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Abstract

Optimal reduced-order modeling, estimation, and control with respect to combined
H?*/H> criteria give rise to coupled Lyapunov and Riccati equations. To develop reli-
able numerical algorithms for these problems this paper focuses on the coupled
Lyapunov equations which appear as a subset of the synthesis equations. In particular,
this paper systematically examines the requirements of probability-one homotopy al-
gorithms to guarantee global convergence. Homotopy algorithms for nonlinear systems
of equations construct a continuous family of systems and solve the given system by
tracking the continuous curve of solutions to the family. The main emphasis is on
guaranteeing transversality for several homotopy maps based upon the pseudogramian
formulation of the coupled Lyapunov equations and variations based upon canonical
forms. These results are essential to the probability-one homotopy approach by guar-
anteeing good numerical properties in the computational implementation of the ho-
motopy algorithms. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

While H? optimality constitutes the foundation of modern control theory,
the trend during the past decade has been to combine H? performance with H>
design criteria to bound worst-case performance and to enforce robust stability
[2,6,22,30]. This approach has also been applied to problems in model reduc-
tion and estimation [3,13,14].

In practice, controllers of low order are desirable, and considerable effort
has been devoted to the development of plant and controller reduction meth-
ods[1,12,17,20,23,25,32,38,39]. Many of these techniques involve balancing the
solutions of Riccati or Lyapunov equations. However, the balancing technique
is nonoptimal and may entail instability when used for plant or controller
reduction [18].

To achieve both stability and optimality, control gains can be optimized
directly with respect to the H? criterion while enforcing H> performance. This
direct approach gives rise to gradients that can be used for search-based op-
timization [24] or which can be transformed into coupled Riccati and Lyapu-
nov equations [15,16]. The essential numerical difficulty associated with these
equations can be identified with the Lyapunov equations which are coupled by
an idempotent matrix determined by the reduced rank pseudogramians [40,41].
The development of numerical techniques for solving these equations is thus of
fundamental interest.

The purpose of this paper is to make substantial progress in developing
reliable numerical algorithms for solving the coupled Lyapunov equations of
reduced order H? and H?/H> synthesis. In particular, the present paper is
concerned with the application of homotopy methods for solving the coupled
Lyapunov equations arising in /> model reduction. In computational practice,
homotopy methods are widely used for nonconvex optimization [33,37]. Ho-
motopy methods, in particular, probability-one homotopy methods, have
global convergence properties that are often advantageous in comparison to
locally convergent methods such as quasi-Newton methods [4,34,35]. Under
suitable hypotheses, probability-one homotopy methods are guaranteed to
converge globally (from an arbitrary starting point) to a solution of a nonlinear
system of equations. The nomenclature “probability-one” is well established in
the mathematical literature and reflects the generic, measure theoretic prop-
erties of the algorithms rather than stochastic aspects.

The goal of the present paper is to systematically examine the require-
ments of probability-one homotopy methods to guarantee global conver-
gence. The crucial requirements are (1) transversality and (2) boundedness.
As discussed in Section 2, transversality implies the existence of and the
ability to track a zero curve of the homotopy map, while boundedness is
equivalent to the existence of solutions to the model reduction problem. The
existence of optimal reduced-order H?> models follows from the results in
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[32]. The main emphasis in the present paper is on guaranteeing transver-
sality for several homotopy maps based upon the pseudogramian formula-
tion of the optimal projection equations and specialized formulations based
upon canonical forms. These results are essential to the probability-one
homotopy approach by guaranteeing good numerical properties (explained in
[36]) in the computational implementation of the homotopy algorithms.
Numerical comparisons with other approaches have been done elsewhere
[10,41], and are not the objective of the present paper. Related work is in
[7,8,11,21,29,31].

The contents of the paper are as follows. After stating the H> model re-
duction problem in Section 2, we then provide a brief review of probability-one
homotopy theory in Section 3. The transversality assumption of probability-
one homotopy theory is then proven in Section 4 for several canonical forms.
Next, it is shown by example in Section 5 that the boundedness assumption
required by probability-one homotopy theory is not always satisfied by the
pseudogramian formulation of the optimal projection equations and by some
formulations based upon canonical forms. Then it is shown that for a refor-
mulation of the pseudogramian optimal projection equations in complex
projective space using homogeneous transformations, the boundedness as-
sumption holds and thus convergence of the homotopy algorithm to a solution
(in complex projective space) is guaranteed. The numerical results in [10,41]
show that, in practice, it is not necessary to track the homotopy zero curves in
complex projective space. Section 6 concludes.

2. H? optimal model order reduction

The H? optimal model order reduction problem can be formulated as fol-
lows: given the nth-order asymptotically stable, controllable and observable
linear time-invariant continuous-time system

(f) = Ax(t) + Bu(t), (2.1)
y(t) = Cx(1), (2.2)

where 4 € R™", B € R™", and C € R"”"; given n,, < n, find an n,,th-order re-
duced-order model

Xn(t) = Apxn(t) + Baul(t), (2.3)
ym(t) = mern(t)v (24)

where 4,, € R™*™ is asymptotically stable, B, € R™*" C, € R which
minimizes the quadratic model-reduction criterion
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I (A, By, Cy) = 1im E|(4(0) = 3 (1) "RO() = 3 (0)] (2:5)

1—00

where the input u(¢) is white noise with positive definite intensity ¥, and R is a
positive definite weighting matrix. Throughout, all positive semidefinite and
positive definite matrices are assumed to be symmetric.

To guarantee that J is finite, a solution (4,, B, C,) is sought in the set
S = {(Am, B, Cn): A is asymptotically stable, (4,,,B,) is controllable, and
(4, Cy) is observable}. In this case the quadratic model reduction criterion
(2.5) is given by

J(Ap, By, Cy) = tr[OR], (2.6)
where
~ A 0 ~ B ~ ~ 1o~
4= , B= , C=(C -C,), R=CRC,
0 Am Bm

and
@:/ e BV BTt ds,
0

which is the unique solution of the Lyapunov equation

AQ + 04" + BVBT =0. (2.7a)
For future reference define P by

A™P + P4+ C'RC =0, (2.7b)

and partition P, Q as

~ P P ~
P:( ; 12>’ QZ(QTI Qu)
Py P On O
in conformance with 4.
The following theorems and lemmas from [14] and [17] will be needed in

Section 4.
Lemma 2.1. Let positive semidefinite O, P € R™" satisfy

rank (Q) = rank (P) = rank (OP) = n,,, (2.8)

where n,, <n. Then there exist nonsingular W € R"™" and positive definite di-
agonal X € R""™ such that

. X 0\ . . (2 0) »
o=Ww w, P=w w—.
0 0 0 0
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Lemma 2.2. Let positive semidefinite O,P € R™" satisfy the rank conditions
(2.8), where n,, < n. Then, there exist G,I' € R™" and positive semisimple
M € R™™ "™ unique up to a change of basis in R™, such that

QP =G'MI, IG'=1I,,. (2.9)

Theorem 2.3. Suppose (A, B.,Cyn) € & solves the optimal model-reduction
problem. Then there exist positive semidefinite matrices Q,P € R™™" satisfying
(2.8) and such that A,,, B,,, and C,, are given by

A, =TAG', B,=TIB, C,=CG", (2.10)
and such that, with © = G'T', the following conditions are satisfied:

1[40+ QA" + BV B =0, (2.11)

[ATP+PA+C"RC]z = 0. (2.12)

Throughout the paper, necessary equations for a minimum of J are being
solved, hence only stationary points of J are being found.

3. Probability-one globally convergent homotopies

A homotopy is a continuous map from the interval [0,1] into a function space,
where the continuity is with respect to the topology of the function space. In-
tuitively, a homotopy p(4) continuously deforms the function p(0) = g into the
function p(1) = f as 4 goes from 0 to 1. In this case, f and g are said to be
homotopic. Homotopy maps are fundamental tools in topology, and provide a
powerful mechanism for defining equivalence classes of functions.

Homotopies provide a mathematical formalism for describing an old pro-
cedure in numerical analysis, variously known as continuation, incremental
loading, and embedding. The continuation procedure for solving a nonlinear
system of equations f(x) = O starts with a (generally simpler) problem g(x) = 0
whose solution x, is known. The continuation procedure is to track the set of
zeros of

plsx) = 21 () + (1 = D)g(x) (3.1)

as A is increased monotonically from 0 to 1, starting at the known initial point
(0,x) satisfying p(0,x0) = 0. Each step of this tracking process is done by
starting at a point (4,X) on the zero set of p, fixing some AZ > 0, and then
solving p(4+ A/,x) = 0 for x using a locally convergent iterative procedure,
which requires an invertible Jacobian matrix D,p(4 + A4, x). The process stops
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at 4 =1, since f(¥) = p(1,X) = 0 gives a zero X of f(x). Note that continuation
assumes that the zeros of p connect the zero x, of g to a zero x of f, and that the
Jacobian matrix D,p(/,x) is invertible along the zero set of p; these are strong
assumptions, which are frequently not satisfied in practice.

Continuation can fail because the curve y of zeros of p(4,x) emanating from
(0,x0) may (1) have turning points, (2) bifurcate, (3) fail to exist at some /
values, or (4) wander off to infinity without reaching 2 = 1. Turning points and
bifurcation correspond to singular D,p(4,x). Generalizations of continuation
known as homotopy methods attempt to deal with cases (1) and (2), and allow
tracking of y to continue through singularities. In particular, continuation
monotonically increases A, whereas homotopy methods permit A to both in-
crease and decrease along y. Homotopy methods can also fail via cases (3) or (4).

The map p(4,x) connects the functions g(x) and f(x), hence the use of the
word “homotopy.” In general the homotopy map p(4,x) need not be a simple
convex combination of g and f as in (3.1), and can involve A nonlinearly.
Sometimes A is a physical parameter in the original problem f(x; 1) = 0, where
A =1 1is the (nondimensionalized) value of interest, although “artificial pa-
rameter”’ homotopies are generally more computationally efficient than “nat-
ural parameter” homotopies p(4,x) = f(x;2). An example of an artificial
parameter homotopy map is

plhsx) = Af (v ) + (1 = 2)(x — ), (32)

which satisfies p(0,a) = 0. The name “artificial” reflects the fact that solutions
to p(4,x) =0 have no physical interpretation for 1 < 1. Note that p(4,x) in
(3.2) has a unique zero x = a at 1 = 0, regardless of the structure of f(x;1).

All four shortcomings of continuation and homotopy methods have been
overcome by probability-one homotopies, proposed in [4]. The supporting
theory, based on differential geometry, will be reformulated in less technical
jargon here.

Definition 3.1. Let U C R? be an open set, and let p : U — R” be a C> map. p is
said to be transversal to zero if either p=1(0) = (), or when p~'(0) # 0, the p x ¢
Jacobian matrix Dp has full rank on p~!(0).

The C? requirement is technical, and part of the definition of transversality.
The basis for the probability-one homotopy theory is:

Theorem 3.2 (Parametrized Sard’s Theorem [4]). Let U C R" and V C R” be
open sets, and let p : U x [0,1) x V — R? be a C> map. If p is transversal to
zero, then for almost all a € U the map

pu(4x) = pla, 1,x)

is also transversal to zero.
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To discuss the import of this theorem, take U = R™, VV = R”, and suppose
that the C*> map p: R” x [0,1) x R” — R” is transversal to zero. A straight-
forward application of the implicit function theorem yields that for almost all
a € R", the zero set of p, consists of smooth, nonintersecting curves which
either (1) are closed loops lying entirely in (0, 1) x R?, (2) have both endpoints
in {0} x R?, (3) have both endpoints in {1} x R?, (4) are unbounded with one
endpoint in either {0} x R” or in {I} x R?, or (5) have one endpoint in
{0} x R” and the other in {1} x R?. Furthermore, for almost all a« € R”, the
Jacobian matrix Dp, has full rank at every point in p,'(0). The goal is to
construct a map p, whose zero set has an endpoint in {0} x R?, and which rules
out (2) and (4). Then (5) obtains, and a zero curve starting at (0,x0) is guar-
anteed to reach a point (1,x). All of this holds for almost all « € R”, and hence
with probability one [4]. Furthermore, since a € R” can be almost any point
(and, indirectly, so can the starting point x), an algorithm based on tracking
the zero curve in (5) is legitimately called globally convergent. This discussion is
summarized in the following theorem.

Theorem 3.3. Let f:R” — R? be a C* map, p:R" x [0,1) x R” — R” a C?
map, and p,(1,x) = p(a, A,x). Suppose that

(1) p is transversal to zero,
and, for each fixed a € R",

2) p,(0,x) =0 has a unique nonsingular solution x,

(3) py(lx) = f(x) (x € R?).
Then, for almost all a € R™, there exists a zero curve y of p, emanating from
(0,x0), along which the Jacobian matrix Dp, has full rank. If, in addition,

4) p.'(0) is bounded,
then v reaches a point (1,%) such that f(x) = 0. Furthermore, if Df(X) is in-
vertible, then y has finite arc length.

Any algorithm for tracking y from (0,xy) to (1,x), based on a homotopy
map satisfying the hypotheses of Theorem 3.3, is called a globally convergent
probability-one homotopy algorithm. Of course the practical numerical details of
tracking y are nontrivial, and have been the subject of twenty years of research
in numerical analysis. Production quality software called HOMPACK [36]
exists for tracking y. The distinctions between continuation, homotopy meth-
ods, and probability-one homotopy methods are subtle but worth noting. Only
the latter are provably globally convergent and (by construction) expressly
avoid dealing with singularities numerically, unlike continuation and homot-
opy methods which must explicitly handle singularities numerically.

The purpose of this paper is to prove or disprove properties (1)—(4) of
Theorem 3.3 for some homotopy maps that have been proposed for the H>
optimal model order reduction problem, and which have been successful in
practice. Assumptions (2) and (3) in Theorem 3.3 are usually achieved by the
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construction of p (such as (3.2)), and are straightforward to verify. Although
assumption (1) is trivial to verify for some maps, for the 4> model order re-
duction homotopies the verification is nontrivial. Assumption (4) is typically
very hard to verify, and often is a deep result, since (1)—(4) holding implies the
existence of a solution to f(x) = 0.

Note that (1)-(4) are sufficient, but not necessary, for the existence of a
solution to f(x) =0, which is why homotopy maps not satisfying the hy-
potheses of Theorem 3.3 can still be very successful on practical problems. If
(1)—(3) hold and a solution does not exist, then (4) must fail, and nonexistence
is manifested by y going off to infinity. Properties (1)—(3) are important because
they guarantee good numerical properties along the zero curve y, which, if
bounded, results in a globally convergent algorithm. If y is unbounded, then
either the homotopy approach (with this particular p) has failed or f(x) =0
has no solution. Furthermore, the goal is not to simply get a map p, which is
transversal to zero (small perturbations p,(4,x) + €(4,x) are transversal to
zero), but to construct maps p, which are transversal to zero throughout a large
neighborhood of some a. This requires starting with a map p already trans-
versal to zero.

4. Transversality of homotopies for H? optimal model order reduction

This section proves that three homotopies p(a, 2,x) which have been used in
[9,41] for the H? optimal model order reduction problem are transversal to
zero, the first requirement of Theorem 3.3. An overview and comparison of
these homotopy maps is in [10]. The analysis concerns (2.11) and (2.12) where
O and P are positive semidefinite matrices satisfying (2.8).

4.1. Transversality of homotopies based on decompositions of pseudogramians

Since O and P satisfy (2.8), there exists invertible W € R”" and positive
definite diagonal ~ € R™*" such that [17]

Q:W(Z O)WT:WlZWIT, ﬁzw-T(Z O)W“:UITZUh

0 0 0 0
where
m
w=(m ), W1:U:””’{(gl>.
2

Premultiplying (2.11) by U; and postmultiplying (2.12) by 7] yields (recall that
=G = WMU)
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U AWM EWS + ZwWTA" + U BV B" =0, (4.1)
AU 2+ U U AW + CTRCI = 0.

A constraint from W' = U is
U —1=0. (4.3)

The matrix equations (4.1)~(4.3) contain 2nn, + n? scalar equations.
However, the only unknowns in (4.1)—(4.3), namely W, U;, and diagonal X,
contain 2nn, + n,, variables. Hence, some other formulation is necessary in
order to make an exact match between the number of equations and the
number of unknowns. Following [41], all n? elements of X are considered as
unknowns, giving the same number of equations as unknowns. The structure
of the problem is such that X will turn out to be symmetric, so it can be di-
agonalized to produce the decomposition of O and P described above.

The approach in [41], analyzed next, uses the homotopy map

Pal2x) = A1 (x) + (1 = A)g(x; a), (4.4)
where the initial problem p,(0,x) = g(x;a) = 0 has an easily obtained unique
solution and the final problem (4.1)-(4.3) is p,(1,x) = f(x) = 0. f and g are
displayed in (4.4) simply to point out that the map p,(4,x) can be viewed as a
convex combination of two other maps. For notational convenience later when

displaying Jacobian matrices the order of the variables is henceforth taken as 4,
x, a. Let

A(Z)=A4, B(A)=AiBVB'+(1—-1)B;, C(A)=iC"RC+(1-2A)C,

where B; = B(0) and C; = C(0) are matrices defining the initial problem at
A =0, and correspond to the parameter vector a in Theorem 3.3. Define

Fvl(j'axv a)
pa(/l?x) Ep(}“axaa) = FZ(laxva)
Fy(2,x,a)
in (4.4) by
Fi(Ayx,a) = U A M EWT + SWEAT(2) + Uy B(1), (4.5)
B(Ax,a) =AY (AU Z + UL ZULA(Z) Wh + C(2) W, (4.6)
F3(ivx7a) = UIVVI _17 (47)
where

[ Vec(B))
‘= Vec (C))
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is the generic parameter vector in Theorem 3.3 and in (4.4),

Vec (W)
x= | Vec(Uy)
Vec ()

denotes the independent variables W; € R, U; € R™*", ¥ € R™ "™ corre-
sponding to x in Theorem 3.3, and 4, B, C, V, R are constants as in Section 2.

The Jacobian matrix of p(4,x,a) has 2nn,, + n? rows and 2n* 4 2nn,, +n?, + 1
columns. Rows 1 through #nn,, correspond to (4.5), rows nn,, + 1 through 2nn,,
correspond to (4.6), and rows 2nn,, + 1 through 2nn,, + n2, correspond to (4.7).
The first column corresponds to the derivatives with respect to A, columns 2
through nn, + 1 correspond to the derivatives with respect to W, columns
nn,, + 2 through 2nn, + 1 correspond to the derivatives with respect to Uy,
columns 2nn,, + 2 through 2nn, + n? + 1 correspond to the derivatives with
respect to X, columns 2nn,, + n2 + 2 through 2nn,, + n2, + n* 4+ 1 correspond to
the derivatives with respect to B;, and columns 2nn,, + n? + n* + 2 through
2nn,, + n2, 4+ 2n* + 1 correspond to the derivatives with respect to C;:

Dp(A,x,a) = (D,p Dwp Duyp Dsp Dgp Dcp). (4.8)
Since F3(A,x,a) does not depend upon 4, B;, and C;, it follows that

D)LF3(j~7x7 (1) = 07

DBiF3(A’3x7 a) - 07

DC,-Fé(ivxa a) = 07
and similarly

D¢, Fi(A,x,a) = Dg,F>(4,x,a) = 0.
Thus

D;Fy Dy D,F
Dp()»,x,a)=Dp(/1,W1,U1,Z,Bi,C,-): D,{Fz D\,sz Dan

0 DF 0
D;Fi DwF DyFR DsF DyFR 0

= | D, DyF DyF DsF, 0 Db (4.9)
0 DwF DyF, DsF 0 0

The following lemma will be used in the proof of Theorem 4.2:

Lemma 4.1. Let X € R and A € R™", B € R™*' be differentiable with respect
to xi; for 1 <i<p, 1<j<q. Then
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0 0 0
= B+4
6)6,](143) <6XUA> + (GxijB)7

and for constant M, interpreting the derivative Dy as Dye(y),

Dy(MX)=1®M, Dy(XM)=M"®]I.

The proof of Lemma 4.1 is straightforward calculus.

Theorem 4.2. The homotopy map given by (4.5)—(4.7) is transversal to zero (for
0<i<).

Proof. To prove that Dp(4,x,a) given in (4.9) has full rank, i.e.,
rank (Dp(4,x,a)) = 2nn,, + n.,

it suffices to prove that

rank (D,F3) = rank (Dy, 5 Dy, s DsFy) =n, (4.10)
rank (D,Fy) = rank (DgFy 0) = nn,, (4.11)
rank (D,F) = rank (0  Dc,Fy ) = nn,. (4.12)

The meaning of expressions like DyF; is ambiguous until some ordering is
specified for the components of the matrices X and F;. Hereafter, whichever
ordering is notationally convenient is used. If unspecified, the standard or-
dering by columns (Vec) is assumed.

Using Lemma 4.1, ordering U, and F; by rows,

Dy, Fs(4yx,a) = Dy, (Ui ) = 1, @ W, (4.13)
and ordering W and F; by columns,

Dy Fs(J,x,a) = Dy, (Ui W) =1, ® Uy. (4.14)
Since U; W, = I, by Sylvester’s inequality,

rank (U;) = rank (W) = n,,,
and therefore

rank (D, F;) = rank (Dy, F;) = rank (D, F3) = n2,

which is (4.10).
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Using Lemma 4.1, ordering B; and F; by columns yields
D Fi(A,x,a) = Dg,(U,B(4)) = (1 — A)Dg,(U,B;)
and using (4.15) for 1 < 1 yields
rank (D, Fy) = nny,.
Similarly, ordering C; and F, by rows,
D¢, F(yx,a) = De,(C(A)W) = (1 = A)De,(C:) = (1 — )1, @ W),
(4.16)
so for 4 < 1
rank (D¢.F>) = nn,,.
This completes the proof of (4.10)—(4.12), and the proof that the homotopy
map (4.5)—(4.7) is transversal to zero forall 0< A< 1. O

Remark 4.2.1. One can use more variables in the parameter vector a, e.g.,
A(2) = 24+ (1 — 1)A4;, without affecting the full rank properties.

4.2. Transversality of homotopies based on input normal form

The following theorem from [19] is needed to present the homotopy method
for the input normal form.

Theorem 4.3. Suppose (4,,, By, C) is asymptotically stable and minimal. Then
there exist a similarity transformation U and a positive definite matrix Q =
diag(wy, -+, w,,) such that A,, = U'4,,U, B,, = U™'B,,, and C,, = C, U satisfy

An+ AL+ B, VB =0,

4.17
ATQ+Q4, + CIRC, = 0. (4.17)
In addition, if the w; are distinct,
1
(Am); = — B (B VB;):‘N
w; = —(Bm VBT) (4.18)
C'RC,)., — w;(B, VBL).
(Am)ij _ ( m )1‘] j( m)l‘] .

w; — W;

Definition 4.3.1. The triple (4,,, B, C,) satistying (4.17) and (4.18) is said to be
in input normal form.
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The utility of the input normal form (4.17) and (4.18) lies in using B,, and C,,
as the independent variables, and then being able to recover 4,, uniquely from
B,, and C,,. The number of variables in B,, and C,, is n,(m + I), the minimum
number of variables possible to describe any reduced order model, and thus the
input normal form parameterization is referred to as a “minimal parameter-
ization”. If w; = w; for some i # j, then, regardless of (4.17) holding, (4.18)
fails to permit the unique recovery of 4,,.

Under the assumption that the solution (4, B, C,) being sought exists in
input normal form, the only independent variables are B,, and C,,, and in this
case the domain is

{(4n, By Cn): 4, 1s asymptotically stable,
(4, B, C,) is minimal and in input normal form}.

Now for (4,,, B, Cy) in input normal form, the cost function can be written as

J(AmaBmy Cm) = tr(QIRI)v (4'19)
where Q, is a symmetric and positive definite matrix satisfying
A]Q[ + Q1A~1T + I;} =0, (4-20)
and
- A 0 - CTRC —C'RC,
AI = ) R] = )
0 A,, —CyRC CJRC,
_ BVB' BVB!
V= . (4.21)
B,VB' B,VB!
Q, can be written as
5 - (9 Qo 422
G (QEQL’ 42

where 0, € R”", 0,, € R”" and Q, € R"*"™,
Minimizing (4.19) under the constraints (4.17) and (4.20) leads to the La-
grangian
L(AmaBma Cn17Q7 Q]aMcaMmﬁl) =1r Q]iél + (Am +A;l;l +Bm VB;FV,)MC
+ (4,2 + Q4,,+ C, RC,)M,
+ (410, + QAT + T)E

where the symmetric matrices M,, M,, and P, are Lagrange multipliers.
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Setting dL/0Q, = 0 gives an equation for P, similar to (4.20) for P,
ATP +PA, + R, =0, (4.23)

where P, is symmetric positive definite and can be partitioned similarly to Q, as

D __ ﬁl ﬁlZ
b= ( J ) (4.24)

The matrices M, and M, satisfy [5]

M, =— (;S + QM,,), (4.25)

(MU)ii = (Ai) zm:(Am)ij (Mo)jﬂ (4.26)
i

(M,), = % if w; # w;, (4.27)

where S = 2(P,0,, + P.0,).

Setting 0L/0B,, = 0 and 0L/0C,, = 0 gives

2(PLB + P,B,)V + 2M,B,V =0, (4.28)
2R(C,0, — CO,,) + 2RC,,M, = 0. (4.29)

Observe that P, through (4.23) and Q, through (4.20) depend on B,, and C,, as
does 4,, through (4.18). Similarly M. through (4.25) and M, through (4.26) and
(4.27) depend on B,, and C,,. Thus everything in (4.28) and (4.29) is a function
of B, and C,. Use the homotopy map structure of (4.4) and let

B(A) =B+ (1 —A)B;, C(A)=1C+ (1 -G,
where B; and C; are matrices defining the initial problem at 2 = 0, and corre-

spond to the parameter vector ¢ in Theorem 3.3. The structure of the ho-
motopy map p(4,x,a) for the input normal form is now

Fi(,x,a) = (PL,B(A) + P»B,)V + M.B,V, (4.30)
Fy(4,x,a) = R(C,O,y — C(2)0y,) + RCuM,, (4.31)
where

g= Vec (B))
— \ Vec(C)
denotes the parameter variables B; € R"*", C; € R"" |

v= (Ve
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denotes the independent variables B,, and C,, corresponding to x in Theorem
3.3, and 4, B, C, V, and R are constants as in Section 2.

The Jacobian matrix of p(4,x,a) has n,m +n,!/ rows and (n, +n)x
(m+ 1)+ 1 columns. Since Fi(4,x,a) does not involve C; and F>(4,x,a) does
not involve B;

Dc.Fi(4,x,a) =0, Dy F>(A,x,a) = 0.
The Jacobian matrix is

D;fy D, ki Dc,Fi DpFy 0 >

Dp(l,x,a) = <D1F2 DsB DeFy 0  Dob (4.32)

The following lemma will be used in the proof of Theorem 4.5.

Lemma 4.4. Let A, B, C, 4;, B;, C;, P, Q, R, P, Q,, R;, Q and U be defined as
above. Then

0, =0, P =P, (4.33)
0, =00U", Py=PyU, (4.34)
0, =1, P=Q, (4.35)
0,=UU', pm=UTQUu (4.36)

In addition, Py, Qy, Py, and Q,, have full column rank.

Proof. Equations (4.20) and (4.23) can be written in the form

(A O) _Ql Q_IZ + _Ql Q_lz (AT O)
0 Am Q—lrz Q2 Q—1F2 Q2 0 A;

L (BVET BVE,\ _,
B,VB" B,VB') ™"

AT 0 Pl PIZ + 71 PIZ A 0
0 A )\ P, P P, P J\0 4,
n CT'RC —-C'RC, —0
—CT'RC CT'RC, )
Expanding these equations yields
A0, + 04" +BV B! =0, (4.37)
A0y, + 014, +BV B, =0, (4.38)
Ay Oy + O44) + B, VB =0, (4.39)
(4.40)

AP+ PA+C"RC =0,
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ATPIZ + PIZAm - CTRCm = 07 (441)
AP, + P4, + CIRC, = 0. (4.42)
Comparing (2.7a) with (4.37), and (2.7b) with (4.40) yields (4.33).
If the definitions 4,, = U~ '4,,U, B,, = U"'B,,, and C,, = C,,U in Theorem
4.3 are substituted into (4.17) then (4.17) becomes
A4, UUT + UU" 4! + B, VB! =0, (4.43)
AUuTTQU'+U QU 4, + CIRC,, = 0. (4.44)
Comparing (2.7a) and (2.7b) with (4.43) and (4.44) yields (4.36).

If A4,,=U'4,U, B,,=U"'B,, and C, = C,U are substituted into (4.38)
and (4.41) and the resulting equations are compared with (2.7a) and (2.7b),
then (4.34) follows. Comparing (4.17) and (4.18) with (4.39) and (4.42) yields
(4.35).

Finally, since O, and P, are nonsingular, from Section 6 in [10] it follows

that 0, and P have full column rank. Since U is nonsingular, from (4.34) it
follows that Q,, and Py, also have full rank. O

Theorem 4.5. Let P, and Q, be defined as above. Then Dp(J.,x, a) given by (4.32)
has full column rank for 0 < A < 1, i.e., the homotopy map (4.30) and (4.31) is
transversal to zero for 0 < A < 1.

Proof. To prove Dp(4,x,a) given by (4.32) has full column rank, i.e.,
rank (Dp(4,x,a)) = n,m + nyl,

it suffices to prove that
rank (D, F) = rank(Dg F\) = n,m, (4.45)
rank (D,F) = rank (D¢, F>) = nyl. (4.46)

Since V and R are constant symmetric positive definite matrices, without
loss of generality set V' =1 in (4.30) and R =7 in (4.31). Using Lemma 4.1 to
compute Dp Fi(A,x,a), ordering B; and F; by columns,

Dy Fi(4,x,a) = Dy, (PYB(2)) = (1 — )Dy, (PB,)
=(1- )1, ®PL. (4.47)
Ordering C; and F> by rows gives
D¢, F>(2,x,a) = D¢,(—=C(2)0p) = (2 = 1)D¢,(C;0y,)
=(A-DLe0L. (4.48)

Now finally, using Lemma 4.4, (4.47), and (4.48), the rank statements of (4.45)
and (4.46) follow.
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Thus the homotopy map (4.30) and (4.31) for the input normal form pa-
rameterization of (4,,, B,, C,,) for the H> model order reduction problem is
transversal to zero. 0O

4.3. Transversality of homotopies based on Ly’s formulation

In Ly’s formulation [24], the reduced order model is represented with respect
to a basis such that 4,, is a 2 x 2 block-diagonal matrix (2 x 2 blocks with an
additional 1 x 1 block if 7, is odd) with 2 x 2 blocks in the form

(%2

B, is a full matrix, and C, = ((Cy,); (Cn); - (Cn), -+ (Cw),)),
where
I x « \ "
@n=(y 1)
(Cw), =(1 % - %), ifn,is odd.

Let % be the set of indices of those elements of 4,, which are independent
variables, i.e., & ={(2,1), (2,2), ..., (2i,2i — 1), (2i,2i), ..., (B, n2)}. To
minimize the cost function J(4,,, B, C»,), consider the Lagrangian

L(4,B,,Cpn, Q) = tr[OR + (AQ + OA" + V)P, (4.49)

where the symmetric matrix P is a Lagrange multiplier, O satisfies (4.20), 4, R,
and V are defined in Section 4.2. Setting 0L/ 00 = 0 gives (4.23); O and P are
symmetric positive definite and can be partitioned as in (4.22) and (4.24). A
straightforward calculation shows

oL

= T . .
), 2PL00n +P0y),, (i) €S,
& 2(PLB + P,B,,)V,
o (4.50)
a(cm),'j a(Cm)[j 12 m 2C m

= 2R(C,0s — COu),;, > 1.

AW =4, B(A) =B+ (1— 2B, C(i)=iC+(1-2)C
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where B; and C; play the same role as in Section 4.1. Let

. 1 oL
Hy,(4,x) = 304, = (P01 + P.0y),
A oL
Hy (13.B) = 3 o = (PLB(2) + P.B,) V. @51)
He,(hx, C) = 2 2L R(Co0s — C(1)00)
4 X, ) =3 ac, n0> On),

where in H,, only those elements corresponding to the independent variables
of 4,, are nonzero and

(An) o
x = | Vec(B,) (4.52)
(Vec (Cn) & )

denotes the independent variables, (4,,), is a vector consisting of those ele-
ments in 4,, with indices in the set &, 1i.e.,

An) g = ((An)yrs An)yys - (An)y )T

(Cn) 5. is the matrix obtained from rows = {2,...,1} of C,.
The homotopy map p(4,x,a) for Ly’s formulation is now defined as

Fi(4,x,a) = [Hy,(4,x)] 4, (4.53)
Fy(A,x,a) = Vec[Hp, (4,x,B;)] (4.54)
Fy(A,x,a) = Vec[Hc, (4,x,C)] -, (4.55)

)

T
where again the subscripts ¥ and 7 select the appropriate matrix elements,
and

- (i)

denotes the parameter variables. As discussed in Section 4.2, without loss of
generality set V' =1 in (4.54) and R = [ in (4.55).
The Jacobian matrix Dp(4,x,a) of p(4,x,a) is

D;F1 D.F 0 0
D,;F, D.F, DyFs 0 |. (4.57)
D,F; D,Fs 0 D¢F

Lemma 4.6. Suppose rank (D, F,) = n,,. Then the Jacobian matrix (4.57) has full

column rank for all 0 < 1 < 1, i.e., the homotopy map (4.53)—(4.55) is transversal
to zero for all 0 < 4 < 1.
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Proof. A similar proof to that in Section 4.2 yields
rank (Dp,F5) = mn,, for A#1. (4.58)
Ordering C; and F; by rows gives

Dc,F5(7,0,a) = Dc,(—=C(2)Q12) . = (4= 1)D¢,(CiQ12) . = (2= 1)D¢,[(Ci) 7. Q1]

[ times

00,0 .0
00 O .0
=(A-1) o . o , (4.59)
00 0 .0
and then as before
rank (D¢,F3) = (I — 1)n,, for A #1. (4.60)

Note that
rank (DFy) = iy,
which completes the proof. [

Note that there are only n,, components in F| but (/ + m)n,, + 1 independent
variables in x and A. As [ +m > 1 usually in real problems which have been
considered previously [10], all Jacobian matrices of F in those problems sat-
isfied the full rank condition. Since each of QOi,, Pi», 0>, and P, are implicit
functions of x and 4(/1), and one cannot give explicit expressions for D, F; or
Dy F as in (4.59) for D¢ F; (which show clearly the rank conditions), it was
necessary to assume that rank(D,F}) = n,, in Lemma 4.6. To guarantee the full
rank of Dp without this assumption, instead of using (4.53), let x = (5, {),
neE™,

Fi(4,x,a) = A[Hy,(4,x)] 4 + (1= 2)(n = np), (4.61)
with n,, independent parameter variables in #,, which gives
DyF =(1-A)1,, for A#1. (4.62)

Combining (4.58), (4.60), and (4.62) completes the proof that the map (4.54),
(4.55), and (4.61) is transversal to zero. Note that the homotopy construction
in (4.61) is a theoretical convenience, and in practice the choice (4.53) has been
entirely satisfactory.
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5. Boundedness of p,'(0) for H> optimal model order reduction problem
5.1. Counterexample for optimal projection homotopies

The zero set p,'(0) of a given homotopy map based on the optimal pro-
jection equations (4.1)—(4.3) is not always bounded, as shown by the following
two-dimensional example. The system [20] is given by

A:(‘_%if _‘09'742), B:(ﬁz) c=(1 12). (5.1)

For the system (2.1)—-(2.4) defined by 5.1 and n, = 1, the solution set of the
optimal projection equations (4.1)—(4.3) contains an isolated solution and a
one-dimensional manifold of solutions.

The isolated solution of this system is

A, = (—0.838521), B, = (1.537575), G, = (1.537575),

which was obtained by both POLSYS from HOMPACK [36] and by a ho-
motopy approach [41]. The one-dimensional manifold of solutions can be
derived directly from equations (4.1)—(4.3) as follows.

Let

VVIZ(W1>7 Ulz(uth)a 220-7 V:[a R=1.
wr

The optimal projection equations (4.1)—(4.3) for this problem can be written as
0=- 0.25w%u16 — 0.4wiwou0 — 0.4wfu20 — 0.72wiwyuyo — 0.25w 6

— 04wy + uy + 1.2u,,

0=—025wiwoujo — 0.4w§u10 — 0.4wiwauro — 0.72w§u26 —0.4w;o
—0.72wr0 + 1.2u; + 1.44u,,
0=-— O.25w1uf0 - 0.4wzuf0 — 0.4w uur0 — 0.72wauyur06 — 0.25u0

— 0.4uy0 +wy + 1.2w»,

0=— 025w uur0 — 0.4wru ur0 — O.4w1u§0 — 0.72wzu§0 —0.4u,0
—0.72uy0 + 1.2w; + 1.44w,,
0 =wiu; +woly — 1. (52)

The triple (4,,, B, C,) is given by
—-0.25 —-04
A, = TAG" = (uy u2)< )(M)
—-04 —-0.72/)\wm
= W](—0.25M1 - 04142) + W2(—0.4M1 — 072142),
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1
Bm =IB= (u1 llz) =u; + 1.21,{2, (53)
1.2
wi
C,=CG" =(1 12) =wy + 1.2w»,
wo
where I' = U; and G = Wl
The zero set of (5.2) contains
(M, U, 2):w = —1.2 = —1.2 _ ! c=0
1, Vi1, W = LW2, uy = LU, U = 2.44W2’ - ’

which is unbounded. Every point in this set corresponds to the same triple
(AmvBmv Cm)

A, =—.0491803, B, =0, C,=0.
The homotopy map based on the optimal projection equations is
Uy AW EW + 2w AY(A) + U BV B" =0,
ATW)Ufz+ Uz 40) W + CTRCW =0, (5.4)
um-1=0,

where A(1) =24+ (1 — 2)D, and D is a part of the parameter vector a in
Theorem 3.3. The zero set p,'(0) of this homotopy map for the system (5.1)
includes the subset

{(}v,m,U1,2)20<}n< I, wi= —12w,, u; = —1.2u,,

1
up :m, (7:0}, (55)

which is unbounded. This example shows that the zero set p,'(0) of a ho-
motopy map can be unbounded and yet some zero curves may still converge to
isolated solutions.

Note that, in practice, the algorithm in [41] always maintains
rank (X) = n,,, where n,, = | in the above example. Solutions with ¥ =0 in
the above example never come into play. Boundedness of p,'(0) for the
optimal projection equations (4.1)—(4.3) can indeed be guaranteed with more
sophisticated mathematics, a slightly different homotopy map from the one
used in practice, and complex arithmetic for the curve tracking. This is
pursued in Section 5.3.
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5.2. Simplification and example for input normal form homotopy

The following corollary is needed to simplify the homotopy map based on
the input normal form formulation for the H? optimal model order reduction
problem.

Corollary 5.1. Let ANI,NIE, V; be defined as in Section 4.2, partitioned as in (4.21),
let A,, be stable, and Q, satisfy (4.20). To minimize (4.19) under the constraints
(4.17) and (4.20), the following two Lagrangians are equivalent:

Ll(Aln7Bm7 Cma Qa QIchaMoaPI) =1tr QIRI + (Am +A;rr1 +Bm VB;»S)MC
+(41Q+Q4,, + CLRC,)M,
+ (4,0, + 0,47 + V)P |, (5.6)

where the symmetric matrices M,, M., and P, are Lagrange multipliers introduced
in Section 4.2, and

LQ(A,,”B,”, Cma lepl) =1r [QI[éI + (A~1Q1 + QIANIT + I71)}51]7 (57)

where Q, is restricted to the form

~ (0 0
o-(% %)

the Lagrange multiplier P, is restricted to the form

5 _ (P Po

fr= (sz Q )
and Q = diag(wy, - -+, w,,) is a positive definite matrix.
Proof. The proof is straightforward. Setting 0L/ GQ, = 0 gives the same equa-
tion

in both cases. Expanding (4.20) and (5.8) yields the equations for Q, and P;. In
the first case

4,0, + 0,AT + B, VBT =0, AP, + P4, +CIRC, = 0.

Since the constraints (4.17) and (4.20) should be satisfied and 4,, is stable, it
follows that at a constrained minimum

o, =1, P=Q. O
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The partial derivatives 0L,/0B,, and 0L,/0C,, of L, can be computed as
0L, _ 0L, ~
B, - 2(PLB+ QB,)V, . = 2R(C,, — CQ,)-
The corresponding homotopy map (4.30) and (4.31) is now simplified as
Vec (Hg, (4,x,a))
p(4,x,a) = ,
Vec(Hc, (2,x,a))
where
Hg, (%,x,a) = (PLB(L) + QB,)V,  Hc,(4,x,a) = R(C,, — C(A)0),).

The zero set p,'(0) of a homotopy map based on the input normal form
formulation given by [9] is not always bounded, as shown by the following two-
dimensional example.

The system is given by

—0.895116  0.612237 )
A= . B= . C=(-2 1). (59
0.612237  —0.447393 1

According to [9], the initial point and the triple (4(4), B(1), C(1)) are chosen as
follows:

(1) Transform the given triple (4, B, C) to balanced form (4,, By, Cp), such
that A, = T7'4T, B, = T~'B, and C, = CT satisfy

0=A4,A+ A4, + B,V B}, 0=A, A+ Ad,+ CLRCy,

with a positive definite matrix A = diag(dy,d,---,d,), d; = diy,.
The balanced form of (5.9) is

(025297 05 5 _ (1232
b —05  —1.089 ) "\ -1.866)’

C,=(—1232 —1.866),

0.866 0.5 3 0
r= ( 0.5 —0.866)’ A= (0 1.5978)’
(2) For n,, = 1, the parameterization (4(1),B(4),C(2)) is chosen as
ai(4)  ax(4)
ax(4) a3 (4)
(—0.64221 —0.25297 0.612237) )

with

A(2) =iA+ (1 = )d; = (

0.6122374 0.64311 — 1.0896



Y. Wang et al. | Appl. Math. Comput. 123 (2001) 155-185

178
| (283) _ (—1.232;0.768/1)

CA)=2C+(1=1)C = (c1(4) c(d))=(-1232-0.7682 1)
= B'(2).
where
—0.25297 0 —-1.232
i = 5 Bi: 5 Cl:(—1232 0)
0 —1.0896 0

For brevity, a;(4), a2(4), a3(1), b1(1), by(1), ¢1(A), and ¢, (1) will be denoted by
a,, a», a3, by, by, c;, and c¢,, respectively, in the following. As discussed in
Section 4.2, without loss of generality, set ¥ =17 and R = 1.

Forany0< A< 1,B, €R,B, #£0, let
M (b, — by)by

—B? \/_ _ 2
A, = 2 Chn=-VOB,, P=Q= ,
2 2 |:(l1 +Am —Ma2:|
_ arby — bz(bl *Am)
bi(as +A4,) — bay’

_ bC, — (Pi2)yy(as + An)

5 Culaaby — aiby — A,b)) 5

(Pia)y, = a3 — (ay+ A4,)(as + 4,,)’ (Pra) = a ’
_ P _ P

Qi) = (\l/%“ v (OQu)n= (\1/2%12.

Then
p()“7x7 a) = 07 AN[(}")QI + QIA?(;L) + 17](/1) = Oa

A ()P + P A (2) + Ri(2) =0
are satisfied. The zero set p,'(0) of this homotopy map includes

{(A,Bm,Cm): 0<i<l1,Cp= —\/ﬁBm}. (5.10)
Clearly, (5.10) is unbounded. If B,, # 0, then 4,, is stable, (4,,, B,) is con-
trollable, and (4,,, C,,) is observable.

5.3. Homogeneous transformation to avoid solutions at infinity

As shown by the examples in Sections 5.1 and 5.2, the polynomial systems
(4.1)~(4.3) or (4.30) and (4.31) may have solutions at infinity, and p,'(0)
contains paths that diverge to infinity as / approaches 1. Solutions at infinity
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can be avoided via the following transformation [26-28], which will be used in
Section 5.4.

Let f(z) = 0 be a polynomial system of N equations in N unknowns, where
z € CY, and define f'(Z) as the homogenization of f(z):

fj/(zl):Zg/fj(zl/ZOa"'vZN/ZO)v j:17"'7N7 (511)

where d; = deg(f;). f'(Z) =0 is a system of N homogeneous equations in
N + 1 unknowns.

Note that, if f/(z°) =0, then f’(cz’) =0 for any complex scalar c.
Therefore, we may take “solutions” of f'(zZ) =0 to be (complex) lines
through the origin in C"™'. The set of these lines is called complex projective
space, denoted by PV, a smooth compact N-complex-dimensional manifold.
It is natural to view PV as a disjoint union of points [(z,...,zy)] with zy # 0
and the “points at infinity”, the points [(z, . ..,zy)] with zy = 0. The solutions
of f'(z') = 0 in P" are identified with the solutions and solutions at infinity of
f(z) =0 as follows.

First, the solutions to f(z) =0 can be identified with the solutions to
f'(Z) = 0 with zy # 0. Explicitly, if L € P" is a solution to f'(z') = 0, and Z € L,
with z/ = (zp,...,zy) and zy # 0, then z = (2, /z9,22/z0, . . . ,2n/20) is @ solution
to f(z) = 0. On the other hand, if z € C" is a solution to f(z) = 0, then the line
through z’ = (1,z) is a solution to f'(z') = 0 with zy = 1 # 0. A “solution to
f(z) = 0 at infinity” is simply a solution to f/(z') = 0 (in P") generated by 2
with zZop = 0.

Define a homotopy map (in P")

h(Z,2) = (1= 2)g' () + 4/'(2), (5.12)

where g’ is a homogeneous system of N polynomials in N + 1 variables, and y is
a randomly chosen complex number. Intuitively, let g’ be chosen so that its
homogeneous structure matches that of f’. Precisely, let S € P be the set of
common solutions of f'(z) =0 and g'(z’) = 0. Then for each s € S the fol-
lowing conditions must hold. For s € S let K denote the full connected com-
ponent of solutions of g’(z') = 0 with s € K.

If 5 is a geometrically isolated solution of g'(z’) = 0, assume that: (a) s is also
a geometrically isolated solution of f’(z') = 0; (b) the multiplicity of s as a
solution of g’(z’) = 0 is less than or equal to the multiplicity of s as a solution of
£1(2)=0.

If s is not a geometrically isolated solution of g’(z’) = 0, assume that: (a) K is
contained in S; (b) K is the full solution component of f/(z') = 0 containing s;
(c) K is a smooth manifold; (d) at each point z° € K the rank of Vg'(z°) is the
codimension of K.

Let " denote the solution set of g’(z) = 0 in PV — S. Under these assump-
tions, the basic result is the following theorem.
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Theorem 5.2. [26,28] Assume the points in S' are nonsingular solutions of
g'(Z) = 0. For any positive r and for all but a finite number of angles 0, if y = re’,

then h=1(0) N ((PY —8) x [0,1)) consists of smooth paths and every geometri-
cally isolated solution of f'(Z) =0 not in S has a path in (PY —S) x[0,1)
converging to it.

Let

N
L(Z/) = Zb,—zi,
=0
where b; # 0 for some i.
U, = {[z’] cePV|L(Z) # 0}

is the Euclidean coordinate patch on PV defined by L. Note that U, which is
an open dense submanifold of PV, can be identified with C" via

1
L(z)

[(ZOa~-'7ZN)]_) (207'"aZl'—l7Zi+17"'7ZN>7
where b; # 0.

The following theorem from [28] shows how to keep the homotopy process
in complex Euclidean space, even though the basic theorem is formulated in

P

Theorem 5.3. Assume the points in S’ are nonsingular solutions of g'(z') = 0.
Then

R10) N (PY —8) x [0,1)) € Uy x [0,1],

for almost all Uy and all but a finite number of angles 6.

For computations, the coordinate patch U, is realized via a projective
transformation as follows. With homogeneous / in the variables z; for i = 0 to
N, let

zZp = Zﬁizi‘f'ﬂm (5.13)
-1

where the f5; are constants and f3; # 0 for all i. The projective transformation of
h is the system H of N polynomials in the N variables z; for i = 1 to N where
H; = h;, with (5.13) defining z, in terms of the other variables. By Theorem 5.3,
the homotopy paths, including end points, are completely represented in C" via
H. The finite solutions of f(x) = 0 are recovered via z; < z;/z, fori = 1 to N. If
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zo = 0, then the solution is at infinity. This concludes the background discus-
sion of polynomial system theory.

5.4. Homogeneous transformation of optimal projection homotopies

In this section the homogeneous transformation introduced in Section 5.3 is
used to prevent unbounded zero sets for optimal projection homotopies.
Consider the polynomial system given by (4.1)—(4.3) and the corresponding
optimal projection homotopies defined in Section 4.1. The start system at 1 =0
is taken as

Ui A(0) W 2w + s wT4(0)" + U, B(0) = 0,
A0 U T + UT U 4(0) Wi + C(0) Wi = 0, (5.14)
Ul VVI - In,,, = Oa

where 4(0) =D =4 —¢€l,, € is a constant, A(1) = A4 + (1 — A)D. The target
system (at 4 = 1) is (4.1)-(4.3).

According to Section 4.3, the homogenization of the target system (4.1)-
(4.3) can be taken as

U AW 2 W + 22 W A" + U BV B" =0,
ATUTE + U U AW +ZCTRC W] =0, (5.15)
Ul/ VVII - Z(Z)Iﬂm = 07

where

z = (vec(U,), vec (W), vec(2)),
Ui (zo,---,2zv) = 20Ui (21 /20, - - -, 2x/20),
VVll(Z()v"'aZN) :ZOVVI(Z]/Z()v"'7ZN/ZO)a

X(zo,---y2v) = 202(21 /205 - - -, 28/ 20)-
The corresponding homogenization of the start system is
U DWW+ W/D" + U B; = 0,
ZD"UMY + U U DW +ZC W =0, (5.16)
Ui W =230, =0,
where B; = B(0) and C; = C(0).

Theorem 5.4. If B;, C;, and € can be chosen such that (5.15) and (5.16) have no
common zy # 0, X' # 0 solutions, and all zy # 0, X' # 0 solutions of (5.16) are
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nonsingular, then every geometrically isolated solution of (5.15) has a path in PV
converging to it.

Proof. If ¢ =0, (5.15) and (5.16) have the same z, = 0 solution set (corre-
sponding to solutions of (4.1)—(4.3) at infinity). Since B; and C; can be chosen
such that (5.15) and (5.16) have no common z, # 0, 2’ # 0 solutions and all
2o # 0, 2" # 0 solutions of (5.16) are nonsingular, then all the conditions of
Theorems 5.2 and 5.3 hold. For each point in §', the associated path in H~!(0)
can be tracked from 2 = 0 to 4 = 1. This will yield the full list of geometrically
isolated solutions to H(z,1) = 0. No paths diverge to infinity.

If € # 0, B(A) = BVBT, and C(4) = CTRC for 0 < /. <1 as in [41], using the
fact U/W; = 0 (when zy = 0), it is clear that the zy = 0 solution set of (5.16) is
the same as that of (5.15). Similarly, (5.15) and (5.16) have the same zy, £ 0
solutions when 2’ = 0. Note that this case corresponds to the counterexample
of Section 5.1. Take S be all the zy = 0 solutions and any solutions corre-
sponding to zy # 0 and X2’ = 0. Now ¢ can be chosen such that (5.15) and (5.16)
have no other common solutions and all other z, # 0 solutions of (5.16) are
nonsingular. Then the technical assumptions of Theorem 5.2 can clearly be met
for the common solution set S. Thus Theorem 5.2 and 5.3 hold for the start
system (5.16) in this case (¢ # 0) also. O

The import of this result is that the real solutions of (4.1)—(4.3), which satisfy
the rank condition

rank () = rank (U;) = rank (2) = n,,,

if they exist, must be connected to the solutions of (5.16) in PV — S. Techni-
cally, this is guaranteed only with a complex multiplier y in (5.16), and only if
complex arithmetic is used and the homotopy curve tracking is done in P".
However, all this has never been necessary in practice [41]. Furthermore, ob-
serve that the solution set (5.15) includes all solutions with rank 2’ <n,,, and
thus one is guaranteed of finding a reduced order model of order no greater
than n,,. Since (5.15) represents the optimal projection equations (4.1)—(4.3) for
some stable A(1) for every 4, 0 < 1 < 1, it is clear why real arithmetic suffices
generically. Generically, the real solutions are isolated, have constant rank, and
vary smoothly with respect to 4 [26].

Finally, for the target system (5.15), it is always possible to take the starting
homogeneous system as

ijj—qug:07 jzl,,N, (517)

where p; and ¢; are positive constants such that (5.17) has no common solution
with (5.15). Since all solutions to (5.17) are nonsingular, all conditions of
Theorem 5.2 and 5.3 are satisfied. The drawback is that the starting system
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(5.17) is totally unrelated to (5.15), requires complex arithmetic, and may take
more steps to converge.

6. Conclusions

Probability-one homotopy methods were considered for the problem of H?
model reduction. The crucial requirement of transversality was verified for
several homotopy maps including the pseudogramian formulation of the op-
timal projection equations as well as variations based upon canonical forms.
These results guarantee good numerical properties in the computational im-
plementation of probability-one homotopy algorithms. Counterexamples to
the boundedness requirement of probability-one homotopy theory were pro-
vided for the pseudogramian formulation of the optimal projection equations
and for some formulations based upon canonical forms. Since a solution may
not exist in any particular canonical form, these results are sharp for canonical
forms, where unboundedness corresponds to nonexistence of solutions. How-
ever, for a reformulation of the pseudogramian optimal projection equations in
complex projective space using homogeneous transformations, the bounded-
ness assumption holds and thus global convergence of the homotopy algorithm
to a solution (in complex projective space) is guaranteed. Both the genericity of
real solutions and considerable computational experience [41] indicate that
real-valued homotopies are effective in practice and thus it is not necessary to
track the homotopy zero curves in complex projective space.
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