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Active feedback noise control for rejecting broadband disturbances must contend with the
Bode integral constraint, which implies that suppression over some frequency range gives
rise to amplification over another range at the performance microphone. This is called
spectral spillover. The present paper deals with spatial spillover, which refers to the am-
plification of noise at locations where no microphone is located. A spatial spillover
function is defined, which is valid for both feedforward and feedback control with scalar
and vector control inputs. This function is numerically analyzed and measured experi-
mentally. Obstructions are introduced in the acoustic space to investigate their effect on
spatial spillover.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Active noise suppression has been extensively studied for several decades, and numerous techniques have been de-
veloped, analyzed, and tested, with several highly successful applications [1–3]. Noise suppression algorithms can be
classified as either feedforward or feedback. Feedforward algorithms assume that a direct or indirect measurement of the
disturbance is available, and this signal is passed through an adaptive filter to a control speaker [2,3]. These algorithms
assume that the disturbance measurement is not corrupted by the control-speaker output, which means that the transfer
function from the control input to the disturbance measurement is zero.

In some applications, however, it is difficult to measure the disturbance. For example, it is difficult for external sensors to
measure the effect of broadband road and wind noise on the interior of the vehicle. If internal microphones are used, then
the measurements include the effect of the control speakers. In this situation, feedback control is more appropriate than
feedforward control. However, feedback control is susceptible to instability in the event of model errors.

Furthermore, although feedback control can suppress broadband noise, the Bode integral constraint implies that redu-
cing the magnitude of the frequency response at the performance microphone is impossible at all frequencies [4–6]. For
narrowband disturbances, this does not present a problem since the noise spectrum is confined to a limited bandwidth.
However, for broadband disturbances, it is inevitable that, at least in some frequency range, the closed-loop noise level is
amplified relative to the open-loop noise level. The challenge is thus to shape the closed-loop response so that spectral
spillover has minimal effect on the closed-loop performance.

Beyond spectral spillover, yet another challenge is spatial spillover. Spatial spillover refers to the phenomenon where a
controller may suppress noise at one location (the location of the performance microphone) but amplify it at another
location (the location of an evaluation microphone). Due to restrictions in the design of a system, a performance
n).
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Fig. 1. Amplitude of the sum of two unit-amplitude sinusoids with identical frequency ω and relative phase ϕ. For ϕ = °180 , perfect cancellation occurs,
and thus, the amplitude of the sum is zero. For ϕ = ± °180 60 , the amplitude of the sum is 1. The plot is based on the fact that

ω ω ϕ ϕ ω ϕ( ) + ( + ) = ( ) ( + )t t tsin sin 2 cos /2 sin /2 .
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microphone may not always be placeable at all locations in which it is desirable to suppress noise. Thus, in the design phase,
it is crucial to understand the relation between where the performance microphone is placed and evaluation locations
where it is desirable to suppress noise.

The notion of spatial spillover defined in this paper concerns the decrease in the noise amplitude at the location of the
performance microphone relative to its open-loop level as compared to the decrease in noise amplitude at the location of
the evaluation microphone relative to its open-loop level. Consequently, spatial spillover is a measure of the relative ef-
fectiveness of the control at different locations. This notion is distinct from the fact, as shown in Fig. 1, that the sum of two
unit-amplitude sinusoidal waves of the same frequency may possess any amplitude between 0 and 2 depending on the
relative phase shift of the waves. Consequently, a disturbance sinusoid and a control-speaker sinusoid may add destructively
at one location and constructively at another location depending on the phase shift between the waves at these locations.
This notion is often used to estimate the bandwidth in which control is effective within an acoustic space. However, this
phenomenon per se says nothing about the relationship between open- and closed-loop noise levels at a given location, and
thus is not relevant to spatial spillover as defined and analyzed in this paper.

The goal of the present paper is to investigate the phenomenon of spatial spillover within a 3D acoustic space. To do this,
we define a spatial spillover function for both feedforward and feedback control. It turns out that the spatial spillover
function has the same functional form for both feedforward and feedback control and, in addition, is independent of the
control in the case of scalar control. We also show that the spatial spillover function can be expressed as a ratio of trans-
missibility functions.

For illustrative 2DOF models, we consider feedforward and feedback controllers and compute the spatial spillover
function. We then implement feedforward and feedback controllers in a series of noise control experiments with broadband
disturbances. We measure the response at the locations of the performance and evaluation microphones, and we use this
data to experimentally determine the spatial spillover function.

In certain applications, obstructions that are difficult to model may be present in the acoustic space, for example, pas-
sengers in a vehicle. We thus introduce obstructions between the performance and evaluation microphones in order to
determine the effect on the spatial spillover function. The experimental results show that the presence of an obstruction can
shift the magnitude and phase of the spatial spillover function relative to the acoustic space without the obstruction. A
preliminary version of some of the results in this paper appeared in [7].

The contents of the paper are as follows. In Section 2, the spatial spillover function for feedforward control is derived, and
numerical examples are presented in Section 3. In Section 4, the spatial spillover function for feedback control is derived,
and numerical examples are presented in Section 5. Section 6 expresses the spatial spillover function in terms of trans-
missibility functions. Experimental results are presented in Section 7, and conclusions are discussed in Section 8.
2. Spatial spillover function for feedforward control

Consider the feedforward control problem shown in Fig. 2, where ∈z is the performance variable, ∈e is the eva-
luation variable, ∈w is the disturbance, and ∈u lu is the control input. Note that z, e, and w are scalar signals and that u
may be either a scalar or vector signal depending on whether lu¼1 or >l 1u , respectively. The dynamics and signals may be
either continuous time or discrete time.



Fig. 2. Feedforward control.
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It follows from Fig. 2 that

= + ( )z G u G w, 1zu zw

= + ( )e G u G w, 2eu ew

where the feedforward control u is given by

= ( )u G w. 3c

Therefore,

= ( )∼
z G w, 4zw

= ( )∼
e G w, 5ew

where

≜ + ( )∼
G G G G , 6zw zu zwc

≜ + ( )∼
G G G G . 7ew eu ewc

Define the spatial spillover function Gss by

≜
−

−
( )

∼

∼G

G
G

G
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.
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ew

ew
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zw

ss

Note that, if =G G 0zu c , then =
∼
G Gzw zw, and thus the spatial spillover function is undefined. We therefore assume that

≠G G 0zu c . Gss relates the performance of the controlled system relative to the uncontrolled system at e to the performance of
the controlled system relative to the uncontrolled system at z. It follows from (6) and (7) that

− =
( )
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G
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G G
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1 ,
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zw
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zw
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− =
( )
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1 ,
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and thus (8)–(10) implies that

=
( )

G
G G G
G G G

.
11

eu zw

zu ew
ss

c

c

In the case where u is scalar, that is, lu¼1, it follows that

=
( )

G
G G
G G

,
12

eu zw

zu ew
ss

which is independent of Gc. Note that Gss is a rational function of the Laplace or Z-transform variable. However, Gss is not a
transfer function since it may be improper and does not have input and output signals that can be specified in terms of
z e w, , , and u.
3. Feedforward control numerical examples

Consider a discrete-time state-space representation of (1), (2) given by
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( + ) = ( ) + ( ) + ( ) ( )x k Ax k Bu k D w k1 , 131

( ) = ( ) ( )z k E x k , 141

( ) = ( ) ( )e k Cx k , 15

where

( ) = ( − ) ( )−G E I A Dz z , 16zw 1
1

1

( ) = ( − ) ( )−G E I A Bz z , 17zu 1
1

( ) = ( − ) ( )−G C I A Dz z , 18ew
1

1

( ) = ( − ) ( )−G C I A Bz z , 19eu
1

and the state-space representation of the feedforward controller (3) given by

( + ) = ( ) + ( ) ( )x k A x k B w k1 , 20c c c c

( ) = ( ) + ( ) ( )u k C x k D w k , 21c c c

where



( ) = ( − ) +

∈ ( )

−G C I A B D

x

z z ,

. 22n

c c c
1

c c

c c

In the subsequent feedforward numerical examples, the discrete-time state-space systems are chosen arbitrarily as a 4th-
order systemwith two modes. We assume that w is zero-mean Gaussian white noise with standard deviation 1. Feedforward
controllers are designed to suppress the effect of w at z. No considerations are made in the controller design to suppress the
effect of w at e. The details of the controller design are omitted since they are not relevant to the analysis.

In each example we compare the spatial spillover function for two different feedforward controller designs applied to the
same system. The spatial spillover function is computed using (8) which is a function of Gzw ,

∼
G G,ew zw given by (6), and

∼
Gew

given by (7). We demonstrate that, if =l 1u , then (8) is independent of Gc, whereas if >l 1u , then (8) is not independent of Gc.

Example 1. Gss for feedforward control with scalar control u. Consider the 4th-order system

⎡

⎣
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⎢
⎢
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⎥
⎥
⎥
⎥
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⎢
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⎢

⎤
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⎥
⎥
⎥

⎡

⎣
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⎤
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⎥
⎥

= − − −

−

= =

−

−
− ( )

A B D

0.45 1 0 0
0.05 0.45 0.37 0.66
0 0 0.38 1
0 0 0.76 0.38

,

0
1.01

0
0.76

,

1.53
0
1.11
1.04

,

23

1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − = − ( )E C0.15 0.99 0 0 , 0.99 0.26 0.38 0.17 . 241

Assuming that this discrete-time model arises from sampling a continuous-time system at the sample rate of 1 kHz, the
corresponding continuous-time modal frequencies are ω = 132 Hzn1 and ω = 185 Hzn2 with damping ratios ζ = 0.8311 and
ζ = 0.0432 , respectively. We apply two different feedforward controllers to this system, namely,

⎡
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⎢
⎢
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⎥
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,
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c c

⎡⎣ ⎤⎦= − − = − ( )C D0.59 0.23 0.17 , 0.12 26c c

and
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0.67 0.62 0 0
0 0 0.54 0
0 0 0 0.01

,

1.39
2.15
0.94

0.56

,

27

c c

⎡⎣ ⎤⎦= − = − ( )C D0.56 0.18 0.15 0.21 , 0.18. 28c c

For both controllers, Fig. 3 shows the frequency response of the controlled and uncontrolled system at z and e as well as the



Fig. 3. Example 1: comparison of Gss computed as (8) for feedforward control with scalar control u. (a) and (b) show the controlled and uncontrolled
frequency response of the system (23), (24) using the controller (25), (26) denoted in the above legend as Gc,1; (c) and (d) show the controlled and
uncontrolled frequency response of the system (23), (24) using the controller (27), (28) denoted in the above legend as Gc,2. Note that, since u is scalar, Gss is
independent of Gc , and thus (e), which shows the frequency response of Gss for the controller (25), (26), is identical to (f), which shows the frequency
response of Gss for the controller (27), (28).
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Fig. 4. Example 2: comparison of Gss computed as (8) for feedforward control with vector control ∈u 2. (a) and (b) show the controlled and uncontrolled
frequency response of the system (29), (30) using the controller (31), (32) denoted in the above legend as Gc,1; (c) and (d) show the controlled and
uncontrolled frequency response of the system (29), (30) using the controller (33), (34) denoted in the above legend as Gc,2. Note that, since u is a vector, Gss
depends on Gc , and thus (e), which shows the frequency response of Gss for the controller (31), (32), differs from (f), which shows the frequency response of
Gss for the controller (33), (34).
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A. Xie, D. Bernstein / Journal of Sound and Vibration 391 (2017) 1–19 7
frequency response of Gss. Since u is scalar, Gss is the same for both controllers.

Example 2. Gss for feedforward control with vector control ∈u 2. Consider the 4th-order system
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1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= = − − ( )E C0.53 0.93 0 0 , 0.93 0.17 0.69 0.72 . 301

Assuming that this discrete-time model arises from sampling a continuous-time system at the sample rate of 1 kHz, the
corresponding continuous-time modal frequencies are ω = 52 Hzn1 and ω = 127 Hzn2 with damping ratios ζ = 0.1621 and
ζ = 0.0692 , respectively. We apply two different feedforward controllers to this system, namely,
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and

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−
−
− −

= −

( )

A B

0.95 0 0 0
0 0.51 0.64 0
0 0.64 0.51 0
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⎡
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⎤
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, 0.29
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34
c c

For both controllers, Fig. 4 shows the frequency response of the controlled and uncontrolled system at z and e as well as the
frequency response of Gss. Note that, since u is a vector, Gss depends on Gc.
4. Spatial spillover function for feedback control

Consider the feedback control architecture shown in Fig. 5, where ∈z is the performance variable, ∈e is the eva-
luation variable, ∈w is the disturbance, and ∈u lu is the control input. The system may be either continuous time or
discrete time.

It follows from Fig. 5 that

= + ( )z G u G w, 35zu zw

= + ( )e G u G w, 36eu ew

where the feedback control u is given by

= ( )u G z. 37c

Using (35) and (37) we obtain

= ( )∼
z G w, 38zw
Fig. 5. Feedback control.



Fig. 6. Example 3: comparison of Gss computed as (42) for feedback control with scalar control u. (a) and (b) show the controlled and uncontrolled
frequency response of the system (23), (24) using the controller (50), (51) denoted in the above legend as Gc,1; (c) and (d) show the controlled and
uncontrolled frequency response of the system (23), (24) using the controller (52), (53) denoted in the above legend as Gc,2. Note that, since u is scalar, Gss is
independent of Gc , and thus (e), which shows the frequency response of Gss for the controller (50), (51), is identical to (f), which shows the frequency
response of Gss for the controller (52), (53).
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Fig. 7. Example 4: Gss for feedback control with vector control ∈u 2. (a) and (b) show the controlled and uncontrolled frequency response of the system
(29), (30) using the controller (54), (55) denoted in the above legend as Gc,1; (c) and (d) show the controlled and uncontrolled frequency response of the
system (29), (30) using the controller (56), (57) denoted in the above legend as Gc,2. Note that, since u is a vector, Gss depends on Gc, and thus (e), which
shows the frequency response of Gss for the controller (54), (55), differs from (f), which shows the frequency response of Gss for the controller (56), (57).
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where

≜
− ( )

∼
G

G
G G1

.
39zw

zw

zu c

In addition, it follows from (36), (37), and (38) that

= ( )∼
e G w, 40ew

where

≜ + =
−

+
( )

∼ ∼
G G G G G

G G G
G G

G
1

.
41ew eu zw ew

eu zw

zu
ewc

c

c

For feedback control, we define the spatial spillover function Gss by
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,
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zw

zw
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which is identical in form to Gss defined by (8) for feedforward control. As in the case of feedforward control, we assume that
≠G G 0zu c . However,

∼
Gzw and

∼
Gew defined by (39) and (41) for feedback control are different from

∼
Gzw and

∼
Gew defined by

(6) and (7) for feedforward control. It follows from (39) and (41) that
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∼
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,
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c
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G G G

1
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Therefore, (42) implies that
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G G G
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1
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Note that (45) has the same form as Gss given by (11) for feedforward control. In the case where u is scalar, it follows that

=
( )

G
G G
G G

,
46

eu zw

zu ew
ss

which is independent of Gc and coincides with (12) for feedforward control.
5. Feedback control numerical examples

Consider a discrete-time state-space representation of the system (35), (36) given by (13)–(19) and the state-space
representation of the feedback controller (37) given by

( + ) = ( ) + ( ) ( )x k A x k B z k1 , 47c c c c

( ) = ( ) + ( ) ( )u k C x k D z k , 48c c c

where

( ) = ( − ) + ( )−G C I A B Dz z . 49c c c
1

c c

In the subsequent feedback numerical examples, we consider the same plants as in the feedforward numerical examples
section. We assume that w is zero-mean Gaussian white noise with standard deviation 1. Feedback controllers are designed
to suppress the effect of w at z. No considerations are made in the controller design to suppress the effect of w at e. The
details of the controller design are omitted since they are not relevant to the analysis.

In each example we compare the spatial spillover function for two different feedback controller designs applied to the
same system. The spatial spillover function is computed using (42) which is a function of Gzw, Gew,

∼
Gzw given by (39), and

∼
Gew

given by (41). We demonstrate that, if =l 1u , then (42) is independent of Gc, whereas if >l 1u , then (42) is not independent of
Gc.



A. Xie, D. Bernstein / Journal of Sound and Vibration 391 (2017) 1–19 11
Example 3. Gss for feedback control with scalar control u. Consider the system (23), (24) with scalar control u. We apply two
different feedback controllers to this system, namely,

⎡

⎣
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
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⎥
⎥
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( )

A B

1.02 0 0 0
0 0.44 0.66 0
0 0.66 0.44 0
0 0 0 0.47

,

0.49
0.42
1.08
1.12

,

50

c c

⎡⎣ ⎤⎦= − = ( )C D0.97 0.17 0.02 0.10 , 0 51c c

and
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⎥
⎥
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⎥
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A B

1.35 0 0 0 0
0 0.60 0.65 0 0
0 0.65 0.60 0 0
0 0 0 0.58 0
0 0 0 0 0.34

,

0.87
1

1.72
1.46
0.54

,

52

c c

⎡⎣ ⎤⎦= − − − − = ( )C D0.84 0.17 0.13 0.09 0.04 , 0. 53c c

For both controllers, Fig. 6 shows the frequency response of the controlled and uncontrolled system at z and e as well as the
frequency response of Gss. Since u is scalar, Gss is the same for both controllers.

Example 4. Gss for feedback control with vector control u. Consider the system (29), (30), where ∈u 2. We apply two dif-
ferent feedback controllers to this system, namely,

⎡
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⎢
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⎥
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⎥=

−
−
− −

=
−

− ( )
A B

1.35 0 0
0 0.01 0.34
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c c

and
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦
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For both controllers, Fig. 7 shows the frequency response of the controlled and uncontrolled system at z and e as well as the
frequency response of Gss. Note that, since u is a vector, Gss depends on Gc.
6. Spatial spillover as a ratio of transmissibilities

Consider the case where z, e, w, and u are scalar signals and introduce the notation
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Assume that =D Dzw ew and =D Dzu eu. The transmissibility [8–10] from z to e driven by w is given by
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Similarly, the transmissibility from z to e driven by u is given by
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Therefore, it follows from (12) and (46) that
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Hence Gss can be expressed as the ratio of two transmissibility functions.
Fig. 9. Example 5: comparison of Gss for feedforward control with scalar control u. (a) and (b) show the controlled and uncontrolled frequency response at
z and e; (c) shows the frequency response of the controller. (d) compares Gss estimated using (8) and (11).

Fig. 8. Sensor and actuator placement.
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7. Experimental results

7.1. Experimental setup

We apply feedforward and feedback controllers to an acoustic experiment to investigate the spatial spillover function.
Omni-directional microphones are used as sensors, and mid-bass woofers are used as the actuation. Real Time Workshop
(RTW) and MATLAB/Simulink is used with a dSPACE DS1104 board to implement the designed controllers. Additional
hardware used in implementation included speaker amplifiers, microphone amplifiers, and anti-aliasing filters. A diagram of
the microphone and speaker placement is shown in Fig. 8. The approximate dimensions of the acoustic space are 6 ft×3 ft×3
ft. We consider three microphone locations m1, m2, and m3, and three speaker locations s1, s2, and s3. In the subsequent
experiments, one microphone is chosen as the performance microphone z, a separate microphone is chosen as the eva-
luation microphone e, one speaker is chosen to produce a disturbance w, and either one or both of the remaining speakers
are chosen as the control speaker u. The frequency range of interest for this study is from 50 Hz to 500 Hz, with all data
sampled at 1 kHz. Each data set is ran for 10,000 samples and multiple runs are repeated to check for consistency. In all
experimental examples, the disturbance w is chosen as zero-mean Gaussian white noise.

7.2. Experimental determination and validation of the spatial spillover function

In the subsequent feedforward control experiments, two methods for estimating the spatial spillover function Gss are
compared. We estimate Gss using both (8) and (11). The Blackman-Tukey spectral analysis method [11] with a Hanning
window is applied to input-output data in order to estimate the frequency response of various transfer functions in Gss.

Determining Gss using (8) requires estimates of Gzw, Gew,
∼
Gzw, and

∼
Gew. The frequency response of Gzw and Gew are
Fig. 10. Example 6: comparison of Gss for feedforward control with vector control ∈u 2. (a) and (b) show the controlled and uncontrolled frequency
response at z and e; (c) shows the frequency response of both channels the controller. (d) compares Gss estimated using (8) and (11).
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estimated by exciting the system with a known broadband input w and sampling the z microphone and e microphone
outputs. The frequency response of

∼
Gzw and

∼
Gew are estimated by applying the controller to the system with a known

disturbance w and similarly obtaining measurements of the output signals z and e. Determining Gss using (11) requires
estimates of Gzw, Gew, Gzu, and Geu, and, in the case where u is a vector, depends on the design of Gc. The frequency response of
Gzw and Gew are estimated as described above. The frequency response of Gzu and Geu are estimated by exciting the system
with a known broadband input u and sampling the z microphone and e microphone outputs.

Note that Gss estimated as (8) requires applying the controller to the system, whereas Gss estimated as (11) does not. The
goal of the experimental examples is to show that the estimated frequency response of (8) and (11) agree, despite the fact
that one method requires applying the controller to the system. In practice, it may be more advantageous to estimate Gss as
(11) since the identification of Gzu and Geu is of lower order and the expression is less complex than

∼
Gzw and

∼
Gew. Similar logic

applies to the feedback case between estimating Gss as (42) and (45). The details of the controller design are again omitted
since they are not relevant to the analysis of Gss. We note that in all experimental examples, the matching between Gss

estimated using the two methods degrades as the Nyquist rate is approached. Furthermore, it was observed that if ≈
∼

1G
G

ew

ew
,

the matching between the two methods can be adversely effected.

7.2.1. Experimental results using feedforward control

Example 5. Comparison of Gss for feedforward control with scalar control u. We choose m2 as z, m1 as e, s1 as w, and s2 as u.
A feedforward controller is designed to suppress the effect of w at z. Fig. 9 shows the frequency response of the controller,
the controlled and uncontrolled system at z and e, and Gss estimated using (8) and (11). The magnitude and phase of Gss

estimated using (8) and (11) are within 5 dB and 10° from 50 Hz to 380 Hz, and within 12 dB and 60o from 250 Hz to 500 Hz.
Fig. 11. Example 7: comparison of Gss for feedback control with scalar control u. (a) and (b) show the controlled and uncontrolled frequency response at z
and e; (c) shows the frequency response of the controller. (d) compares Gss estimated using (42) and (45).



Fig. 12. Example 8: comparison of Gss for feedback control with vector control ∈u 2. (a) and (b) show the controlled and uncontrolled frequency response
at z and e; (c) shows the frequency response of both channels the controller. (d) compares Gss estimated using (42) and (45).

Fig. 13. Example 9: comparison of Gss for scalar control u, estimated as (12), shown in black, and (61), shown in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Example 10: comparison of Gss with and without a height-wise obstruction in the acoustic space. (a) shows Gss for z and e1 with s3 as u, and
(b) shows Gss for z and e2 with s3 as u. Note that in (a), the magnitude and phase of Gss noticeably shifts due to the obstruction. In (b), the magnitude of Gss
slightly shifts due to the obstruction while the phase of Gss significantly shifts due to the obstruction. (c) shows Gss for z and e1 with s1 as u, and (d) shows
Gss for z and e2 with s1 as u. Note that in (c), the magnitude and phase of Gss slightly shifts due to the obstruction. In (d), the magnitude and phase of Gss
significantly shifts due to the obstruction.

Fig. 14. Diagram of two different obstructions tested in acoustic space. (a) shows a height-wise obstruction, and (b) shows a length-wise obstruction.
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Example 6. Comparison of Gss for feedforward control with vector control ∈u 2. We choose m2 as z, m1 as e, s1 as w, s2 as
u1, and s3 as u2. A feedforward controller is designed to suppress to suppress the effect of w at z. Fig. 10 shows the frequency
response of the controller, the controlled and uncontrolled system at z and e, and Gss estimated using (42) and (45). The
magnitude and phase of Gss estimated using (42) and (45) are within 5 dB and 10° from 50 Hz to 250 Hz, and within 12 dB
and 60° from 250 Hz to 500 Hz.

7.2.2. Experimental results using feedback control

Example 7. Comparison of Gss for feedback control with scalar control u. Consider the same choice of microphones and
speakers as in Example 5. A feedback controller is designed to suppress the effect of w at z. Fig. 11 shows the frequency
response of the controller, the controlled and uncontrolled system at z and e, and Gss estimated using (42) and (45). The
magnitude and phase of Gss estimated using (42) and (45) are within 5 dB and 20° from 50 Hz to 250 Hz, and within 12 dB
and 40° from 250 Hz to 500 Hz.

Example 8. Comparison of Gss for feedback control with vector control ∈u 2. Consider the same choice of microphones
and speakers as in Example 6. A feedback controller is designed to suppress the effect of w at z. Fig. 12 shows the frequency
response of the controller, the controlled and uncontrolled system at z and e, and Gss estimated using (42) and (45). The
magnitude and phase of Gss estimated using (42) and (45) are mismatched from 50 Hz to 100 Hz, and from 200 Hz to 250 Hz,
where the difference between the two estimates exceeds 15 dB and 60°. At other frequencies, the magnitude and phase are
within 5 dB and 20°. The large mismatch is partially due to the fact that ≈

∼
G Gew ew across those bands, and thus the nu-

merator of (42) becomes approximately zero causing the numerical accuracy of the estimate to degrade.
Fig. 16. Example 11: comparison of Gss with and without a length-wise obstruction in the acoustic space. (a) shows Gss for z and e1 with s3 as u, and
(b) shows Gss for z and e2 with s3 as u. Note that in both (a) and (b), the magnitude and phase of Gss does not shift across the low and mid frequencies, but
noticeably shifts at high frequencies due to the obstruction. (c) showsGss for z and e1 with s1 as u, and (d) showsGss for z and e2 with s1 as u. Note that in (c),
the magnitude and phase of Gss does not shift due to the obstruction. In (d), the magnitude and phase of Gss significantly shifts due to the obstruction.
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7.3. Computing Gss as a ratio of transmissibilities

Consider the case where u is a scalar. Gss can be estimated using (61), which is a ratio of transmissibility functions. The
advantage of this method is that estimating the frequency response of a transmissibility function does not explicitly require
the input to be known, but only needs measurements of the ouptut. Hence, if a measurement of disturbance w is un-
available, an estimate of Gss is still obtainable using only measurements of z and e. The disadvantage of estimating Gss using
(61) is that the in order to estimate Tez u, , the system must be excited only by u without the presence of w and vice versa
when estimating Tez w, . We compare Gss estimated using (12) and (61), which are expected to agree.

Example 9. Gss as a ratio of Transmissibilities. We choosem1 as e,m2 as z, s1 as w, and s3 as u. Fig. 13 compares the frequency
response of Gss estimated using (12) and (61). The magnitude and phase of Gss estimated as (12) and (61) are within 5 dB and
20° from 50 Hz to 450 Hz, and within 9 dB and 50° from 450 Hz to 500 Hz.

7.4. Gss in the presence of obstructions

We examine Gss in the presence of obstructions by comparing the estimate of Gss between sensors with and without the
presence of an obstruction. In the subsequent examples, Gss estimated as (12), where we assume u is a scalar, using methods
described above. Fig. 14 shows a diagram of the two configurations considered in the acoustic space. In each example, one
microphone is chosen as z, one speaker is chosen as w, two e locations, denoted as e1 and e2, are chosen, and two separate
locations for u are considered. The spatial spillover function is estimated for the pair z and e1 and the pair z and e2 for both
choices of u. In certain cases, the presence of obstruction can significantly shift the magnitude and phase of the spatial
spillover function relative to when the obstruction is not present.

Example 10. Comparison of Gss with and without a height-wise obstruction. We choosem2 as z, s1 as w, and two e locations,
with m1 as e1 and m3 as e2. We consider two choices of u, where for the first system we choose s3 as u, and the second
system we choose s2 as u. Comparison of Gss with and without a height-wise obstruction in the acoustic space for both
choices of u is shown in Fig. 15. Of the four cases considered in the example, a noticeable or significant shift in the mag-
nitude and phase of Gss is observed in three cases.

Example 11. Comparison of Gss with and without a length-wise obstruction. We consider the same choices of speakers and
microphones as in Example 10, and place a length-wise obstruction in the acoustic space. Comparison of Gss with and
without a length-wise obstruction in the acoustic space for both choices of u is shown in Fig. 16. Of the four cases considered
in the example, a noticeable or significant shift in the magnitude and phase of Gss is observed in one case.
8. Conclusions and future research

The spatial spillover function was validated in both numerical and experimental studies, and it was shown that the
expression for Gss is the same for both feedforward and feedback control. In the case where u is a scalar signal, the spatial
spillover function is independent of the controller, and Gss can be interpreted as a ratio of transmissibility functions. It was
found that obstructions in the acoustic space may give rise to significant shifts in the magnitude and phase of Gss. A sys-
tematic numerical study on the robustness of Gss is left for future work. Finally, all the examples in this paper are carried out
for a single, representative controller. The analysis of spatial spillover has implications for controller synthesis, and this will
be considered in future work.
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