case where the
input nonlinearities are neither odd nor even. Conclusions
are given in Section 8.

2. Hammerstein command-following problem

Consider the Single-input single-output (SISO) discrete-
time Hammerstein system:

x(k + 1) = Ax(k) + BN (u(k)) + D1w(k), (1)

y(k) = Cx(k), (2)

where x(k) ∈ Rn, u(k), y(k) ∈ R, w(k) ∈ Rd , N : R → R,
and k ≥ 0. To avoid unnecessary complications, we as-
sume that N is piecewise right continuous. We consider the
Hammerstein command-following problem with the per-
formance variable:

z(k) = y(k) − r(k), (3)

where z(k) ∈ R is the performance variable and r(k) ∈ R
is the command. The goal is to develop an adaptive output
feedback controller that minimises the command-following
error z using minimal modelling information about the dy-
namics, disturbance w, and input nonlinearity N . We as-
sume that measurements of z(k) are available for feedback;
however, measurements of v(k) = N (u(k)) are not avail-
able. A block diagram for Equations (1)–(3) is shown in
Figure 1.

3. Controller construction

To formulate an adaptive control algorithm for Equa-
tions (1)–(3), we use a strictly proper time-series controller
with auxiliary nonlinearities Nsat, Nb, Ns , and Nr to ac-
count for the presence of the input nonlinearity N in Fig-
ure 2. The construction of Nsat,Nb,Ns , and Nr is described
in Section 4. The RCAC controller of order nc is given by

uc(k) =
nc∑
i=1

Mi(k)uc(k − i) +
nc∑

i=1

Ni(k)z(k − i), (4)

where for all i = 1, . . . , nc , Mi(k) ∈ R, and Ni(k) ∈ R. The
control (4) can be expressed as

uc(k) = θ (k)φ(k − 1),

Figure 2. Hammerstein command-following problem with the RCAC adaptive controller and auxiliary nonlinearities Nsat, Nb,
Ns , and Nr .
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where

θ (k)
�= [ M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k) ] ∈ R1×2nc

is the controller gain matrix, and the regressor vector φ(k)
is given by

φ(k − 1)
�= [uc(k − 1) · · · uc(k − nc)

× z(k − 1) · · · z(k − nc)]T ∈ R2nc×1.

The transfer function matrix Gc,k(q) from z to uc at time
step k can be represented by

Gc,k(q)
�=

N1(k)qnc−1 + N2(k)qnc−2 + · · · + Nnc
(k)

qnc −
(
M1(k)qnc−1 + · · · + Mnc−1(k)q + Mnc

(k)
) ,

where the forward shift operator q accounts for both the
free and forced response of the system.

Next, for i ≥ 1, define the Markov parameter:

Hi
�= CAi−1B.

For example, H1 = CB and H2 = CAB. Let � be a positive
integer. Then, for all k ≥ �, Equation (1) can be written as

x(k) = A�x(k − �)

+
�∑

i=1

Ai−1B[N ◦ Nb ◦ Ns ◦ Nr ◦ Nsat(uc(k − i))]

+
�∑

i=1

Ai−1D1w(k − i), (5)

and thus

z(k) = CA�x(k − �) +
�∑

i=1

CAi−1D1w(k − i) − r(k)

+ H̄ Ū (k − 1), (6)

where

H̄
�= [ H1 · · · H� ] ∈ R1×�

and

Ū (k − 1)
�=

⎡
⎢⎣
N ◦ Nb ◦ Ns ◦ Nr ◦ Nsat(uc(k − 1))

...
N ◦ Nb ◦ Ns ◦ Nr ◦ Nsat(uc(k − �))

⎤
⎥⎦ .

Next, we rearrange the columns of H̄ and the components
of Ū (k − 1) and partition the resulting matrix and vector so

that

H̄ Ū (k − 1) = H′U ′(k − 1) + HU (k − 1), (7)

where H′ ∈ R1×(�−lU ), H ∈ R1×lU , U ′(k − 1) ∈ R�−lU , and
U (k − 1) ∈ RlU . Then, we can rewrite Equation (6) as

z(k) = S(k) + HU (k − 1), (8)

where

S(k)
�= CA�x(k − �) +

�∑
i=1

CAi−1D1w(k − i) − r(k)

+ H′U ′(k − 1). (9)

Next, for j = 1, . . . , s, we rewrite Equation (8) with a
delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the
form

zj (k − kj ) = Sj (k − kj ) + HjUj (k − kj − 1), (10)

where Equation (9) becomes

Sj (k − kj )
�= CA�x(k − kj − �)

+
�∑

i=1

CAi−1D1w(k − kj − i) − r(k − kj )

+ H′
jU

′
j (k − kj − 1)

and Equation (7) becomes

H̄ Ū (k − kj − 1) = H′
jU

′
j (k − kj − 1)

+ HjUj (k − kj − 1),

where H′
j ∈ R1×(�−lUj

)
,Hj ∈ R1×lUj , U ′

j (k − kj − 1) ∈
R�−lUj , and Uj (k − kj − 1) ∈ RlUj . Now, by stacking z(k −
k1), . . . , z(k−ks), we define the extended performance:

Z(k)
�=

⎡
⎢⎣

z1(k − k1)
...

zs(k − ks)

⎤
⎥⎦ ∈ Rs . (11)

Therefore,

Z(k) = S̃(k) + H̃Ũ (k − 1), (12)

where

S̃(k)
�=

⎡
⎢⎣
S1(k − k1)

...
Ss(k − ks)

⎤
⎥⎦ ∈ Rs .
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486 J. Yan and D.S. Bernstein

Ũ (k − 1) has the form,

Ũ (k − 1)
�=

⎡
⎢⎣

N ◦ Nb ◦ Ns ◦ Nr ◦ Nsat(uc(k − q1))
...

N ◦ Nb ◦ Ns ◦ Nr ◦ Nsat(uc(k − qlŨ
))

⎤
⎥⎦

∈ RlŨ ,

where for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + �, and H̃ ∈ Rs×lŨ

is constructed according to the structure of Ũ (k − 1).
Next, for j = 1, . . . , s, we define the retrospective per-

formance:

ẑj (k − kj )
�= Sj (k − kj ) + Hj Ûj (k − kj − 1), (13)

where the past controls Uj(k−kj−1) in Equation (10) are
replaced by the retrospective controls Ûj (k − kj − 1). In
analogy with Equation (11), the extended retrospective per-
formance for Equation (13) is defined as

Ẑ(k)
�=

⎡
⎢⎣

ẑ1(k − k1)
...

ẑs(k − ks)

⎤
⎥⎦ ∈ Rs

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U (k − 1), (14)

where the components of ˆ̃U (k − 1) ∈ RlŨ are the com-
ponents of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in
the same way as the components of Ũ (k − 1). Subtracting
Equation (12) from Equation (14) yields

Ẑ(k) = Z(k) − H̃Ũ (k − 1) + H̃ ˆ̃U (k − 1). (15)

Finally, we define the retrospective cost function:

J ( ˆ̃U (k − 1), k)
�= ẐT (k)R(k)Ẑ(k), (16)

where R(k) ∈ Rs×s is a positive-definite performance
weighting. The goal is to determine retrospectively opti-

mised controls ˆ̃U (k − 1) that would have provided better
performance than the controls U(k) that were applied to
the system. The retrospectively optimised control values
ˆ̃U (k − 1) are subsequently used to update the controller.

Next, to ensure that Equation (16) has a global min-
imiser, we consider the regularised cost:

J̄ ( ˆ̃U (k − 1), k)
�= ẐT (k)R(k)Ẑ(k)

+ η(k) ˆ̃UT (k − 1) ˆ̃U (k − 1), (17)

where η(k) ≥ 0. Substituting Equation (15) into Equation
(17) yields

J̄ ( ˆ̃U (k − 1), k) = ˆ̃U (k − 1)TA(k) ˆ̃U (k − 1)

+ B(k) ˆ̃U (k − 1) + C(k),

where

A(k)
�= H̃T R(k)H̃ + η(k)IlŨ

,

B(k)
�= 2H̃T R(k)[Z(k) − H̃Ũ (k − 1)],

C(k)
�= ZT (k)R(k)Z(k) − 2ZT (k)R(k)H̃Ũ (k − 1)

+ Ũ T (k − 1)H̃T R(k)H̃Ũ (k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is

positive definite. In this case, J̄ ( ˆ̃U (k − 1), k) has the unique
global minimiser:

ˆ̃U (k − 1) = −1

2
A−1(k)B(k). (18)

Next, let d be a positive integer such that ˆ̃U (k − 1)
contains û(k − d), and define the cumulative cost function:

JR(θ, k)
�=

k∑
i=d+1

λk−i‖θ (k)φ(i − d − 1) − û(i − d)‖2

+ λk(θ (k) − θ0)P −1
0 (θ (k) − θ0)T , (19)

where ‖·‖ is the Euclidean norm and λ ∈ (0, 1] is the
forgetting factor. Minimising Equation (19) yields

θ (k) = θ (k − 1) + β(k)[φT (k − d)P (k − 1)

· φ(k − d − 1) + λ]−1P (k − 1)φ(k − d − 1)

· [θ (k − 1)φ(k − d − 1) − û(k − d)],

where β(k) is either 0 or 1. The error covariance is updated
by

P (k) = β(k)λ−1P (k − 1) + [1 − β(k)]P (k − 1)

− β(k)λ−1P (k − 1)φ(k − d − 1)

· [φT (k − d − 1)P (k − 1)φ(k − d) + λ]−1

· φT (k − d − 1)P (k − 1).

We initialise the error covariance matrix as P (0) = αI2nc ,
where α > 0. Note that when β(k) = 0, θ (k) = θ (k−1),
and P(k) = P(k−1). Therefore, setting β(k) = 0 switches
off the controller adaptation, and thus freezes the control
gains. When β(k) = 1, the controller is allowed to adapt.
The parameter β(k) is used only for numerical examples to
illustrate the effect of adaptation.
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International Journal of Control 487

4. Auxiliary nonlinearities

In this section, we construct the auxiliary nonlinearities
Nsat,Nb,Ns , and Nr in Figure 2 along with the required
model information. Nsat modifies uc to obtain the re-
gressor input usat, while Nb, Ns , and Nr modify usat to
produce the Hammerstein plant input u. The auxiliary
nonlinearities Nb, Ns , and Nr are chosen such that the
composite input nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally
non-decreasing. To avoid unnecessary complications, we
assume that N ◦ Nr ◦ Ns ◦ Nb is redefined at
points of discontinuity to render it piecewise right
continuous.

For the Hammerstein command-following problem,
we assume that G is uncertain except for an esti-
mate of a single non-zero Markov parameter. The in-
put nonlinearity N is also uncertain, as described
below.

4.1 Auxiliary saturation nonlinearity Nsat

The auxiliary saturation nonlinearity Nsat is defined to be
the saturation function satp, q given by

Nsat(uc) = satp,q(uc) =
⎧⎨
⎩

p, if uc < p

uc, if p ≤ uc ≤ q

q, if uc > q,

(20)

where the real numbers p and q are the lower and upper
saturation levels, respectively. For minimum-phase plants,
the auxiliary nonlinearity Nsat is not needed, and thus,
in this case, the saturation levels p and q are chosen to
be large negative and positive numbers, respectively. For
NMP plants, the saturation levels are used to tune the
transient behaviour. In addition, the saturation levels are
chosen to provide a sufficiently large range of the control
input to follow the command r. These values depend on
the range of the input nonlinearity N as well as the gain
of the linear system G at frequencies in the spectra of r
and w.

4.2 Auxiliary reflection nonlinearity Nr

If the input nonlinearity N is not monotonic, then the auxil-
iary reflection nonlinearity Nr is used to create a composite
nonlinearity N ◦ Nr that is piecewise non-decreasing. To
construct Nr , we assume that the intervals of monotonicity
of the input nonlinearity N are known, as described below.

In Sections 4.3 and 4.4, we restrict Ns and Nb so that
Ns : [p, q] → [p, q] and Nb : [p, q] → [p, q]. With this
construction, we need to consider only us ∈ [p, q]. There-
fore, let I1, I2, . . . be the smallest number of intervals of
monotonicity of N that are a partition of the interval [p, q].

If N is non-decreasing on Ij, then Nr (us)
�= us for all us ∈

Ii. Alternatively, if N is non-increasing on Ii = [pi, qi), then

Nr (us)
�= pi + qi − us ∈ Ii for all us ∈ Ii. Finally, if N is

constant on Ii, then either choice can be used. Thus, Nr is a
piecewise-linear function that reflects N about us = pi+qi

2
within each interval of monotonicity so that N ◦ Nr is
non-decreasing on Ii, and thus N ◦ Nr is piecewise non-
decreasing on I. Let RI (f ) denote the range of the function
f with arguments in I.

Proposition 4.1: Assume that Nr is constructed by the
above rule. Then, the following statements hold:

(i) N ◦ Nr is piecewise non-decreasing on [p, q];
(ii) RI (N ◦ Nr ) = RI (N ).

Proof: Let Ii = (pi, qi). We first assume that N is non-
decreasing on Ii. Since Nr (us) = us for all us ∈ Ii, it
follows that N ◦ Nr (us) = N (us) for all us ∈ Ii. Hence
N ◦ Nr is non-decreasing on Ii and thus piecewise non-
decreasing.

Alternatively, assume that N is non-increasing on Ii.

Let us, 1, us, 2 ∈ Ii, where us, 1 ≤ us, 2. Then, u2
�= pi + qi −

us,2 ≤ u1
�= pi + qi − us,1. Therefore, since N is non-

increasing on Ii, it follows that N (Nr (us,1)) = N (u1) ≤
N (u2) = N (Nr (us,2)). Thus, N ◦ Nr is non-decreasing on
Ii.

To prove (ii), assume that N is non-decreasing on Ii.
Since Nr (us) = us for all us ∈ Ii, it follows that Nr (Ii) =
Ii , that is, Nr : Ii → Ii is onto. Alternatively, assume that
N is non-increasing on Ii so that Nr (us) = pi + qi − us .
Note that Nr (pi) = qi , Nr (qi) = pi , and Nr is continuous
and decreasing on Ii. Therefore, Nr (Ii) = Ii , and thus Nr :
Ii → Ii is onto. Hence, RI (N ◦ Nr ) = RI (N ). �

Example 4.2: Consider the non-increasing input nonlin-
earity N (u) = −sat−1,1(u − 5) shown in Figure 3(a). Let
Nr (us) = −us + 10 for all us ∈ [3, 7] according to Propo-
sition 4.1. Figure 3(c) shows that the composite nonlin-

earity N ◦ Nr is non-decreasing on I
�= [3, 7]. Note that

RI (N ◦ Nr ) = RI (N ) = [−1, 1].

Example 4.3: Consider the non-monotonic input nonlin-
earity N (u) = |u − 5| shown in Figure 4(a). Let Nr (us) =
−us + 6 for all us ∈ [1, 5) and Nr (us) = us , otherwise ac-
cording to Proposition 4.1. Figure 4(c) shows that the com-
posite nonlinearity N ◦ Nr is piecewise non-decreasing

but not globally non-decreasing on I
�= [1, 9], and that

RI (N ◦ Nr ) = RI (N ) = [0, 4].

Example 4.4: Consider the non-monotonic input nonlin-
earity,

N (u) =
{− 1

2u, if u ≤ 0
u − 1, if u > 0

(21)

shown in Figure 5(a). Let Nr (us) = −us − 2 for all
us ∈ [−2, 0) and Nr (us) = us , otherwise according to
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488 J. Yan and D.S. Bernstein

Figure 3. Example 4.2. (a) Input nonlinearity N (u) =
−sat−1,1(u − 5). (b) Auxiliary reflection nonlinearity Nr (us) =
−us + 10 for us ∈ [3, 7]. (c) Composite nonlinearityN ◦ Nr . Note

that N ◦ Nr is non-decreasing on I
�= [3, 7] and RI (N ◦ Nr ) =

RI (N ) = [−1, 1].

Proposition 4.1. Figure 5(c) shows that the composite
nonlinearity N ◦ Nr is piecewise non-decreasing but not

globally non-decreasing on I
�= [−2, 1], and that RI (N ◦

Nr ) = RI (N ) = [−1, 1].

4.3 Auxiliary sorting nonlinearity Ns

As illustrated by Examples 4.3 and 4.4, N ◦ Nr is piece-
wise non-decreasing, but not globally non-decreasing. To
construct a composite input nonlinearity that is globally

Figure 4. Example 4.3 (a) Non-monotonic input nonlinearity
N (u) = −|u − 5|. (b) Auxiliary reflection nonlinearity Nr (us) =
−us + 6 for us ∈ [1, 5), and Nr (us) = us otherwise. (c) Com-
posite nonlinearity N ◦ Nr . Note that N ◦ Nr is piecewise non-

decreasing but not globally non-decreasing on I
�= [1, 9], and that

RI (N ◦ Nr ) = RI (N ) = [0, 4].

Figure 5. Example 4.4 (a) Non-monotonic input nonlinearity
(21). (b) Auxiliary reflection nonlinearity Nr (us) = −us − 2 for
us ∈ [−2, 0) and Nr (us) = us otherwise. (c) Composite nonlinear-
ity N ◦ Nr . Note that N ◦ Nr is piecewise non-decreasing but not

globally non-decreasing on I
�= [−2, 0], and that RI (N ◦ Nr ) =

RI (N ) = [−1, 1].

non-decreasing, we introduce the auxiliary sorting nonlin-
earity Ns and auxiliary blocking nonlinearity Nb. The aux-
iliary sorting nonlinearityNs sorts portions of the piecewise
non-decreasing nonlinearity N ◦ Nr to create a composite
nonlinearity N ◦ Nr ◦ Ns , so that the composite nonlin-
earity N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing. Nb is
discussed in Section 4.4. To construct Ns , we assume that
the range of N ◦ Nr within each interval of monotonicity
is known. No further modelling information about N is
needed.

LetNs be the piecewise right-continuous affine function
defined as follows. Let I1 = [p1, q1), I2 = [p2, q2), . . . be the
smallest number of intervals of monotonicity of N that are
a partition of the interval [p, q]. If RIi

(N ◦ Nr ) ⊂ RIj
(N ◦

Nr ) for all i 
= j or (N ◦ Nr )(qi) ≤ (N ◦ Nr )(qj ), where qi

< qj, then Ns(ub)
�= ub for all ub ∈ Ii ∪ Ij = [pi, qi) ∪ [pj,

qj), and thus Ns is not needed. Alternatively, if RIi
(N ◦

Nr ) � RIj
(N ◦ Nr ) for all i 
= j and (N ◦ Nr )(qi) > (N ◦

Nr )(qj ), where qi < qj, thenNs(ub)
�= 1

qi−pi
[(qj − pj )ub +

pjqi − piqj ] ∈ Ij for all ub ∈ Ii and Ns(ub)
�= 1

qj −pj
[(qi −

pi)ub + piqj − pjqi] ∈ Ii for all ub ∈ Ij.

Proposition 4.5: Assume that Ns is constructed by the
above rule. Then, the following statements hold:

(i) N ◦ Nr ◦ Ns is piecewise non-decreasing on [p, q];
(ii) RI (N ◦ Nr ◦ Ns) = RI (N ).

Proof: Let Ii = (pi, qi) and Ij = (pj, qj). We first assume that
RIi

(N ◦ Nr ) ⊂ RIj
(N ◦ Nr ) for all i 
= j or N ◦ Nr (qi) ≤

N ◦ Nr (qj ), where qi < qj. Since Ns(ub) = ub for all ub ∈
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Ii ∪ Ij, it follows from Proposition 4.1 (i) that N ◦ Nr ◦ Ns

is piecewise non-decreasing on [p, q].
Alternatively, assume that RIi

(N ◦ Nr ) � RIj
(N ◦

Nr ) for all i 
= j and (N ◦ Nr )(qi) > (N ◦ Nr )(qj ), where

qi < qj. It follows from Ns(ub)
�= 1

qi−pi
[(qj − pj )ub +

pjqi − piqj ] ∈ Ij for all ub ∈ Ii and Ns(ub)
�= 1

qj −pj
[(qi −

pi)ub + piqj − pjqi] ∈ Ii for all ub ∈ Ij that Ns : Ii → Ij

and Ns : Ij → Ii . Next, let ub, 1, ub, 2 ∈ Ii, where ub, 1 ≤
ub, 2. Then,

us,1
�= 1

qi − pi

[(qj − pj )ub,1 + pjqi − piqj ] ∈ Ij ≤ us,2

�= 1

qi − pi

[(qj − pj )ub,2 + pjqi − piqj ] ∈ Ij .

Therefore, since N ◦ Nr is non-decreasing on Ij, it fol-
lows that (N ◦ Nr ◦ Ns)(ub,1) = (N ◦ Nr )(us,1) ≤ (N ◦
Nr )(us,2) = (N ◦ Nr ◦ Ns)(ub,2). Thus, N ◦ Nr ◦ Ns is
non-decreasing on Ii. Similarly, the same argument shows
that N ◦ Nr ◦ Ns is non-decreasing on Ij.

To prove (ii), assume thatRIi
(N ◦ Nr ) ⊂ RIj

(N ◦ Nr )
for all i 
= j or (N ◦ Nr )(qi) ≤ (N ◦ Nr )(qj ), where qi

< qj. Since Ns(ub) = ub for all ub ∈ Ii ∪ Ij, it fol-
lows that Ns : Ii → Ii is onto. Alternatively, assume
that RIi

(N ◦ Nr ) � RIj
(N ◦ Nr ) for all i 
= j and N ◦

Nr (qi) > N ◦ Nr (qj ), where qi < qj. It follows from

Ns(ub)
�= 1

qi−pi
[(qj − pj )ub + pjqi − piqj ] ∈ Ij for all ub

∈ Ii and Ns(ub)
�= 1

qj −pj
[(qi − pi)ub + piqj − pjqi] ∈ Ii

for all ub ∈ Ij that Ns : Ii → Ij and Ns : Ij → Ii . There-
fore, Ns : Ii → Ij and Ns : Ij → Ii . Hence, RI (N ◦ Nr ◦
Ns) = RI (N ◦ Nr ) = RI (N ). �

Example 4.6: Consider the case where R[−2,0](N ◦ Nr ) ∩
R[0,1](N ◦ Nr ) = ∅ as shown in Figure 6(a). We assume
that values of (N ◦ Nr )(0) and (N ◦ Nr )(1) are known. In
particular, (N ◦ Nr )(0) = 1 > (N ◦ Nr )(1) = 0. We thus
choose Ns(ub) = 0.5ub + 1 for ub ∈ [−2, 0) and Ns(ub) =
2ub − 2 for ub ∈ [0, 1] as shown in Figure 6(b). Note
that N ◦ Nr is piecewise non-decreasing on [−2, 1].
Figure 6(c) shows that the composite nonlinearityN ◦ Nr ◦
Ns is piecewise non-decreasing on [−2, 1].

Example 4.7: Consider the case where range ofN ◦ Nr on
subintervals of its domain has partially overlapping inter-
vals as shown in Figure 7(a), where neitherR[−5,0](N ◦ Nr )
nor R[0,5](N ◦ Nr ) is contained in the other set. We assume
that values of (N ◦ Nr )(0) and (N ◦ Nr )(5) are known. In
particular, (N ◦ Nr )(0) = 4 > (N ◦ Nr )(5) = 1, we thus
choose Ns(ub) = ub + 5 for ub ∈ [−5, 0) and Ns(ub) =
ub − 5 for ub ∈ [0, 5] as shown in Figure 7(b). Note
that N ◦ Nr ◦ Ns is piecewise non-decreasing on [−5,
5], and Figure 7(c) shows that the composite nonlinearity
N ◦ Nr ◦ Ns is piecewise non-decreasing on [−5, 5].

Figure 6. Example 4.6. In this example, R[−2,0](N ◦ Nr ) ∩
R[0,1](N ◦ Nr ) = ∅. (a) Non-decreasing composite nonlinearity
N ◦ Nr . Note that (N ◦ Nr )(0) = 1 > (N ◦ Nr )(1) = 0. (b) Aux-
iliary sorting nonlinearity Ns(ub) = 0.5ub + 1 for ub ∈ [−2, 0)
and Ns(ub) = 2ub − 2 for ub ∈ [0, 1]. (c) The composite nonlin-
earity N ◦ Nr ◦ Ns .

Example 4.8: Consider the case whereR[−5,0](N ◦ Nr ) ⊂
R[0,5](N ◦ Nr ) as shown in Figure 8(a), and thus Ns is not
needed. We choose Ns(ub) = ub, and Figure 8(b) shows
that N ◦ Nr ◦ Ns is piecewise non-decreasing on [−5, 5].

Figure 7. Example 4.7. In this example, range of N ◦ Nr on
subintervals of its domain has partially overlapping intervals,
where neither R[−5,0](N ◦ Nr ) nor R[0,5](N ◦ Nr ) is contained
in the other set. Note that (N ◦ Nr )(0) = 4 > (N ◦ Nr )(5) = 1.
(a) Piecewise non-decreasing composite nonlinearityN ◦ Nr with
partially overlapping intervals. (b) Auxiliary sorting nonlinearity
Ns(ub) = ub + 5 for ub ∈ [−5, 0) and Ns(ub) = ub − 5 for ub ∈
[0, 5]. (c) The composite nonlinearity N ◦ Nr ◦ Ns is piecewise
non-decreasing on [−5, 5].
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Figure 8. Example 4.8. In this example, R[−5,0](N ◦ Nr ) ⊂
R[0,5](N ◦ Nr ). In this case, Ns is not needed. (a) Piecewise non-
decreasing composite nonlinearity N ◦ Nr , where R[−5,0](N ◦
Nr ) ⊂ R[0,5](N ◦ Nr ) and the auxiliary sorting nonlinearity
Ns(ub) = ub for ub ∈ [−5, 5]. (b) The composite nonlinearity
N ◦ Nr ◦ Ns is piecewise non-decreasing on [−5, 5].

4.4 Auxiliary blocking nonlinearity Nb

As shown in Proposition 4.5 and illustrated by Example
4.7, N ◦ Nr ◦ Ns is piecewise non-decreasing. To con-
struct a composite input nonlinearity that is globally non-
decreasing, we introduce the auxiliary blocking nonlin-
earity Nb. To construct Nb, we assume that the range
of N ◦ Nr ◦ Ns within each interval of monotonicity is
known. If, in addition, these ranges are partially overlap-
ping, then selected intermediate values of N ◦ Nr ◦ Ns

must be known. No further modelling information about
N is needed.

LetNb be the piecewise right-continuous affine function
defined as follows. Let I1, I2, . . . be the smallest number of
intervals of monotonicity ofN that are also a partition of the
interval [p, q]. IfRIi

(N ◦ Nr ◦ Ns) ∩ RIj
(N ◦ Nr ◦ Ns) =

∅ for all i 
= j, then we choose Nb(usat)
�= usat for all usat ∈

Ij ∪ Ij. Alternatively, if RIi
(N ◦ Nr ◦ Ns) ∩ RIj

(N ◦ Nr ◦
Ns) 
= ∅ and RIi

(N ◦ Nr ◦ Ns) � RIj
(N ◦ Nr ◦ Ns), we

block the overlapping segments as shown by the following
examples to illustrate three different cases where the subin-
tervals have no overlapping intervals, partially overlapping
intervals, and overlapping intervals.

Example 4.9: Consider the case where R[−5,0](N ◦ Nr ◦
Ns) ∩ R[0,5](N ◦ Nr ◦ Ns) = ∅ as shown in Figure 9(a).
In this case, Nb is not needed, we thus choose Nb(usat) =
usat. Note that N ◦ Nr ◦ Ns is piecewise non-decreasing
on [−5, 5]. Figure 9(b) shows that the composite non-
linearity N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing
on [−5, 5].

Example 4.10: Consider the case where range of N ◦
Nr ◦ Ns on subintervals of its domain has partially over-
lapping intervals, where neither R[−5,0](N ◦ Nr ◦ Ns) nor
R[0,5](N ◦ Nr ◦ Ns) is contained in the other set. In par-
ticular, as shown in Figure 10(a), R[−2,0](N ◦ Nr ◦ Ns) =
R[0,2](N ◦ Nr ◦ Ns). In this case, we assume that inter-

Figure 9. Example 4.9. In this example, R[−5,0](N ◦ Nr ◦
Ns) ∩ R[0,5](N ◦ Nr ◦ Ns) = ∅. (a) Non-decreasing composite
nonlinearity N ◦ Nr ◦ Ns and auxiliary blocking nonlinearity
Nb(usat) = usat. (b) The composite nonlinearityN ◦ Nr ◦ Ns ◦ Nb

is globally non-decreasing on [−5, 5].

mediate values of N ◦ Nr ◦ Ns are known. In particular,
knowledge of (N ◦ Nr ◦ Ns)[−5,0] (0) = 1 is sufficient to
construct Nb. We choose Nb(usat) = −2 for usat ∈ [−2,
0) and Nb(usat) = usat, otherwise. Note that N ◦ Nr ◦ Ns

is piecewise non-decreasing on [−5, 5], and Figure 10(b)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is
globally non-decreasing on [−5, 5].

Example 4.11: Consider the caseR[−5,0](N ◦ Nr ◦ Ns) ⊂
R[0,5](N ◦ Nr ◦ Ns) as shown in Figure 11(a). In particu-
lar, R[−5,0](N ◦ Nr ◦ Ns) = [−2, 3] and R[0,5](N ◦ Nr ◦
Ns) = [−5, 5]. We let Nb(usat) = −5 for all usat ∈ [−5, 0)
and Nb(usat) = usat for all usat ∈ [0, 5]. Note that N ◦ Nr ◦
Ns is piecewise non-decreasing on [−5, 5] and Figure 11(b)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is
globally non-decreasing on [−5, 5].

Figure 10. Example 4.10. In this example, range ofN ◦ Nr ◦ Ns

on subintervals of its domain has partially overlapping intervals,
where neither R[−5,0](N ◦ Nr ◦ Ns) nor R[0,5](N ◦ Nr ◦ Ns) is
contained in the other set. (a) Piecewise non-decreasing com-
posite nonlinearity N ◦ Nr ◦ Ns with partially overlapping inter-
vals, where R[−2,0](N ◦ Nr ◦ Ns) = R[0,2](N ◦ Nr ◦ Ns) and the
auxiliary blocking nonlinearity Nb(usat) = usat. (b) The compos-
ite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing on
[−5, 5].
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Figure 11. Example 4.11. In this example, R[−5,0](N ◦ Nr ◦
Ns) ⊂ R[0,5](N ◦ Nr ◦ Ns). (a) Piecewise non-decreasing com-
posite nonlinearity N ◦ Nr ◦ Ns , where R[−5,0](N ◦ Nr ◦ Ns) ⊂
R[0,5](N ◦ Nr ◦ Ns) and the auxiliary blocking nonlinearity
Nb(usat) = −5 for usat ∈ [−5, 0) and Nb(usat) = usat for usat ∈
[0, 5]. (b) The composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is glob-
ally non-decreasing on [−5, 5].

Proposition 4.12: Assume that Nb is constructed by the
above rule. Then the following statements hold:

(i) N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing on

I
�= [p, q];

(ii) RI (N ◦ Nr ◦ Ns ◦ Nb) = RI (N ).

Proof: First, consider the case RIi
(N ◦ Nr ◦ Ns) ∩

RIj
(N ◦ Nr ◦ Ns) = ∅ for all i 
= j. It follows from

(i) of Proposition 4.5 and Nb(usat) = usat that N ◦ Nr ◦
Ns ◦ Nb is non-decreasing on I. Next, consider the
case RIi

(N ◦ Nr ◦ Ns) ∩ RIj
(N ◦ Nr ◦ Ns) 
= ∅, (N ◦

Nr ◦ Ns ◦ Nb)(usat) is constant for all usat ∈ RIi
(N ◦ Nr ◦

Ns) ∩ RIj
(N ◦ Nr ◦ Ns). Therefore, N ◦ Nr ◦ Ns ◦ Nb is

non-decreasing.
To prove (ii), let I1, I2, . . . be the smallest

number of intervals of monotonicity of N that are
a partition of the interval [p, q]. Since RI (N ◦ Nr ◦
Ns) = ⋃∞

k=1 RIk
(N ◦ Nr ◦ Ns). Note that Nb(usat) = usat

for all intervals Ii and Ij such that RIi
(N ◦ Nr ◦ Ns) ∩

RIj
(N ◦ Nr ◦ Ns) = ∅. For the intervals where RIi

(N ◦
Nr ◦ Ns) ∩ RIj

(N ◦ Nr ◦ Ns) 
= ∅. Let Nb(usat) = μ,
where μ ∈ RIi

(N ◦ Nr ◦ Ns) ∩ RIj
(N ◦ Nr ◦ Ns). There-

fore, RI (N ◦ Nr ◦ Ns ◦ Nb) = RI (N ◦ Nr ◦ Ns). It thus
follows from Proposition 4.5 that RI (N ◦ Nr ◦ Ns ◦
Nb) = RI (N ◦ Nr ◦ Ns) = RI (N ). �

4.5 Examples illustrating the construction of Nb,
Ns, and Nr

Example 4.13: Consider the non-monotonic input nonlin-
earity:

N (u) =
⎧⎨
⎩

10, if u < 2
−3u + 4, if − 2 ≤ u < 2
u2 − 6, if u ≥ 2,

(22)

which is shown in Figure 12(a). Let Nsat(uc) = satp,q(uc),
where p = −5 and q = 5. According to Propositions 4.1,
4.5, and 4.12, let

Nr (us) =
{−us, if − 2 ≤ us < 2
us, if us ∈ [−5,−2) ∪ (2, 5),

(23)

Ns(ub) = ub, if ub ∈ [−5, 5], (24)

and

Nb(usat) =
{−2, if − 5 ≤ usat < 2
usat, if 2 ≤ usat ≤ 5.

(25)

Figure 12(b) shows the auxiliary nonlinearities Nb, Ns ,
and Nr . Figure 12(c) and 12(d) show that the composite
nonlinearity N ◦ Nr ◦ Ns is piecewise non-decreasing on

I
�= [−5, 5] and the composite nonlinearity N ◦ Nr ◦ Ns ◦

Nb is globally non-decreasing on I. Note that RI (N ◦ Nr ◦
Ns ◦ Nb) = RI (N ) = [−2, 19].

Example 4.14: Consider the non-monotonic input nonlin-
earity:

N (u) =
⎧⎨
⎩

−sat−0.5,0.5u, if u < 2
0.5u − 2, if 2 ≤ u < 4
0, if u ≥ 4,

(26)

which is shown in Figure 13(a). Let Nsat(uc) = satp,q(uc),
where p = −2 and q = 6. According to Propositions 4.1,
4.5, and 4.12, let

Figure 12. Example 4.13. (a) Input nonlinearity given by Equa-
tion (22). (b) The auxiliary reflection nonlinearity Nr given by
Equation (23) for us ∈ [−5, 5], the auxiliary sorting nonlinear-
ity Ns given by Equation (24) for ub ∈ [−5, 5], and the auxiliary
blocking nonlinearityNb given by Equation (25) for usat ∈ [−5, 5].
(c) Composite nonlinearity N ◦ Nr ◦ Ns . Note that N ◦ Nr ◦ Ns

is piecewise non-decreasing on [−5, 5]. (d) Composite nonlin-
earity N ◦ Nr ◦ Ns ◦ Nb. Note that N ◦ Nr ◦ Ns ◦ Nb is glob-
ally non-decreasing on [−5, 5] and R[−5,5](N ◦ Nr ◦ Ns ◦ Nb) =
R[−5,5](N ) = [−2, 19].
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Figure 13. Example 4.14. (a) Input nonlinearity N (u) given
by Equation (26). (b) The auxiliary reflection nonlinearity Nr

given by Equation (27) for us ∈ [−2, 6] and the auxiliary sorting
nonlinearity Ns given by Equation (28) for ub ∈ [−2, 6]. (c)
Composite nonlinearity N ◦ Nr . Note that N ◦ Nr is piecewise
non-decreasing on [−2, 6]. (d) Composite nonlinearity N ◦ Nr ◦
Ns . Note that N ◦ Nr ◦ Ns is piecewise non-decreasing on [−2,
6]. (e) The auxiliary blocking nonlinearity Nb given by Equation
(29) for usat ∈ [−2, 6]. (f) Composite nonlinearity N ◦ Nr ◦ Ns ◦
Nb is globally non-decreasing on [−2, 6], and RI (N ◦ Nr ◦ Ns ◦
Nb) = RI (N ◦ Nr ◦ Nb) = RI (N ◦ Nr ) = RI (N ) = [−1, 0.5].

Nr (us) =
{−us, if − 2 ≤ us < 2
us, if 2 ≤ us ≤ 6,

(27)

Ns(ub) =
{
ub + 4, if − 2 ≤ ub < 2
ub − 4, if 2 ≤ ub ≤ 6,

(28)

and

Nb(usat) =
{

4, if 2 ≤ usat < 4
usat, otherwise.

(29)

Figure 13(b) shows the auxiliary nonlinearities Nr and Ns .
Figure 13(c) and 13(d) show that the composite nonlinearity
N ◦ Nr and N ◦ Nr ◦ Ns are piecewise non-decreasing on

I
�= [−2, 6]. Figure 13(e) shows auxiliary blocking nonlin-

earities Nb and Figure 13(f) shows the composite nonlin-
earity N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing on I.
Note that RI (N ◦ Nr ◦ Ns ◦ Nb) = RI (N ◦ Nr ◦ Ns) =
RI (N ◦ Nr ) = RI (N ) = [−1, 0.5].

Knowledge of the intervals of monotonicity of N , the
ranges of N ◦ Nr and N ◦ Nr ◦ Ns within each interval
of monotonicity, and selected intermediate values of N ◦
Nr ◦ Ns in the case of partially overlapping interval ranges
is needed to modify the controller output usat so that N ◦

Nr ◦ Ns ◦ Nb is globally non-decreasing. It thus follows
that N ◦ Nr ◦ Ns ◦ Nb preserves the signs of the Markov
parameters of the linearised Hammerstein system.

5. Adaptive control of Hammerstein systems with
odd input nonlinearities

We now present numerical examples to illustrate the re-
sponse of RCAC for Hammerstein systems with odd input
nonlinearities. We consider a sequence of examples of in-
creasing complexity, including minimum-phase and NMP
plants, and asymptotically stable and unstable cases. The
odd input nonlinearities may be either monotonic or non-
monotonic. For each example, we assume that d and Hd

are known. In all simulations, the adaptive controller gain
matrix θ (k) is initialised to zero. Unless otherwise stated,
all examples assume x(0) = 0 and λ = 1.

Example 5.1 (Minimum-phase, asymptotically stable
plant, non-increasing N ): Consider the asymptotically
stable, minimum-phase plant,

G(z) = 1

z − 0.5
(30)

with the cubic input nonlinearity,

N (u) = −u3, (31)

which is non-increasing, one-to-one, and onto. Note that
d = 1 and Hd = 1. We consider the sinusoidal command
r(k) = 5sin (	1k), where 	1 = π /5 rad/sample. Since
the linear plant is minimum phase, we choose Nsat(uc) =
satp,q(uc), where p = −106 and q = 106 in Equation (20).
As shown in Figure 14(a), N is decreasing for all u ∈ R,
we let Nb = usat, Ns = ub, and Nr = −us . Figure 14(a.iii)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb

is non-decreasing. Note that knowledge of only the mono-
tonicity of N is used to choose Nb, Ns , and Nr . To satisfy
Equation (36) in Hoagg and Bernstein (2012), a controller
order nc≥5 is required. We thus let, nc = 10, P0 = 0.01I2nc

,
η0 = 0, and H̃ = H1. Figure 14(b.i) and 14(b.ii) show the
time history of z, while Figure 14(b.iii) shows the input
nonlinearity N and Figure 14(b.iv) shows the time history
of u. Finally, Figure 14(b.v) shows the time history of θ and
Figure 14(b.vi) shows the frequency response of Gc,2000(z).
Note that Gc,2000(z) has the form of an internal model con-
troller with high gain at the command frequency 	1 and
the harmonic 3	1.

Next, the controller order nc is increased to explore
the sensitivity of the closed-loop performance to the value
of nc. For nc = 10, 15, 25, . . . , 55, the closed-loop sys-
tem is simulated, where all parameters other than nc are
the same as above. The closed-loop performance in this
example is insensitive to the choice of nc provided that
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Figure 14. Example 5.1. Part (a.i) shows the nonlinear input nonlinearity N (u) = −u3 and the auxiliary nonlinearities Nb, Ns , and Nr .
(a.ii) shows the non-decreasing input nonlinearity N ◦ Nr ◦ Ns . Part (a.iii) shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is
non-decreasing. Part (b) shows the closed-loop response of the asymptotically stable minimum-phase plant G given by Equation (30) with
the sinusoidal command r(k) = 5sin (	1k), where 	1 = π /5 rad/sample. Part (b.iii) shows the input nonlinearity N for all u ∈ R, and part
(b.iv) shows the time history of u. Finally, part (b.v) shows the time history of θ and part (b.vi) shows the frequency response of Gc,2000(z),
which indicates that Gc,2000(z) has high gain at the command frequency 	1 and the harmonic 3	1.
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494 J. Yan and D.S. Bernstein

Figure 15. Example 5.1. The closed-loop response of the asymptotically stable minimum-phase plant G given by Equation (30) with the
sinusoidal command r(k) = 5sin (	1k), where 	1 = π /5 rad/sample. We let nc = 25, P0 = 0.01I2nc , η0 = 0, and H̃ = H1. The closed-loop
performance is comparable to that shown in Figure 14(b).

nc ≥ 5, which is required to satisfy Equation (36) in Hoagg
and Bernstein (2012). For this example, the worst perfor-
mance is obtained by letting nc = 25. Figure 15 shows the
time history of z with nc = 25. Over the interval of ap-
proximately k ∈ [500, 1000], the closed-loop performance
shown in Figure 15 is slightly worse than the closed-loop
performance shown in Figure 14; however, the closed-loop
performances are comparable over the rest of the time his-
tory.

Furthermore, consider the nonlinearity N (u) = un,
where n is odd, with the input signal u(k) = cos (	k). Then,
the response y(k) = N (u(k)) is given by

y(k) = cosn(	k) = 1

2n−1

(n−1)/2∑
r=0

(
n

r

)
cos[(n − 2r)	k].

(32)

Note that if N is an odd polynomial, then y(k) con-
tains harmonics at only odd multiples of 	. Furthermore,
if N is an odd analytic function such as N (u) = sin u,
then this observation applies to truncations of its Taylor
expansion.

Example 5.2 (NMP, asymptotically stable plant, non-
decreasing N ): We consider the asymptotically stable,
NMP plant,

G(z) = z − 1.5

(z − 0.8)(z − 0.6)
(33)

with the saturation input nonlinearity,

N (u) =
⎧⎨
⎩

−0.8, if u < −0.8
u, if − 0.8 ≤ u ≤ 0.8
0.8, if u > 0.8,

(34)

which is non-decreasing and one-to-one but not onto. Note
that d = 1 and Hd = 1. We consider the two-tone sinu-
soidal command r(k) = 0.5sin (	1k) + 0.5sin (	2k), where
	1 = π /5 rad/sample and 	2 = π /2 rad/sample for the
Hammerstein system with the input nonlinearity N . As
shown in Figure 16(a), since N is non-decreasing for all
u ∈ R, we choose Nsat(uc) = satp,q(uc), where p = −2 and

q = 2 in Equation (20), and let Nb = usat, Ns = ub, and
Nr = us . Figure 16(a.iii) shows that the composite non-
linearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing on [−2, 2].
We set nc = 10, P0 = 0.1I2nc

, η0 = 2, and H̃ = H1. The
Hammerstein system runs open loop for 100 time steps, and
RCAC is turned on at k = 100. Figure 16(b) shows the time
history of z. Figure 16(c) shows the frequency response of
Gc,1000(z), which indicates that Gc,1000(z) has high gain at
the command frequencies 	1 and 	2.

Example 5.3 (NMP, asymptotically stable plant, non-
decreasingN ): To illustrate the choice ofNsat for an NMP
plant, consider Equation (33) with the dead-zone input non-
linearity:

N (u) =
⎧⎨
⎩

u + 0.5, if u < −0.5
0, if − 0.5 ≤ u ≤ 0.5
u − 0.5, if u > 0.5,

(35)

which is not one-to-one but onto. Note that d = 1 and
Hd = 1. We consider the two-tone sinusoidal com-
mand r(k) = sin (	1k) + 0.5sin (	2k), where 	1 =
π /4 rad/sample, and 	2 = π /2 rad/sample. As shown in
Figure 17(a), since N (u) is non-decreasing for all u ∈ R,
we choose Nsat(uc) = satp,q(uc), where p = −a, q = a, and
let Nb = usat, Ns = ub, and Nr = us on R. Figure 17(a.iii)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is
non-decreasing on R. We set nc = 10, P0 = 0.1I2nc

, η0 =
0.2, and H̃ = H1, and we vary the saturation level a for
the NMP plant (33). Figure 17(b.i) shows the time his-
tory of z with a = 10, where the transient behaviour is poor.
Figure 17(b.ii) shows the time history of z with a = 2, where
the transient performance is improved and z reaches steady
state in about 300 time steps. Finally, we further reduce the
saturation level. Figure 17(b.iii) shows the time history of z
with a = 1; in this case, RCAC cannot follow the command
due to the fact that a = 1 is not large enough to provide the
control uc needed to drive z to a small value. Figure 17(c)
shows the time history of u for the case a = 2, and Fig-
ure 17(d) shows the frequency response of Gc,1200(z) with
a = 2, which indicates that Gc,1200(z) has high gain at the
command frequencies 	1 and 	2.
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Figure 16. Example 5.2. Part (a) shows the saturation input nonlinearity N given by Equation (34). Part (b) shows the closed-loop
response of the asymptotically stable NMP plant G given by Equation (33) with the two-tone sinusoidal command r(k) = 0.5sin (	1k) +
0.5sin (	2k), 	1 = π /5 rad/sample, and 	2 = π /2 rad/sample. Part (c) shows the frequency response of Gc,1000(z), which indicates that
Gc,1000(z) has high gain at the command frequencies 	1 and 	2.
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496 J. Yan and D.S. Bernstein

Figure 17. Example 5.3. Part (a) shows the dead-zone input nonlinearity N (u) given by Equation (35). Part (b) shows the closed-loop
response of the asymptotically stable NMP plant G given by Equation (33) with the two-tone sinusoidal command r(k) = sin (	1k) +
0.5sin (	2k), where 	1 = π /4 rad/sample and 	2 = π /10 rad/sample. Part (b.i) shows the time history of the performance z with a = 10,
where the transient behaviour is poor. Part (b.ii) shows the time history of z with a = 2. Note that the transient performance is improved
and z reaches steady state in about 300 time steps. Finally, part (b.iii) shows the time history of z with a = 1; in this case, RCAC cannot
follow the command due to the fact that a = 1 is not large enough to provide the control uc needed to drive z to a small value. Part (c)
shows the time history of u for the case a = 2, and part (d) shows the frequency response of Gc,1200(z) with a = 2, which indicates that
Gc,1200(z) has high gain at the command frequencies 	1 and 	2.
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Figure 18. Example 5.4. Closed-loop response of the plant G given by Equation (36) with the initial condition x0 = [−5.2 − 1.1]T. The
system runs open loop for 100 time steps, and the adaptive controller is turned on at k = 100 with the relay input nonlinearity given by
Equation (37) and x(100) = [−415.2 − 411.1]T. For k ≥ 1000, the command is the step r(k) = −200 as shown in (b). Part (c) shows the
time history of the performance z, and part (d) shows the time history of u.

Example 5.4 (Minimum-phase, unstable plant, non-
decreasing N ): We consider the discretised unstable
double-integrator plant over sample period h = 1/

√
2,

G(z) = h2(z + 1)

2(z − 1)2
(36)

with the piecewise-constant input nonlinearity,

N (u) = 1

2
[sign(u − 0.2) + sign(u + 0.2)], (37)

which can assume only the values −1, 0, and 1. Note
that d = 1 and Hd = 1. For k < 1000, we let the
command r(k) be zero, and consider stabilisation using
RCAC with the input relay nonlinearity given by Equa-
tion (37). As shown in Figure 18(a), the relay non-
linearity is non-decreasing for all u ∈ R, and we thus
choose Nsat(uc) = satp,q (uc), where p = −3, q = 3.
We let Nb = usat, Ns = ub, and Nr = us . We choose
nc = 2, P0 = I2nc

, η0 = 0, and H̃ = H1. For k ≥ 1000,
we let the step command be r(k) = −200, and consider
command-following problem as shown in Figure 18(b).
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498 J. Yan and D.S. Bernstein

Figure 19. Example 5.5. Part (a.i) shows the input nonlinearity (39) and the auxiliary nonlinearities Nb and Nr . Part (a.ii) shows the
piecewise non-decreasing input nonlinearity N ◦ Nr . Part (a.iii) shows that the composite nonlinearity N ◦ Nr ◦ Nb is nondecreasing.
Part (b) shows the closed-loop response of the stable minimum-phase plant G given by Equation (38) with the sinusoidal command r(k) =
sin (	1k), where 	1 = π /5 rad/sample. Part (c) shows the frequency response of Gc,1200(z), which indicates that Gc,1200(z) has high gain
at the command frequency 	1 and the harmonic 3	1.

Figure 18(c) shows the time history of z with the initial
condition x0 = [ −5.2 −1.1 ]T and (d) shows the time his-
tory of u.

Example 5.5 (Minimum-phase, asymptotically stable
plant, non-monotonic N ): Consider the asymptotically
stable,minimum-phase plant,

G(z) = (z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5 − j0.5)(z − 0.5 + j0.5)
(38)

with the non-monotonic input nonlinearity,

N (u) =
⎧⎨
⎩

−0.5−(u+2) − 3, if u < −2
sign(u)u2, if − 2 ≤ u ≤ 2
0.5u−2 + 3, if u > 2.

(39)

Note that d = 1 and Hd = 1. We consider the si-
nusoidal command r(k) = sin (	1k), where 	1 = π /5
rad/sample. Since the linear plant is minimum phase,
we choose Nsat(uc) = satp,q(uc), where p = −5 and q

= 5 in (20). As shown in Figure 19(a.i), N is non-
monotonic, we let Nr (us) = −us − 7 for us ∈ [−5, −2],
Nr (us) = −us + 7 for us ∈ [2, 5], and Nr (us) = us other-
wise, and choose Ns(ub) = ub so that the composite non-
linearity N ◦ Nr ◦ Ns is piecewise non-decreasing on [−5,
5] as shown in Figure 19(a.ii). Knowledge of only the
monotonicity of N is used to choose Nr . To construct
Nb, note that the piecewise non-decreasing composite non-
linearity N ◦ Nr ◦ Ns satisfies R[−5,−2](N ◦ Nr ◦ Ns) ∪
R[2,5](N ◦ Nr ◦ Ns) ⊂ R[−5,5](N ◦ Nr ◦ Ns), which is not
partially overlapping. Therefore, no additional information
about N ◦ Nr ◦ Ns is needed. We letNb(usat) = −2 for usat

∈ [−5, −2], Nb(usat) = 2 for usat ∈ [2, 5] and Nb(usat) =
usat otherwise. Figure 19(a.iii) shows that the compos-
ite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing on
[−5, 5]. We choose nc = 10, P0 = I2nc

, η0 = 0.01, and
H̃ = H1. Figure 19(b) shows the resulting time history
of z, while Figure 19(c) shows the frequency response
of G c,1200(z) with a = 2. Note that G c,1200(z) has high
gain at the command frequency 	1 and the harmonic
3	1.
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Figure 20. Adaptive command-following problem for a Ham-
merstein plant with an even input nonlinearity N . The command
signal r has frequency 	 and phase angle φ, while the pseudo-
command is a sinusoid with frequency 	/2. The pseudo-command
provides the harmonic content needed by RCAC due to the even
nonlinearity, which produces harmonics at only DC and 2	.

6. Adaptive control of Hammerstein systems with
even input nonlinearities

We now present numerical examples to illustrate the re-
sponse of RCAC for Hammerstein systems with even input
nonlinearities. Consider the nonlinearityN (u) = un, where
n is even, with the input signal u(k) = cos (	k). Then the
response y(k) = N (u(k)) is given by

y(k) = cosn(	k) = 1

2n

(
n

n/2

)

+ 1

2n−1

n/2−1∑
r=0

(
n

r

)
cos((n − 2r)	k). (40)

Therefore, if N is an even polynomial, then y(k) contains
harmonics at only even multiples of 	. In particular, y(k)

Figure 21. Example 6.1. Part (a) shows the resulting time history
of the command-following performance z. In this case, the adap-
tive controller fails to follow the command in the presence of the
quadratic input nonlinearity (41). Part (c) shows the frequency re-
sponse of Gc,5000(z), which indicates that Gc,5000(z) has high gain
at 2	1 = 2π /5 rad/sample, but not at the command frequency
	1 = π /5 rad/sample.

lacks spectral content at the command frequency. If N is
an even analytic function, then this observation applies to
truncations of its Taylor expansion.

To achieve command following in this case, we propose
two approaches. First, we inject a pseudo-command into the
controller, where the frequency of the pseudo-command is
equal to half of the frequency of the command as shown in
Figure 20. Therefore, the plant intermediate signal v con-
tains a harmonic at the command frequency 	 if N is even.
Note that the pseudo-command is not necessarily phase
matched with the command. Alternatively, we use auxiliary
nonlinearities to construct a composite input nonlinearities
that is not even.

6.1 Adaptive control of Hammerstein systems
with even input nonlinearities using
pseudo-commands

Example 6.1 (Minimum-phase, stable plant, even
N ): We consider the asymptotically stable, NMP plant (38)
with the quadratic input nonlinearity:

N (u) = u2 − 2, (41)

which is neither one-to-one nor onto and satisfies N (0) =
−2, see Figure 21(b). Note that d = 1 and Hd = 1. We

Figure 22. Example 6.2. Adaptive command-following problem
for a Hammerstein plant with an even input nonlinearity (41).
The command signal r(k) = sin (	1k + φ), where 	1 = π /5
rad/sample and φ = π /6 rad. The Hammerstein system runs open
loop for 100 time steps, and RCAC with the pseudo-command
rp(k) = sin( 	1

2 k) is turned on at k = 100. Part (a) shows the time
history of z. Part (b) shows the frequency response of Gc,3000(z),
which indicates that Gc,3000(z) has high gain at the command
frequency 	1 = π /5 rad/sample.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 0

2:
26

 0
2 

Fe
br

ua
ry

 2
01

4 



500 J. Yan and D.S. Bernstein

Figure 23. Example 6.3. Part (a.i) shows the quadratic input nonlinearity N (u) = u2 − 2 and the auxiliary nonlinearities Nb and Nr .
Part (a.ii) shows the piecewise non-decreasing input nonlinearity R[−4,0)(N ◦ Nr ◦ Ns) ⊂ R[0,4](N ◦ Nr ◦ Ns), which is not partially
overlapping. Part (a.iii) shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing. Part (b) shows the closed-loop
response of the stable minimum-phase plant G given by Equation (30) with the sinusoidal command r(k) = sin (0.2πk) and disturbance
w(k) = 0.5 sin( π

2 k).
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Figure 24. Example 6.4. Part (a) shows that RCAC follows the sinusoidal command for the Hammerstein system. Part (b) shows the input
nonlinearity N , parts (c) and (d) show the auxiliary nonlinearities Nr and Nb, part (e) shows that the composite nonlinearity N ◦ Nr ◦ Ns

is piecewise increasing, and part (f) shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing.

consider the sinusoidal command r(k) = sin (	1k), where
	1 = π /5 rad/sample. We let nc = 10, P0 = I2nc

, η0 = 0.01,
H̃ = H1, and do not use a pseudo-command. Figure 21(a)
shows the resulting time history of z. In this case, the adap-
tive controller fails to follow the command in the presence
of the input nonlinearity. Figure 21(c) shows the frequency
response of Gc,5000(z), which has high gain at 2	1, but not
at the command frequency 	1.

Example 6.2 (Minimum-phase, stable plant, evenN , and
pseudo-command): As in Example 6.1, we consider the
asymptotically stable, NMP plant (38) with the quadratic
input nonlinearity (41) and the sinusoidal command r(k)
= sin (	1k + φ), where 	1 = π /5 rad/sample and φ =
π /6 rad. The pseudo-command frequency is 	p = 	1/2 =
π /10 rad/sample, and we let nc = 10, P0 = 0.01I2nc

, η0

= 0.01, and H̃ = H1. The Hammerstein system runs open
loop for 100 time steps, and RCAC is turned on at k =
100. Figure 22(a) shows the time history of z. Figure 22(b)
shows the frequency response of Gc,3000(z), which has high
gain at the command frequency 	1.

6.2 Adaptive control of Hammerstein systems
with even input nonlinearities using auxiliary
nonlinearities

We now present numerical examples for RCAC controller
with auxiliary nonlinearities under the condition that the
input nonlinearity is even. The auxiliary nonlinearities are
used such that the input nonlinearity N ◦ Nr ◦ Ns ◦ Nb is
globally non-decreasing and thus not even.

Example 6.3: We consider the asymptotically stable, NMP
plant,

G(z) = z − 1.2

z2 + 0.3z − 0.1
, (42)

with the quadratic input nonlinearity (41), which is neither
one-to-one nor onto and satisfiesN (0) = −2. Note that d =
1 and Hd = 1. As shown in Figure 23(a.i), since N (u) is not
monotonic and G is NMP, we chooseNsat(uc) = satp,q(uc),
where p = −4 and q = 4 in Equation (20), let Nr (ub) =
−ub − 4 for ub ∈ [−4, 0] and Nr (ub) = ub otherwise,
and select Ns(ub) = ub so that the composite nonlinearity
N ◦ Nr ◦ Ns is piecewise non-decreasing in Figure 23(a.ii).
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502 J. Yan and D.S. Bernstein

Figure 25. Example 7.1. Part (a.i) shows the input nonlinearity N (u) given by Equation (45) and the auxiliary nonlinearities Nb and
Nr . Part (a.ii) shows the piecewise non-decreasing input nonlinearity N ◦ Nr ◦ Ns with partially overlapping intervals. Part (a.iii) shows
that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing. Part (b) shows the closed-loop response to the sinusoidal command
r(k) = sin (0.2πk) of the stable minimum-phase plant G given by Equation (44). Part (b) shows the resulting time history of z, and part (c)
shows the time history of u. Finally, part (d) shows the frequency response of Gc,2000(z), which indicates that Gc,2000(z) has high gain at
the command frequency 	 = π /5 rad/sample.

Knowledge of only the monotonicity of N is used to
choose Nr . To construct Nb, note that the piecewise non-
decreasing composite nonlinearity N ◦ Nr ◦ Ns satisfies
R[−4,0)(N ◦ Nr ◦ Ns) ⊂ R[0,4](N ◦ Nr ◦ Ns), which is not
partially overlapping. Therefore, no additional information
about N ◦ Nr ◦ Ns is needed. We let Nb(usat) = 0 for usat

∈ [−4, 0) and Nb(usat) = usat otherwise. Figure 23(a.iii)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb

is non-decreasing.
We consider the single-tone sinusoidal command r(k) =

sin 	1k, where 	1 = π /5 rad/sample, and the disturbance
w(k) = 0.5 sin(π

2 k). We let nc = 10, P0 = 0.01I2nc
, η0 =

0.1, and H̃ = H1. Figure 23(b) shows the time history of
z with the input nonlinearity and disturbance present and
RCAC is able to follow the command.

Example 6.4: We consider the asymptotically stable,
minimum-phase plant (30) with the non-monotonic input

nonlinearity:

N (u) = cos(2u), (43)

which is neither one-to-one nor onto and satisfiesN (0) = 1.
Note that d = 1 and Hd = 1. As shown in Figure 24(b),N (u)
is increasing for all u ∈ ⋃

n∈Z

((
n − 1

2

)
π, nπ

)
, and de-

creasing for all u ∈ ⋃
n∈Z

(
nπ,

(
n + 1

2

)
π

)
. We thus choose

Nsat(uc) = satp,q(uc), where p = −106 and q = 106 in
Equation (20), let Nr (us) = us in the intervals where N
is increasing, and Nr (us) = −us + (2n + 1/2)π in the in-
tervals where N is decreasing, and select Ns(ub) = ub.
The composite nonlinearity N ◦ Nr ◦ Ns is piecewise
non-decreasing in Figure 24(e). Knowledge of only the
monotonicity intervals of N is used to choose Nr . To
construct Nb, note that the piecewise non-decreasing com-
posite nonlinearity N ◦ Nr ◦ Ns satisfies RIi

(N ◦ Nr ◦
Ns) ⊂ RIj

(N ◦ Nr ◦ Ns) for all i 
= j. Therefore, no
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Figure 26. Example 7.2. Part (a) shows the non-monotonic input nonlinearity N (u) given by Equation (22), and part (b) shows the
auxiliary nonlinearities Nb and Nr . Part (c) shows that the composite nonlinearity N ◦ Nr ◦ Ns is piece-wise non-decreasing. Part (d)
shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally non-decreasing. Part (e) shows the closed-loop response to the
sinusoidal command r(k) = sin (0.2πk) of the stable minimum-phase plant G given by Equation (46). Part (f) shows the resulting time
history of u, and (h) shows the time history of θ .
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504 J. Yan and D.S. Bernstein

additional information of N ◦ Nr ◦ Ns is needed. We let
Nb(usat) = 0 for usat < 0,Nb(usat) = π/2 for usat > π /2 and
Nb(usat) = usat otherwise. Figure 24(f) shows that the com-
posite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing.

We consider the single-tone sinusoidal command
r(k) = sin 	1k, where 	1 = π /5 rad/sample. We let nc = 10,
P0 = 0.1I2nc

, η0 = 0, and H̃ = H1. Figure 24(a) shows the
time history of the performance z with the input nonlinear-
ity present and z approaches zero in about 500 time steps.
Figure 24(b) shows the input nonlinearity N , Figure 24(c)
and 24(d) show the auxiliary nonlinearity Nr and Nb.

7. Hammerstein systems with arbitrary input
nonlinearities

We now present numerical examples to illustrate the re-
sponse of RCAC with auxiliary nonlinearities for the case
where the input nonlinearities are neither odd nor even.

Example 7.1: We consider the asymptotically stable,
minimum-phase plant,

G(z) = 1

z − 0.5
(44)

with the input nonlinearity

N (u) =
⎧⎨
⎩

u3, if u < −1
−u − 2, if − 1 ≤ u ≤ 1
3u2 − 6, if u > 1.

(45)

The command is r(k) = sin (0.2πk). Note that d = 1 and Hd

= 1. As shown in Figure 25(a.i), the input nonlinearity N is
one-to-one and onto and has the offset N (0) = −2. Since
N is non-monotonic and has partially overlapping inter-
vals, and G is asymptotically stable, we choose Nsat(uc) =
satp,q(uc), where p = −106 and q = 106 in Equation
(20), let Nr (ub) = −us for us ∈ [−1, 1] and Nr (us) = us

otherwise, and select Ns(ub) = ub so that the compos-
ite nonlinearity N ◦ Nr ◦ Ns is piecewise non-decreasing
in Figure 25(a.ii). Knowledge of only the monotonicity
of N is used to choose Nr . To construct Nb, note that
piecewise non-decreasing input nonlinearity N ◦ Nr ◦ Ns

has partially overlapping intervals. Therefore, we assume
that (N ◦ Nr ◦ Ns) (1.29) = −1 is known. We thus choose
Nb(usat) = 1 for usat ∈ [−1, 1.29] and Nb(usat) = usat oth-
erwise. Figure 25(a.iii) shows that the composite nonlinear-
ity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing. We let nc = 10,
P0 = 0.1I2nc

, η0 = 0.1, and H̃ = H1. Figure 25(b) shows
the resulting time history of z, while Figure 25(c) shows the
time history of u. Finally, Figure 25(d) shows the frequency
response of Gc,2000(z), which indicates that Gc,2000(z) has
high gain at the command frequency 0.2π rad/sample.

Example 7.2: We consider the asymptotically stable,
minimum-phase plant,

G(z) = z − 0.3

(z − 0.6)(z − 0.8)
(46)

with the input nonlinearity (22). The command is r(k) =
sin (0.2πk). Note that d = 1 and Hd = 1. As shown in Fig-
ure 26(a), the input nonlinearity N is neither one-to-one
nor onto. Following the same procedures in Example 4.13,
we thus choose Nb, Ns , and Nr as in Equations (23), (24),
and (25), respectively. Figure 26(d) shows that the com-
posite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is non-decreasing.
We let nc = 10, P0 = 0.01I2nc

, η0 = 0.01, and H̃ = H1.
Figure 26(e) shows the time history of the performance z
with the input nonlinearity present and z approaches zero
in about 1000 time steps and Figure 26(f) shows the time
history of u. Figure 26(g) shows the input nonlinearity N
and Figure 26(h) shows the time history of θ .

8. Conclusions

RCAC was applied to a command-following problem for
Hammerstein systems. The input nonlinearities could be
odd, even, or arbitrary, as well as monotonic or non-
monotonic. RCAC was used with limited modelling in-
formation. In particular, RCAC uses knowledge of the first
non-zero Markov parameter of the linear dynamics. To han-
dle the effect of the non-monotonic nonlinearity, RCAC
was augmented by auxiliary nonlinearities chosen based
on the properties of the input nonlinearity. The auxiliary
nonlinearities combine with the input nonlinearity to form
a composite nonlinearity that is globally non-decreasing.
Simulation results show that RCAC is able to follow the
commands for the Hammerstein systems with an unknown
disturbance when the composite input nonlinearity is glob-
ally non-decreasing.
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