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Wind-field reconstruction from
flight data using an unbiased
minimum-variance unscented filter
Harish J. Palanthandalam-Madapusi1,
Anouck Girard2 and Dennis S. Bernstein2

1Department of Mechanical and Aerospace Engineering, Syracuse University,
Syracuse, NY, USA
2Department of Aerospace Engineering, The University of Michigan,
Ann Arbor, MI, USA

Although guidance of all aircraft is affected by wind disturbances, micro-unmanned aerial
vehicles are especially susceptible. To estimate unknown wind disturbance, we consider two
illustrative scenarios for planar flight. In the first scenario, we assume that measurements of the
heading angle are available, while, in the second scenario, we assume that measurements of
the heading angle are not available. Since the disturbance estimation problem is non-linear, we
develop an extension of the unscented Kalman filter that provides an estimate of the unknown
wind disturbance. Furthermore, we show through simulations that, when the heading angle is
not measured, a kinematic ambiguity is introduced. However, when the initial heading angle is
known and the subsequent heading angle is not measured, this kinematic ambiguity is resolved
and accurate estimates of the wind velocity are obtained.

Key words: input reconstruction, wind estimation, UAV

Notation

x, y Ground coordinates of UAV
w Heading angle of UAV
x Steering rate
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VAC/W Airspeed of UAV
VW/E, u Magnitude and direction of wind velocity, respectively
VAC/E, � Magnitude and direction of aircraft velocity, respectively
VW/E,x, VW/E,y x and y component of wind velocity, respectively
xk State vector at time step k
yk Output vector at time step k
uk Known input vector at time step k
wk, vk Process noise and sensor noise at time step k, respectively
Ak, Bk, Ck, Gk State-space matrices at time step k
x̂0;R k Mean and covariance of the initial state vector, respectively
Qk, Rk Process noise covariance and sensor noise covariance at time step k,

respectively
J(xk) Cost function
q(p\q) Conditional probability density function of p given q
x̂k State estimate
n Order of a system (dimension of the state vector)
x̂knk�1 State estimate after forecast step at time step k
ŷknk�1 Estimate of output after forecast step at time step k
Pxx

knk�1;P
yy
knk�1;P

xy
knk�1 State error covariance, output error covariance, and cross error

covariance after forecast step at time step k
Pxx

knk Error covariance at time step k
Kk Kalman filter gain at time step k
ek Unknown input vector at time step k
Hk Unknown-input matrix at time step k
Pk, Vk Intermediate quantities in the computation of unbiased minimum-

variance filter gain
Lk Unbiased minimum-variance filter gain at time step k
êk Estimate of the unknown input at time step k
fk, hk Functions representing the process and observation models,

respectively
x a

k Augmented state vector at time step k
na Dimension of the augmented state vector
p xxa

k Augmented error covariance at time step k
�k Sigma-point matrix at time step k
coli (A) ith column of matrix A
(A)1/2 Cholesky square root of matrix A
�, a, �, � Parameters of unscented Kalman filter
�i Weights
1p�q p by q matrix of ones

1. Introduction

Small and micro air vehicles are increasingly being used to improve situational
awareness by conducting surveillance, patrolling, and convoy protection (Office of
then Secretary of Defense, 2005). These vehicles provide imagery reconnaissance
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capability out to five to ten miles at the company/platoon/squad level. Due to their
small size, these aircraft have limited payload capacity and usually carry fixed
cameras (which require accurate pointing, therefore accurate knowledge of heading)
and commercial off-the-shelf autopilots (which often have poor heading-measurement
accuracy) (Gross et al., 2006).

Although guidance of all aircraft is affected by the atmospheric motion relative to
the Earth, that is, wind, micro-unmanned aerial vehicles (micro-UAVs) are especially
susceptible. Localized wind-field estimation, especially winds at low velocity, is
difficult. Consequently, alternative means must be used to assess the effects of wind.
Efforts in this direction include wind estimation (Osborne and Rysdyk, 2005;
Rodriguez and Taylor, 2007), and techniques for path planning in wind, for example
(McGee et al., 2006; Ceccarelli et al., 2007), which assume constant known wind fields,
and (Rysdyk, 2006; Thomasson, 1998), which make use of gimballed cameras.

In the present paper we develop a technique for using available measurements to
estimate the local wind-field velocity. To do this, we use state-estimation techniques
that have the ability to reconstruct exogenous disturbance signals that are not directly
measured.

In the case of linear systems, early work on reconstructing exogenous signals
includes input reconstruction through system inversion (Sain and Massey, 1969;
Moylan, 1977), while methods using optimal filters are developed in (Glover, 1969;
Corless and Tu, 1998; Hou and Patton, 1998; Xiong and Saif, 2003). More recently, a
technique for reconstructing unknown exogenous disturbances has been developed in
(Gillijns and De Moor, 2005; Palanthandalam-Madapusi et al., 2006; Palanthandalam-
Madapusi and Benrstein, 2007) as an extension of unbiased minimum-variance
filtering (Kitanidis, 1987).

In this paper, we extend the techniques in (Palanthandalam-Madapusi and
Benrstein, 2007) for estimating unknown external disturbances for non-linear systems.
This technique is based on the unscented Kalman filter (UKF) (Julier et al., 2000; Julier
and Uhlmann, 2004) for state estimation for non-linear systems, which is an example
of sigma-point Kalman filters (SPKF) (van der Merwe et al., 2004). Recent work
(Julier et al., 2000; van der Merwe et al., 2004) illustrates the improved performance of
SPKFs compared to the extended Kalman filter (EKF), which is prone to numerical
problems such as initialization sensitivity, bias (divergence), and instability for
strongly non-linear systems.

The nature of the disturbance estimation (input reconstruction) problem depends
on the type of measurements available. In the present paper we consider two
illustrative scenarios for planar flight. In the first scenario, we assume that
measurements of the heading angle are available. In this case, the estimation problem
is linear, and the techniques of (Gillijns and De Moor, 2005; Palanthandalam-
Madapusi et al., 2006; Palanthandalam-Madapusi and Benrstein, 2007) are applicable.
In the second scenario, we assume that measurements of the heading angle are not
available. In this case, the disturbance estimation problem is non-linear, and we
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therefore develop an extension of the unscented Kalman filter that provides an
estimate of the unknown disturbance.

After describing the basic setting in Section 2, the two scenarios described above are
developed in Sections 3 and 4. For each scenario, we consider flight involving straight-
line and circular motion in the presence of a wind field that varies as a triangular
waveform in both of its components. In the case of unknown heading angle, we show
that wind field estimation requires knowledge of the initial heading angle in order to
remove a kinematic ambiguity.

2. Wind-field estimation

Consider the planar flight equations

_x ¼ VAC=W cos þ VW=E cos �, ð2:1Þ

_y ¼ VAC=W sin þ VW=E sin�, ð2:2Þ

_ ¼ !, ð2:3Þ

where x and y are the ground coordinates of the vehicle, VAC/W is the airspeed of the
vehicle,  is the heading angle, ! is the steering angle rate, VW/E is the horizontal
wind speed, and � is the angle of the direction of the horizontal component of wind
as measured from the ı̂ axis. The magnitude and direction of velocity of the vehicle
with respect to the Earth are VAC=E¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2

p
and �¼

4
tan�1 ð_y=_xÞ, respectively; note

that VAC/E¼VAC/WþVW/E. The relationship between the various components of
velocities is illustrated in Figure 1. Throughout this paper, we assume that
measurements of x and y are available from GPS, and that measurements of VAC/W

are available from an airspeed sensor. For simplicity, we assume that VAC/W is aligned
with the heading angle  as depicted in Figure 1. We consider the problem of
estimating the unknown wind speed VW/E and angle � of the wind.

ĵ

ˆ

VAC/W

VAC/E

VW/E

ψ
θ

φ

i

Figure 1 Schematic of relationship between components of
velocities in an Earth-fixed frame and the body-fixed frame
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3. Measured heading angle

We first consider the case in which the heading angle  is measured. In this case, we
use (2.1) and (2.2) to estimate VW/E and �. By defining

VW=E,x¼
4

VW=E cos�, ð3:1Þ

VW=E,y¼
4

VW=E sin�, ð3:2Þ

it follows that (2.1), (2.2) are linear in the unknowns VW/E,x and VW/E,y. Once estimates
of VW/E,x and VW/E,y are obtained, the wind speed VW/E and angle � can be obtained
using the relationships

VW=E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

W=E,x þ V2
W=E,y

q
, ð3:3Þ

� ¼ tan�1 VW=E,y

VW=E,x

� �
: ð3:4Þ

Thus the problem is stated as follows.

Problem 1. Equations:

_x ¼ VAC=W cos þ VW=E,x, ð3:5Þ

_y ¼ VAC=W sin þ VW=E,y: ð3:6Þ

Available measurements: x, y, VAC/W, and  .
Unknowns: VW/E,x and VW/E,y.

Since Problem 1 is linear in the states and linear in the unknowns VW/E,x and
VW/E,y, we can use the unbiased minimum-variance filter (Palanthandalam-
Madapusi and Benrstein, 2007) for linear systems to estimate the states and the
unknown inputs. We briefly review the Kalman filter and the unbiased minimum-
variance filter.

3.1 Kalman filter

For the linear stochastic discrete-time dynamic system

xk ¼ Ak�1xk�1 þ Bk�1uk�1 þ Gk�1wk�1, ð3:7Þ

yk ¼ Ckxk þ vk, ð3:8Þ

where Ak�12R
n�n, Bk�12R

n�p, Gk�12R
n�q, and Ck2R

m�n are known matrices, the
state-estimation problem can be described as follows. Assume that, for all k� 1,
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the known data are the measurements yk2R
m, the inputs uk�12R

p, and the statistical

properties of x0, wk�1 and vk. The initial state vector x02R
n is assumed to be Gaussian

with mean x̂0 and error covariance Pxx
0 ,E½ðx0 � x̂0Þðx0 � x̂0Þ

T
�. The process noise

wk�12R
q, which represents unknown input disturbances, and the measurement noise

vk2R
m, concerning inaccuracies in the measurements, are assumed white, Gaussian,

zero mean, and mutually independent with known covariance matrices Qk�1 and Rk,
respectively. Next, define the cost function

JðxkÞ¼
4
	ðxkjðy1, . . . , ykÞÞ, ð3:9Þ

which is the conditional probability density function of the state vector xk2R
n given

the past and present measured data y1, . . . , yk. Under the stated assumptions, the

maximization of (3.9) is the state-estimation problem, while the maximizer x̂k of J is the

optimal state estimate.
The optimal state estimate x̂k is given by the Kalman filter (Kalman, 1960), whose

forecast step is given by

x̂kjk�1 ¼ Ak�1x̂k�1 þ Bk�1uk�1, ð3:10Þ

Pxx
kjk�1 ¼ Ak�1Pxx

k�1AT
k�1 þ Gk�1Qk�1GT

k�1, ð3:11Þ

ŷkjk�1 ¼ Ckx̂kjk�1, ð3:12Þ

P
yy
kjk�1 ¼ CkPxx

kjk�1CT
k þ Rk, ð3:13Þ

P
xy
kjk�1 ¼ Pxx

kjk�1CT
k , ð3:14Þ

where Pxx
kjk�1¼

4
E½ðxk � x̂kjk�1Þðxk � x̂kjk�1Þ

T
�, P

yy
kjk�1¼

4
E½ð yk � ŷkjk�1Þð yk � ŷkjk�1Þ

T
�, and

P
xy
kjk�1¼

4
E½ðxk � x̂kjk�1Þð yk � ŷkjk�1Þ

T
�, and whose data-assimilation step is given by

Kk ¼ P
xy
kjk�1ðP

yy
kjk�1Þ

�1, ð3:15Þ

x̂k ¼ x̂kjk�1 þ Kkðyk � ŷkjk�1Þ, ð3:16Þ

Pxx
k ¼ Pxx

kjk�1 � KkP
yy
kjk�1KT

k , ð3:17Þ

where Pxx
k ¼
4

E½ðxk � x̂kÞðxk � x̂kÞ
T
� is the error-covariance matrix and Kk is the Kalman

gain matrix. The notation ẑkjk�1 indicates an estimate of zk at time k based on

information available up to and including time k� 1. Likewise, ẑk indicates an

estimate of z at time k using information available up to and including time k. Model
information is used during the forecast step, while measurement data are injected into

the estimates during the data-assimilation step, specifically, (3.16).
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3.2 Unbiased minimum-variance filter

Consider the system

xk ¼ Ak�1xk�1 þ Bk�1uk�1 þHk�1ek�1 þ Gk�1wk�1, ð3:18Þ

yk ¼ Ckxk þ vk, ð3:19Þ

where xk, yk, uk�1, Ak�1, Bk�1, Gk�1 and Ck are defined as in Section 3.1, while ek�12R
l

represents the unknown input and Hk�12R
n�l is the input matrix. We assume that

Ak�1, Bk�1, Ck, Dk, and Hk�1 are known, while ek�1 is unknown.
Owing to the presence of the unknown non-zero-mean term Hk�1ek�1, the Kalman

filter estimate in Section 3.1 is biased in general. The optimal unbiased state estimate

x̂k is given by the Unbiased Minimum-Variance (UMV) filter (Palanthandalam-

Madapusi and Benrstein, 2007), whose forecast step is given by (3.10)–(3.14), and
whose data-assimilation step is given by

Vk¼
4

CkHk�1, ð3:20Þ

�k¼
4
ðVT

k ðP
yy
kjk�1Þ

�1VkÞ
�1VT

k ðP
yy
kjk�1Þ

�1, ð3:21Þ

Lk ¼ Hk�1�k þ P
xy
kjk�1ðP

yy
kjk�1Þ

�1
ðI � Vk�kÞ, ð3:22Þ

x̂k ¼ x̂kjk�1 þ Lkðyk � ŷkjk�1Þ, ð3:23Þ

Pxx
k ¼ Pxx

kjk�1 � LkP
yy
kjk�1LT

k , ð3:24Þ

where Lk is the UMV filter gain matrix. Finally, the estimate of the unknown signal ek�1

is given by

êk�1 ¼ H
y
k�1Lkð yk � Ckx̂kjk�1 �DkukÞ: ð3:25Þ

3.3 Results: wind estimation with measured heading angle

The steering angle is chosen to be alternating 38-second periods of zeros and ones,
which represents the aircraft flying alternately in a straight line and in circles. The

wind-velocity component profiles are chosen to be triangular waveforms. Figure 2

shows the flight path in the absence of wind disturbance, while Figure 3 shows the

flight path in the presence of the wind disturbance.
Since Problem 1 is linear in the unknown wind-velocity components, we apply the

UMV filter (3.20)–(3.24) and (3.25) to estimate the states and unknown inputs,
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respectively. To apply the discretetime UMV filter, we discretize Equations (3.5), (3.6)
using standard tools in MATLAB. Figure 4 compares the actual flight path and their
estimates using the Kalman filter and the UMV filter. Figure 5 shows a magnified
version of the time interval from 32 seconds to 48 seconds of Figure 4. Although
measurements of x and y positions are available, the state estimates using the UMV
filter are seen to be better than the state estimates using the Kalman filter. Finally,
Figure 6 shows the actual wind-velocity components and their estimates from (3.25)
for both the UMV filter and the Kalman filter, while Figure 7 shows a zoomed-in
portion of the interval between 32 seconds and 48 seconds from Figure 6.

In practice, although measurements of the heading angle  are available, they are
often unreliable due to the size and cost restrictions of the sensors on a micro-UAV.
Hence, we next consider the case in which the heading angle  is unknown.

4. Heading angle not measured

We now assume that measurements of the heading angle  are not available. Since  
must be estimated, we consider the complete equations (2.1)–(2.3). Thus the problem
can be stated as follows.

0 500 1000 1500 2000 2500
−500

0

500

1000

1500

2000

2500

3000

3500

4000

y 
po

si
tio

n 
(m

)

x position (m)

Figure 2 Flight path of the aircraft in the absence of wind
disturbance. The steering angle is an alternating 38-second
periods of zeros and ones, which represents the aircraft flying in a
straight lines and in circles alternately
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Problem 2.

_x ¼ VAC=W cos þ VW=E,x, ð4:1Þ

_y ¼ VAC=W sin þ VW=E,y, ð4:2Þ

_ ¼ !: ð4:3Þ

Available measurements: x, y, VAC/W, and !.
Unknowns:  , VW/E,x, and VW/E,y.

In this case, since  is not measured the state equations are non-linear. We thus
require a filter for non-linear systems.

4.1 State estimation for non-linear systems

Consider the non-linear stochastic discrete-time dynamic system

xk ¼ fk�1 xk�1, uk�1, wk�1ð Þ, ð4:4Þ

0 2000 4000 6000 8000 10000 12000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Range of
wind
directions

y 
po

si
tio

n 
(m

)

x position (m)

Figure 3 Flight path of the aircraft in the presence of wind
disturbance. The steering angle is an alternating 38-second
periods of zeros and ones, which represents the aircraft flying in a
straight lines and in circles alternately. The two arrows show the
extremities of the wind direction, which is a time-varying
triangular waveform
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yk ¼ hk xkð Þ þ vk, ð4:5Þ

where fk�1 : R
n
�R

p
�R

q
!R

n and hk : R
n
!R

m are, respectively, the process and
observation models. The objective of the state-estimation problem is, for all k� 1, to
maximize (3.9). However, the solution to this problem is complicated (Daum, 2005) by
the fact that, for non-linear systems, 	(xkj(y1, . . . , yk)) is not completely characterized
by its first and second-order moments. We thus use an approximation based on the
classical Kalman filter to provide a suboptimal solution to the non-linear case.

4.2 Unscented Kalman filter

First, for non-linear systems, we consider the unscented Kalman filter (UKF) (Julier
and Uhlmann, 2004) to provide a suboptimal solution to the state-estimation problem.
Instead of analytically linearizing (4.4)–(4.5) and using (3.10)–(3.17), UKF employs the
unscented transform (UT) (Julier et al., 2000), which approximates the posterior mean
ŷ 2 R

m and covariance Pyy
2R

m�m of a random vector y obtained from the non-linear
transformation y¼ h(x), where x is a prior random vector whose mean x̂ 2 R

n and
covariance Pxx

2R
n�n are assumed known. UT yields the actual mean ŷ and the actual

covariance Pyy if h¼ h1þ h2, where h1 is linear and h2 is quadratic (Julier et al., 2000).
Otherwise, ŷk is a pseudo mean and Pyy is a pseudo covariance.

0 2000 4000 6000 8000 10000 12000
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Kalman estimatey 
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)

x position (m)

Figure 4 Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in the
presence of an unknown wind disturbance
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Figure 5 Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in the
presence of an unknown wind disturbance
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Figure 6 Actual wind velocity and filter estimate when mea-
surements of the heading angle are available
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UT is based on a set of deterministically chosen vectors known as sigma points. To

capture the mean x̂a
k�1 of the augmented prior state vector

xa
k�1¼

4 xk�1

wk�1

� �
, ð4:6Þ

where xa
k�1 2 R

na and naXnþ q, as well as the augmented prior error covariance

Pxxa
k�1¼

4 Pxx
k�1jk�2 0n�q

0q�n Qk�1

� �
, ð4:7Þ

the sigma-point matrix X k�12R
na�ð2naþ1Þ is chosen as

col0ðX k�1Þ¼
4

x̂a
k�1,

coliðX k�1Þ¼
4

x̂a
k�1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
coli Pxxa

k�1

� �1=2
h i

, i ¼ 1, . . . , na,

coliþna
ðX k�1Þ¼

4
x̂a

k�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
coli Pxxa

k�1

� �1=2
h i

, i ¼ 1, . . . , na,

8>>>>>>>>>><
>>>>>>>>>>:

30 32 34 36 38 40 42 44 46 48 50

−20

0

20

40

60

80

W
in

d 
ve

lo
ci

ty
 (

m
/s

)

Actual wind velocity

UMV estimate

Kalman estimate

30 32 34 36 38 40 42 44 46 48 50

−20

0

20

40

Time (s)

W
in

d 
ve

lo
ci

ty
 (

m
/s

)

Actual wind Velocity

UMV estimate

Kalman estimate

Figure 7 Actual wind velocity and filter estimate when mea-
surements of the heading angle are available
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with weights

�ðmÞ0 ¼
4 �

na þ �
,

�ðcÞ0 ¼
4 �

na þ �
þ 1� 
2 þ �,

�ðmÞi ¼
4
�ðcÞi ¼

4
�ðmÞiþna
¼
4
�ðcÞiþna

,
1

2ðna þ �Þ
, i ¼ 1, . . . , na,

8>>>>>><
>>>>>>:

where coli[(�)
1/2] is the ith column of the Cholesky square root, 05
� 1, �� 0, �� 0,

and �X
2(�þ na)� na. We set 
¼ 1 and �¼ 0 (Haykin, 2001) such that �¼ 0 (Julier and

Uhlmann, 2004) and set �¼ 2 (Haykin, 2001). Alternative schemes for choosing sigma

points are given in (Julier and Uhlmann, 2004).
The UKF forecast equations are given by

X k�1 ¼ x̂a
k�1 x̂a

k�111�na
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
Pxxa

k�1

� �1=2
x̂a

k�111�na
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
Pxxa

k�1

� �1=2
h i

,

ð4:8Þ

coliðX
x
kjk�1Þ ¼ fk�1ðcoliðX

x
k�1Þ, uk�1, coliðX

w
k�1ÞÞ, i ¼ 0, . . . , 2na, ð4:9Þ

x̂kjk�1 ¼
X2na

i¼0

�ðmÞi coliðX
x
kjk�1Þ, ð4:10Þ

Pxx
kjk�1 ¼

X2na

i¼0

�ðcÞi ½coliðX
x
kjk�1Þ � x̂kjk�1�½coliðX

x
kjk�1Þ � x̂kjk�1�

T, ð4:11Þ

coliðYkjk�1Þ ¼ hkðcoliðX
x
kjk�1ÞÞ, i ¼ 0, . . . , 2na, ð4:12Þ

ŷkjk�1 ¼
X2na

i¼0

�ðmÞi coliðYkjk�1Þ, ð4:13Þ

P
yy
kjk�1 ¼

X2na

i¼0

�ðcÞi ½coliðYkjk�1Þ � ŷkjk�1�½coliðYkjk�1Þ � ŷkjk�1�
T
þ Rk, ð4:14Þ

P
xy
kjk�1 ¼

X2na

i¼0

�ðcÞi ½coliðX
x
kjk�1Þ � x̂kjk�1�½coliðYkjk�1Þ � ŷkjk�1�

T, ð4:15Þ

where

Xx
k�1

Xw
k�1

� �
¼
4
X k�1;X

x
k�1 2 R

n�ð2naþ1Þ; and Xw
k�1 2 R

q�ð2naþ1Þ:

The UKF data-assimilation equations are given by (3.15)–(3.17).
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4.3 Unbiased minimum-variance unscented filter

Next, for non-linear systems with unknown inputs, we consider an extension of the

UKF along the lines of the linear UMV filter. Thus, to obtain the pseudo mean and the

pseudo error covariances we use the unscented transform, and to estimate the states

and unknown inputs, we use the expressions derived for the UMV filter. Thus, the

forecast equations for the unbiased minimum-variance unscented (UMVU) filter are
given by (4.8)–(4.15). The data-assimilation equations for the UMVU filter are given by

(3.20)–(3.24).

4.4 Results: wind estimation with heading angle not measured

To estimate the states and the unknown inputs in Problem 2, we use the UMVU filter

described above. We use the same simulation parameters as in the known heading

case. Figure 8 shows the actual wind-velocity components and their estimates

obtained from the UMVU filter.
As can be seen from Figure 8, the estimates of the wind velocity do not match the

actual wind velocity. This is due to the fact that there is a kinematic ambiguity because
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Figure 8 Actual wind velocity and filter estimate when the
heading angle is not measured. Due to a kinematic ambiguity,
accurate estimates of the wind are not obtained

Palanthandalam-Madapusi et al. 731

 at UNIVERSITY OF MICHIGAN on July 23, 2011tim.sagepub.comDownloaded from 

http://tim.sagepub.com/


of the combined effect of unknown heading angle and unknown wind velocity. This
kinematic ambiguity is resolved by assuming that the initial heading angle is known.
This is a reasonable assumption in practice since many small and micro-UAVs are
launched from catapults. However, the initial x and y positions are assumed to be
unknown. When the initial heading angle is assumed to be known, but the subsequent
heading is not measured, the estimates of the wind-velocity components using the
UMVU filter are shown in Figure 9.

5. Conclusions

To estimate unknown wind disturbances, we considered two illustrative scenarios for
planar flight. In the first scenario, we assumed that measurements of the heading
angle are available. In this case, since the estimation problem is linear, we applied
techniques of (Palanthandalam-Madapusi and Benrstein, 2007) to estimate the wind
disturbance. In the second scenario, we assumed that measurements of the heading
angle were not available. In the second scenario, since the disturbance estimation
problem is non-linear, we developed an extension of the unscented Kalman filter that
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Figure 9 Actual wind velocity and filter estimate when the
heading angle is not measured. When the initial heading is
assumed to be known, the kinematic ambiguity is resolved and
accurate estimates of the wind disturbances are obtained. The
initial x and y positions are assumed to be unknown
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provided an estimate of the unknown wind disturbance. When the heading angle is
not measured, a kinematic ambiguity was introduced. However, when the initial
heading angle was known and the subsequent heading angle was not measured, this
kinematic ambiguity was resolved and accurate estimates of the wind disturbance
were obtained.
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