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The verge and foliot escapement mechanism of a mechanical clock is a classical example of a feedback regulator. In this
paper we analyse the dynamics of this mechanism to understand its operation from a feedback perspective. Using
impulsive differential equations and Poincaré maps to model the dynamics of this closed-loop system, we determine
conditions under which the system possesses a limit cycle, and we analyse the period and amplitude of the oscillations in
terms of the inertias of the colliding masses and their coefficient of restitution.

1. Introduction

Although clocks are one of the most important

instruments in science and technology, it is not widely

appreciated that feedback control has been essential to

the development of accurate timekeeping. As described

by Mayr (1970), feedback control played a role in the

operation of ancient water clocks in the form of regu-

lated valves. Alternative timekeeping devices, such as

sundials, hourglasses and burning candles, were devel-

oped as well, although each of these had disadvantages.

Mechanical clocks were developed in the 12th cen-

tury to keep both time and the calendar, including the

prediction of astronomical events (Gimpel 1976, Landes

2000). Although early mechanical clocks were expensive,

large and not especially accurate (they were often set

using sundials), this technology for timekeeping had

inherent advantages of accuracy and reliability as

mechanical technology improved.

The crucial component of a mechanical clock is the

escapement, which is a device for producing precisely

regulated motion. The earliest escapement is the

weight-driven verge and foliot escapement, which dates

from the late 13th century. The feedback nature of the

verge and foliot escapement is discussed in Lepschy et al.

(1992) who point out that this mechanism is a work of

‘pure genius’. Lepschy et al. (1992) have performed an

important service in identifying this device as a contri-

bution of automatic control technology.

It is interesting to note that the verge and foliot

escapement was the only mechanical escapement

known from the time of its inception until the middle

of the 17th century. In 1657 Huygens modified the verge
and foliot escapement by replacing the foliot with a
pendulum swinging in a vertical plane and the crown
gear mounted horizontally. However, the basic paddle/
gear teeth interaction remained the same. The next
escapement innovation was the invention of the anchor
or recoil escapement by Hooke in 1651 in which a pen-
dulum-driven lever arm alternately engages gear teeth in
the same plane. Subsequent developments invoking
additional refinements include the deadbeat escapement
of Graham and the grasshopper escapement of
Harrison. The latter device played a crucial role when
the British Government sought novel technologies for
determining longitude at sea (Sobel and Andrewes
1998). For details on these and other escapements, see
Gazely (1956), Penman (1998), Headrick (2002) and
Bernstein (2002). Since escapements produce oscillations
from stored energy, they can be analysed as self-oscillat-
ing dynamical systems. For details, see Andronov et al.
(1966).

The present paper considers only the verge and foliot
escapement, which consists of a pair of rotating rigid
bodies which interact through collisions. These colli-
sions constitute feedback action which give rise to a
limit cycle. This limit cycle provides the crown gear
with a constant average angular velocity that determines
the clock speed for accurate timekeeping.

The verge and foliot is analysed in Lepschy et al.
(1992) under elastic and inelastic conditions. For the
latter case expressions were obtained for the period of
the limit cycle and for the crown gear angular velocity at
certain points in time. Because of the presence of colli-
sions, a hybrid continuous-discrete model was used to
account for instantaneous changes in velocity.

The present paper extends the analysis of Lepschy et
al. (1992) in several directions. In } 2 we provide a
detailed model of the verge and foliot escapement for
arbitrary values of the coefficient of restitution. In } 3 we
show that impulsive differential equations are well-
suited for modelling the dynamics of this system. The
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mathematical properties of impulsive differential equa-
tions have been developed in Lakshmikantham et al.
(1989) and Bainov and Simeonov (1989), and they
have been used to model resetting absorbers in Bupp
et al. (2000 a). Applications to mechanical systems
with collisions are given in Brogliato (1999).
Furthermore, Haddad et al. (2001 a) develop a general
framework for non-linear impulsive dynamical systems
by addressing stability, dissipativity, stability of feed-
back interconnections and optimality. Stability analysis
of impulsive differential equations is also considered in
Ye et al. (1998) and Chellaboina et al. (2003), with the
latter presenting invariant set stability theorems for a
class of non-linear impulsive dynamical systems. In } 4
we analyse the model obtained in } 3 to characterize the
periodic orbit arising in the closed-loop dynamics. The
main result is an expression for the average angular vel-
ocity of the crown gear in terms of the mechanical par-
ameters and applied torque. In } 5 we give a brief review
of recent results on Poincaré maps for impulsive differ-
ential equations developed in Grizzle et al. (2001) and
Neresov et al. (2002). Then, in } 6 we use the results of
} 5 to analyse the stability of periodic orbits arising in
the escapement mechanism. In } 7 we provide a numer-
ical illustration of the results presented in } 6. Finally, we
draw conclusions in } 8.

2. Modelling

The verge and foliot escapement mechanism shown
in figure 1 consists of two rigid bodies rotating on bear-
ings. For simplicity we assume that these bearings are
frictionless. The crown gear has teeth spaced equally
around its perimeter. The verge and foliot, which hence-
forth will be referred to as the verge, has two paddles
that engage the teeth of the crown gear through alter-
nating collisions. We ignore sliding of the paddles along
the crown gear teeth, which may occur in practice. For
the orientation shown in figure 1, there is an upper pad-
dle and a lower paddle.

Collisions involving the upper paddle impart a posi-
tive torque impulse to the verge, while those involving
the lower paddle impart a negative torque impulse to the
verge. Each collision imparts a negative torque impulse
which acts to retard the motion of the crown gear. The
mechanism is driven by a constant torque applied to the
crown gear. This torque is usually provided by a mass
hanging from a rope which is wound around the shaft.
The verge spins freely at all times except at the instant a
collision takes place. Energy is assumed to leave the
system only through the collisions. The amount of
energy lost during each collision is a function of the
system geometry as well as the coefficient of restitution
e realized in the collision.

The crown gear and verge have inertias Ic and Iv,
contact radii rc and rv, and angular velocities _��c and
_��v, respectively. The velocities immediately before and
after a collision are denoted by the subscripts 0 and 1,
respectively, as in _��c0 and

_��c1 . The motion of the crown
gear and verge is governed by the differential equations

€��cðtÞ ¼
1

Ic
� � rc

Ic
Fð�cðtÞ; �vðtÞ; _��cðtÞ; _��vðtÞÞ ð1Þ

€��vðtÞ ¼
þðrv=IvÞFð�cðtÞ; �vðtÞ; _��cðtÞ; _��vðtÞÞ; upper

�ðrv=IvÞFð�cðtÞ; �vðtÞ; _��cðtÞ; _��vðtÞÞ; lower

8<
: ð2Þ

where the first expression in (2) applies to collisions
between the crown gear and the upper paddle, and the
second expression applies to collisions between the
crown gear and the lower paddle. The function
Fð�cðtÞ; �vðtÞ; _��cðtÞ; _��vðtÞÞ is the collision force, which is
zero when the crown gear and verge are not in contact
and is impulsive at the instant of impact. The collision
force function F acts equally and oppositely on the
crown gear and verge. Defining

�X
þ1; upper

�1; lower

(
ð3Þ
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Figure 1. Verge and foliot escapement mechanism. The
angular velocities of the crown gear and verge are _��c
and _��v, respectively, with the sign convention shown.
There is a constant torque � applied to the crown gear
with positive direction shown.



equation (2) can be written in the form

€��vðtÞ ¼ �
rv
Iv
Fð�cðtÞ; �vðtÞ; _��cðtÞ; _��vðtÞÞ: ð4Þ

A system diagram is shown in figure 2.
To determine the collision force function, we inte-

grate (1) and (4) across a collision event to obtain

_��c1 � _��c0 ¼ lim
�t!0

1

Ic

ðtþ�t

t��t

� ds� rc
Ic

ðtþ�t

t��t

FðsÞ ds
� �

ð5Þ

_��v1 � _��v0 ¼ lim
�t!0

�
rv
Iv

ðtþ�t

t��t

FðsÞ ds
� �

ð6Þ

Eliminating the integrated collision force from (5) and
(6) yields

�Iv
rv

_��v0 þ
Ic
rc

_��c0 ¼
�Iv
rv

_��v1 þ
Ic
rc

_��c1 ð7Þ

which is an expression of conservation of linear momen-
tum at the instant of a collision. Expression (7) can be
rewritten as

MvVv0 þMcVc0 ¼ MvVv1 þMcVc1 ð8Þ

where Mc X Ic=r
2
c and Mv X Iv=r

2
v are the effective

crown gear mass and effective verge mass, respectively,
and Vc X rc _��c and Vv X�rv _��v are the tangential vel-
ocities of the crown gear and the verge, respectively.

The coefficient of restitution e relates the linear vel-
ocities of the crown gear and the verge before and after
the collision according to

Vc1 � Vv1 ¼ �eðVc0 � Vv0Þ ð9Þ

which accounts for the loss of kinetic energy in a colli-
sion. Solving (7) and (9) yields

� _��c ¼ � Mvð1þ eÞ
rcðMv þMcÞ

Vc0 þ �
Mvð1þ eÞ

rcðMv þMcÞ
Vv0 ð10Þ

� _��v ¼ �
Mcð1þ eÞ

rvðMv þMcÞ
Vc0 �

Mcð1þ eÞ
rvðMv þMcÞ

Vv0 ð11Þ

where

� _��c X _��c1 � _��c0 ; � _��v X _��v1 � _��v0 ð12Þ

are the impulsive changes in angular velocity when a
collision occurs. These quantities depend on the geo-
metry as well as the velocities immediately before the
collision. The integral of the impulsive force function
over a collision event isðt1

t0

FðsÞ ds ¼ McMv ð1þ eÞ
Mv þMc

ðVc0 � Vv0Þ ð13Þ

where t0 is a time slightly before the collision and t1 is a
time slightly after the collision.

3. Impulsive differential equations

In this section we rewrite the equations of motion of
the escapement mechanism in the form of an impulsive
differential equation. An impulsive differential equation
is described by three components; namely, a continuous-
time differential equation, which governs the system state
between impulses, an impulse equation, which models an
impulsive jump defined by a jump function at the instant
an impulse occurs, and a jump criterion, which defines a
set of jump events in which the impulse equation is
active. These components can be written in the form

_xxðtÞ ¼ fcðxðtÞÞ; xðtÞ 62 S ð14Þ

�xðtÞ ¼ fdðxðtÞÞ; xðtÞ 2 S ð15Þ

where t � 0, xðtÞ 2 R
n, fc : R

n ! R
n is locally Lipschitz

continuous; fd : R
n ! R

n is continuous; and S � R
n is

the jump set. For the remainder of the paper we refer
to (14) and (15) as the impulsive dynamical system G.

To describe the dynamics of the verge and foliot
escapement mechanism as an impulsive differential
equation, define the state

x ¼ ½ x1 x2 x3 x4 �T X ½ �c �v _��c _��v �
T ð16Þ

where x1 is the position of the crown gear, that is, the
counterclockwise angle swept by the line connecting the
centre of the crown gear and the zeroth tooth from the
12 o’clock position; x2 is the position of the verge, that
is, the deviation of the mean line of the angular offset
between two paddles from the vertical plane perpen-
dicular to the plane of the crown gear; x3 is the angular
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Figure 2. System block diagram showing the interconnection
of the crown gear and verge rigid bodies through the
collision block.



velocity of the crown gear; and x4 is the angular velocity
of the verge. Between collisions the state satisfies

_xxðtÞ ¼

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

2
664

3
775xðtÞ þ

0
0

1=Ic
0

2
664

3
775 � ð17Þ

while the jump function is given by

fdðxÞ ¼

0 0 0 0
0 0 0 0
0 0 �rc Gc �rv Gc

0 0 �rc Gv �rv Gv

2
664

3
775x ð18Þ

where

Gc X
ðIv=r2vÞð1þ eÞ

rcððIv=r2vÞ þ ðIc=r2cÞÞ
; Gv X

ðIc=r2cÞð1þ eÞ
rv ðIv=r2vÞ þ ðIc=r2cÞÞð

ð19Þ
The jump set is

S ¼
[n
m¼0

Supper
m

( )[ [n
m¼0

Slower
m

( )
ð20Þ

where, for m ¼ 0; :::; n

Supper
m ¼ fx : rc sinðx1 �m�cÞ ¼ rv tanðx2 þ �v=2Þ;

rcx3 � rvx4 > 0; ðm� 1=2Þ�c þ 2p� � x1

� ðmþ 1=2Þ�c þ 2p�; p 2 f0; 1; 2; . . .gg ð21Þ

Slower
m ¼ fx : rc sinðm�c � x1Þ ¼ rv tanð�x2 þ �v=2Þ;

rcx3 þ rvx4 > 0; ðm� 1=2Þ�c þ ð2p� 1Þ� � x1

� ðmþ 1=2Þ�c þ ð2p� 1Þ�; p 2 f0; 1; 2; . . .gg

ð22Þ
where �c is the angle between neighbouring teeth on the
crown gear, �v is the angular offset of the paddles about
the vertical axis, m is the index of the crown gear tooth
involved in the collision and p is the number of full
rotations of the crown gear. The crown gear teeth are
numbered from 0 to n clockwise, or opposite the direc-
tion of increasing �c, beginning at �c ¼ 0. There must be
an odd number of crown gear teeth for the mechanism
to function correctly, and thus n is even.

4. Characterization of periodic orbits

In this section we characterize periodic orbits of G.
First we integrate the continuous-time dynamics (17) to
obtain

�c2 ¼ �c0 þ _��c1�tþ �

2Ic
�t2 ð23Þ

�v2 ¼ �v0 þ _��v1�t ð24Þ

where �c2 and �v2 are evaluated immediately before the
next collision and �t is the elapsed time between two
successive collisions. For an initial collision involving
the upper paddle we have

rc sinð�c0 �m�cÞ ¼ rv tanð�v0 þ �v=2Þ ð25Þ

The index m0 of the crown gear tooth involved in the
subsequent lower collision is given by

m0 ¼ mþ �=�c þ 1=2 ð26Þ

so that the condition

rc sinðm�c þ �þ �c=2� �c2Þ ¼ rv tanð��v2 þ �v=2Þ
ð27Þ

must be satisfied at the lower collision. Substituting (23)
and (24) into (27) yields

rc sin �c0 þ _��c1�tþ �

2Ic
�t2 � ðmþ 1

2
Þ�c

� �

¼ rv tan ��v0 � _��v1�tþ �v

2

� �
ð28Þ

A small angle approximation of (25) and (28) implies

rcð�c0 �m�cÞ ¼ rv �v0 þ
�v

2

� �
ð29Þ

rc �c0 þ _��c1�tþ �

2Ic
�t2 � ðmþ 1

2
Þ�c

� �

¼ rvð��v0 � _��v1�tþ �v

2
Þ ð30Þ

Subtracting (29) from (30) yields

rc _��c1�tþ rc�

2Ic
�t2 � 1

2
rc�c ¼ �rv _��v1�t� 2rv�v0 ð31Þ

Analogous expressions hold for collisions involving the
lower paddle. Solving for �t yields

�t ¼
�d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðrc �c � 4�rv�v0Þrc�=Ic

q
rc�=Ic

ð32Þ

where

d ¼
ð2þ eÞMc � eMv½ �rc _��c0

Mv þMc

þ �
ð2þ eÞMv � eMc½ �rv _��v0

Mv þMc

ð33Þ

Furthermore, the kinetic energy �T lost in a collision is
given by

�T ¼ Mv Mc

2 ðMv þMcÞ
ðe2 � 1Þ ðrv _��v0 � �rc _��c0Þ

2 ð34Þ

Next, we specify conditions that characterize a per-
iodic orbit in the ( _��c; _��v) plane. The first condition

_��v1 ¼ � _��v0 ð35Þ

1688 A. V. Roup et al.



requires the verge to reverse direction at every collision.
This condition ensures that the absolute value of the
verge speed is constant with time. On the other hand,
the crown gear will lose speed with every collision and
then gain speed between collisions. Thus, the second
condition

_��c1 ¼ _��c0 �
� �t

Ic
ð36Þ

requires the crown gear speed to be the same before each
collision. The third condition

�v0 ¼ ��v2 ð37Þ

requires the range of motion of the verge between colli-
sions to be centered at �v0 ¼ 0. This condition keeps the
motion of the verge from wandering out of the range of
angles within which the mechanism will work properly.
A representative periodic orbit satisfying (35), (36) and
(37) is shown in figure 3.

Next, we derive some properties of periodic orbits

satisfying (35), (36) and (37). The average crown gear

velocity _��c of a periodic orbit is given by

_��c ¼
�T

� �t
ð38Þ

To obtain an expression for _��c as a function of the
applied torque and geometric parameters it follows
from (7), (9) and (32)–(38) that

_��c ¼
ffiffiffi
�

p

2rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e

1þ e

� �
ðMc þMvÞ�c

McMv

s
ð39Þ

Figure 4 shows the sensitivity of _��c to changes in the
parameters e and Mv:

The crown gear velocity before a collision is given by

_��c0 ¼
ð1� eÞMc þ 2Mv

ð1� eÞðMc þMvÞ
_��c ð40Þ

and the crown gear velocity after a collision is given by

_��c1 ¼
ð1� eÞMc � 2 eMv

ð1� eÞðMc þMvÞ
_��c ð41Þ

The verge velocity is given by

_��v ¼ � 1

2 rv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

� �
Mc �c �

ðMc þMvÞMv

s
ð42Þ

where the verge velocity is positive following a collision
involving the upper paddle and negative following a
collision involving the lower paddle. Finally, the period
of this periodic orbit is

2�t ¼ �c

_��c
ð43Þ

5. Stability analysis of periodic orbits using Poincaré

maps

In the previous section we characterized the periodic
orbits of G and illustrated the projection of such an orbit
onto the velocity plane ðx3;x4Þ (see figure 3). In this and
the next section we use Poincaré maps to prove that the
periodic orbit is an asymptotically stable limit cycle.
Several definitions are needed for the development of
the results of this section. For these definitions, we
denote the solution to G with initial condition x0 2 D
by sðt; x0Þ; t � 0: Here, s : ½0;1Þ �D ! D, where
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D � R
n; is (i) left-continuous in t, that is,

lim�!t�sð�; x0Þ ¼ sðt; x0Þ for all x0 2 D and t 2 ð0;1Þ;
(ii) consistent, that is, sð0; x0Þ ¼ x0; for all x0 2 D; and
(iii) satisfies the semi-group property, that is,
sð�; sðt; x0ÞÞ ¼ sðtþ �; x0Þ for all x0 2 D and
t; � 2 ½0;1Þ:

Definition 1: A solution sðt; x0Þ; t � 0, of G is periodic
if there exists T > 0 such that sðtþ T ; x0Þ ¼ sðt; x0Þ for
all t � 0. The minimal T > 0 for which the solution
sðt; x0Þ of G is periodic is called the period. A set
O � D is a periodic orbit of G if O ¼
fx 2 D : x ¼ sðt; x0Þ; 0 � t � Tg for some periodic
solution sðt; x0Þ of G:

Definition 2: A periodic orbit O of G is Lyapunov
stable if, for all � > 0; there exists � ¼ �ð�Þ > 0 such
that, if distðx0;OÞ < �; then distðsðt; x0Þ;OÞ < �; t � 0:

In Definition 2, distðp;MÞ denotes the smallest dis-
tance from a point p to any point in the set M; that is,
distðp;MÞX infx2M kp� xk:

Definition 3: A periodic orbit O of G is asymptotically
stable if it is Lyapunov stable and there exists � > 0
such that, if distðx0;OÞ < �, then distðsðt; x0Þ;OÞ ! 0
as t ! 1:

The following assumptions are needed for the main
result of this section:

A.1. fc: D ! R
n is locally Lipschitz continuous on D.

A.2. fd: S ! R
n is continuous.

A.3. There exists a continuously differentiable func-
tion X : D ! R such that the resetting set
S ¼ fx 2 D : XðxÞ ¼ 0g; moreover, X0ðxÞ 6¼ 0;
x 2 S:

A.4. LfcXðxÞXX0ðxÞfcðxÞ 6¼ 0;x 2 O \ S:

Remark 1: It follows from A:1 and A:2 that the solu-
tion to (14) and (15) is unique and is jointly continu-
ous in t and x0 between resetting events (see Nersesov
et al. (2002) for details). Hence, for any point x0 2 D;
there exists a unique solution to (14) over a sufficiently
small interval of time and the solution is continuously
dependent on the initial condition. Furthermore, it fol-
lows from A:3 that the jump set S is an embedded
submanifold (Isidori 1995) while A:2 assures that im-
pacts vary continuously with respect to where they oc-
cur on S: Finally, from A:4, it follows that the
periodic orbit of G is not tangent to the jump set S.

Next, we introduce the map P : S ! S by

PðxÞX sð�1ðxþ fdðxÞÞ; xþ fdðxÞÞ ð44Þ

where �kð	Þ denotes the kth resetting time at which xðtÞ
intersects S: Note that it follows from A.1�A.4 that
P : S ! S is well-defined and continuous. Next, assume
that at x0 ¼ p 2 S the system G has a periodic solution
such that sð�n0 ðpÞ; pÞ ¼ p, where �n0 ðpÞ is the period. Note
that �1ðpÞ ¼ 0. Furthermore, define the Poincaré map
P̂P : S ! S by

P̂PðxÞ ¼ Pðn0�1ÞðxÞ; x 2 S ð45Þ
where PðiÞðxÞ denotes the i-time composition operator of
PðxÞ with itself, Pð1ÞðxÞXPðxÞ, and n0 > 1. Hence, p is a
fixed point of the discrete-time system

xðkþ 1Þ ¼ P̂PðxðkÞÞ; k 2 Zþ; xð0Þ 2 S ð46Þ
where Zþ denotes the set of non-negative integers, and p
generates a periodic orbit defined by the solution
sðt; pÞ; t � 0; of G:

In addition to A.3, we assume, without loss of
generality, that @XðxÞ=@xn 6¼ 0; x 2 S, where x ¼
½x1; . . . ; xn�T. Then it follows from the implicit function
theorem (Khalil 1996) that xn ¼ gðx1; . . . ; xn�1Þ, where
gð	Þ is a continuously differentiable function at
xr X ½x1; . . . ; xn�1�T such that ½xTr ; gðxrÞ�T 2 S. Note
that in this case P̂P : S ! S in (46) is given by
P̂PðxÞX ½P̂P1ðxÞ; . . . ; P̂PnðxÞ�T, where

P̂Pnðxr; gðxrÞÞ ¼ gðP̂P1ðxr; gðxrÞÞ; . . . ; P̂Pn�1ðxr; gðxrÞÞÞ
ð47Þ

Hence, we can reduce the n-dimensional system (46) to
the ðn� 1Þ-dimensional system

xrðkþ 1Þ ¼ PrðxrðkÞÞ; k 2 Zþ ð48Þ
where xr 2 R

n�1, ½xTr ð	Þ; gðxrð	ÞÞ�T 2 S, and

PrðxrÞX

P̂P1ðxr; gðxrÞÞ

..

.

P̂Pn�1ðxr; gðxrÞÞ

2
6664

3
7775 ð49Þ

Note that it follows from (47) and (49) that
x0 X ½xT0r; gðx0rÞ�T 2 S is a fixed point of (46) if and
only if x0r is a fixed point of (48).

The following theorem given in Nersesov et al.
(2002) generalizes Poincar�ee’s theorem to impulsive
dynamical systems by establishing a relationship
between the stability properties of the periodic orbit O
and the stability properties of an equilibrium point of
the discrete-time system (48). A related result is given in
Grizzle et al. (2001).

Theorem 1 (Nersesov et al. 2002): Consider the non-
linear impulsive dynamical system G with the Poincaré
map defined by (45) and let x0 ¼ ½xTr0; gðxr0Þ�

T 2 S. As-
sume that A.1�A.4 hold and @XðxÞ=@xn 6¼ 0; x 2 S.
Then the following statements hold:
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(i) xr0 is a Lyapunov stable fixed point of (48) if and
only if the periodic orbit O generated by x0 2 S is
Lyapunov stable.

(ii) xr0 is an asymptotically stable fixed point of (48) if
and only if the periodic orbit O generated by
x0 2 S is asymptotically stable.

6. Limit cycle analysis of the clock escapement

mechanism

In this section we use Theorem 1 to show that the
periodic orbit generated by the escapement mechanism
is asymptotically stable. For convenience we denote the
periodic orbit values of _��c1, _��c0 and _��v given by (41), (40)
and (42) by a, b and �c, respectively. The following
assumption is needed.

Assumption 1: �v < �=2.

It follows from (37) that between consecutive colli-
sions on the periodic orbit, the mean line of the angular
offset between two paddles sweeps an angle of �v, that
is, �v ¼ c�t. This assures the existence of a fixed point
of (48) for the escapement mechanism. Furthermore,
Assumption 1 assures that X : D ! R is continuously
differentiable. To see this, note that Xð	Þ is determined
by (21) and (22). Now, in order for Xð	Þ to be continu-
ously differentiable we need to avoid x2 þ ð�v=2Þ ¼
��=2 and �x2 þ ð�v=2Þ ¼ ��=2. Since the position of
the verge is always within the range ð�ð�v=2Þ � �;
ð�v=2Þ þ �Þ, where � > 0 is small, it follows that in
order to avoid the singularity ��=2 we need to make
sure that �v þ � 6¼ �=2 which can be achieved by assum-
ing �v < �=2.

Without loss of generality, suppose that the trajec-
tory sðt; x0Þ; t � 0, of G starts from a point in the four-
dimensional state space associated with the upper pad-
dle collision such that its projection onto the three-
dimensional subspace lies in a sufficiently small neigh-
bourhood of the point ðx2; x3; x4Þ ¼ ð��v=2; b;�cÞ.
Then, we can construct a three-dimensional discrete-
time system that identifies the next point ðx2; x3; x4Þ
on the trajectory right before the next upper paddle
collision. This iterative procedure can be captured by
the non-linear difference equation

x2ðkþ 1Þ

x3ðkþ 1Þ

x4ðkþ 1Þ

2
664

3
775 ¼

f2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

f3ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

f4ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

2
664

3
775 ð50Þ

where f2ð	; 	; 	Þ; f3ð	; 	; 	Þ, and f4ð	; 	; 	Þ are given in
Appendix A. It follows from (35)–(37) that the point
ð�ð�v=2Þ; b;�cÞ is a fixed point of (50). Next, it follows
from standard discrete-time stability theory that if
�ðJð��v=2; b;�cÞÞ < 1, where (see bottom of page)

and �ð	Þ denotes spectral radius, then the point
ðx2; x3; x4Þ ¼ ð��v=2; b;�cÞ is a locally asymptotically
stable fixed point of (50).

Next, we introduce the discrete-time dynamical
system

x̂x2ðkþ 1Þ

x̂x3ðkþ 1Þ

x̂x4ðkþ 1Þ

2
664

3
775 ¼

f
ðnÞ
2 ðx̂x2ðkÞ; x̂x3ðkÞ; x̂x4ðkÞÞ

f
ðnÞ
3 ðx̂x2ðkÞ; x̂x3ðkÞ; x̂x4ðkÞÞ

f
ðnÞ
4 ðx̂x2ðkÞ; x̂x3ðkÞ; x̂x4ðkÞÞ

2
6664

3
7775 ð52Þ

where f
ðnÞ
i ðx̂x2ðkÞ; x̂x3ðkÞ; x̂x4ðkÞÞ; i ¼ 2; 3; 4; denotes the n-

time composition operator of fið	; 	; 	Þ, i ¼ 2; 3; 4, with
f2ð	; 	; 	Þ, f3ð	; 	; 	Þ, and f4ð	; 	; 	Þ and n is the number of
the crown gear teeth. Note that ðx̂x2; x̂x3; x̂x4Þ
¼ ð��v=2; b;�cÞ is a fixed point of (52).

Proposition 1: Consider the impulsive dynamical sys-
tem G. If �ðJð��v=2; b;�cÞÞ < 1, then the point
ðx̂x2; x̂x3; x̂x4Þ ¼ ð��v=2; b;�cÞ is a locally asymptotically
stable fixed point of (52). Alternatively, if
�ðJð��v=2; b;�cÞÞ > 1, then the fixed point ð� �v

2
;

b;�cÞ of (52) is unstable.

Proof: Given a continuously differentiable function
f : Rn ! R

n, consider the N-time composition operator
of f ð	Þ with itself; that is, hðxÞX f ðNÞðxÞ;
x 2 R

n; N 2 Zþ. Now, using the chain rule for vector
valued functions it follows that

@hðxÞ
@x

¼ @f ðs1Þ
@s1

����
s1¼f ðN�1Þ ðxÞ

	@f ðs2Þ
@s2

����
s2¼f ðN�2Þ ðxÞ

	 	 	 	 	 @f ðsNÞ
@sN

����
sN¼f 0ðxÞ

; x 2 R
n

ð53Þ

where f 0ðxÞX x. Next, since ð��v=2; b;�cÞ is a fixed
point of the system (50), it follows that the Jacobian
matrix ĴJðx̂x2ðkÞ; x̂x3ðkÞ; x̂x4ðkÞÞ of the discrete-time system
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J ��v

2
; b;�c

� �
X

@f2ðx2; x3; x4Þ
@x2

@f2ðx2; x3; x4Þ
@x3

@f2ðx2; x3; x4Þ
@x4

@f3ðx2; x3; x4Þ
@x2

@f3ðx2; x3; x4Þ
@x3

@f3ðx2; x3; x4Þ
@x4

@f4ðx2; x3; x4Þ
@x2

@f4ðx2; x3; x4Þ
@x3

@f4ðx2; x3; x4Þ
@x4

2
666666664

3
777777775

��������������
ðx2 ;x3;x4Þ¼ð��v=2;b;�cÞ

ð51Þ



(52) evaluated at the fixed point ð��v=2; b;�cÞ is given
by the N-time product of Jð��v=2; b;�cÞ; that is

ĴJ ��v

2
; b;�c

� �
¼ JN ��v

2
; b;�c

� �
ð54Þ

Hence

� ĴJ ��v

2
; b;�c

� �� �
¼ �N J ��v

2
; b;�c

� �� �
ð55Þ

Now, it follows that if �ðJð��v=2; b;�cÞÞ < 1, then
�ðĴJð��v=2; b;�cÞÞ < 1, which implies that
ð��v=2; b;�cÞ is a locally asymptotically stable fixed
point of (52). Alternatively, if �ðJð��v=2; b;�cÞÞ > 1,
then �ðĴJð��v=2; b;�cÞÞ > 1, which implies that the
fixed point ð��v=2; b; �cÞ of (52) is unstable. &

Next, it follows from the uniqueness of solutions of
G and the fact that the initial conditions ðx01; x2; x3; x4Þ
and ðx1; x2; x3; x4Þ, where x1 ¼ x01 þ 2�, give rise to
identical solutions for G, that the point x0 ¼
ð0;��v=2; b;�cÞ is a fixed point for the discrete-time
system capturing the state of G immediately before
every ðnpþ 1Þth upper paddle collision for p ¼ 0;
1; 2; . . . : Note that whenever an upper paddle collision
occurs, the position of the crown gear is completely
defined by the position of the verge, and the relation
between them results from the collision condition; that
is, x1 ¼ f1ðx2Þ; where f1 : R ! R is defined by (21). Thus,
the aforementioned four-dimensional system has the
form

~xx1ðkþ 1Þ
~xx2ðkþ 1Þ
~xx3ðkþ 1Þ
~xx4ðkþ 1Þ

2
666664

3
777775 ¼

f1ðf
ðnÞ
2 ð~xx2ðkÞ; ~xx3ðkÞ; ~xx4ðkÞÞÞ

f
ðnÞ
2 ð~xx2ðkÞ; ~xx3ðkÞ; ~xx4ðkÞÞ

f
ðnÞ
3 ð~xx2ðkÞ; ~xx3ðkÞ; ~xx4ðkÞÞ

f
ðnÞ
4 ð~xx2ðkÞ; ~xx3ðkÞ; ~xx4ðkÞÞ

2
6666664

3
7777775

ð56Þ

where f1ð	Þ is given by

f1ðx2Þ ¼ arcsin
rv
rc
tan x2 þ

�v

2

� �� �
ð57Þ

Next, we identify the periodic orbit generated by the
point x0 ¼ ð0;��v=2; b;�cÞ: For any point on this orbit
with ðx3; x4Þ ¼ ðz; cÞ; z 2 ða; b�; it follows that
z ¼ aþ ð�=IcÞtz, where tz is time spanned for the
crown gear to restore its velocity from the value of a
to z. Thus, this point can be characterized as

xz ¼

x10 þ
aðz� aÞ

�
Ic þ

ðz� aÞ2

2�
Ic

��v

2
þ cðz� aÞ

�
Ic

z

c

2
666666664

3
777777775

ð58Þ

where x10 ¼ l�c; l ¼ 0; 1; 2; . . . ; n� 1: Similarly, every
point on the orbit with ðx3; x4Þ ¼ ðz;�cÞ; z 2 ða; b�; is
characterized as

x0z ¼

x010 þ aðz�aÞ
� Ic þ ðz�aÞ2

2� Ic

�v

2
� cðz�aÞ

� Ic

z

�c

2
6666664

3
7777775

ð59Þ

where x010 ¼ ðð2l þ 1Þ=2Þ�c; l ¼ 0; 1; 2; :::; n� 1: Since
the initial conditions ðx01; x2; x3; x4Þ and ðx1; x2; x3; x4Þ,
where x1 ¼ x01 þ 2�, give rise to identical solutions for G,
it follows that OX fy 2 R

4 : y ¼ xzg [ fy 2 R
4 : y ¼ x0zg

is the periodic orbit of G. The expressions given by (58)
and (59) imply that points x0 ¼ ðx10;��v=2; b;�cÞ 2 S
or x0 ¼ ðx010; �v=2; b; cÞ 2 S generate O. Next, we show
that O is locally asymptotically stable. For this result let
D be a sufficiently small neighbourhood of O for which
the state of G is defined.

Theorem 2: Consider the impulsive dynamical system
G. Then the following statements hold:

(i) If �ðJð��v=2; b;�cÞÞ < 1, then the periodic orbit
O of G generated by x0 ¼ ðx10;��v=2; b; �cÞ 2 S
or x0 ¼ ðx010; �v=2; b; cÞ 2 S is locally asymptoti-
cally stable.

(ii) If �ðJð��v=2; b;�cÞÞ > 1, then the periodic orbit
O of G generated by x0 ¼ ðx10;��v=2; b; �cÞ 2 S
or x0 ¼ ðx010; �v=2; b; cÞ 2 S is unstable.

Proof: First we show that A.1–A.4 hold for G. As-
sumptions A.1 and A.2 are immediately satisfied for G:
To see that A.3 holds, note that for Supper

m given by
(21) with a small angle approximation, X0ðxÞ ¼
½rc;�rv; 0; 0� 6¼ 0; x 2 Supper

m , and @XðxÞ=@x1 6¼ 0;
x 2 Supper

m . Furthermore, for Slower
m given by (22) with a

small angle approximation, X0ðxÞ ¼ ½rc; rv; 0; 0� 6¼ 0;
x 2 Slower

m , and @XðxÞ=@x1 6¼ 0; x 2 Slower
m . Note, that

in both cases Xð	Þ is a continuously differentiable func-
tion by Assumption 1. To see that A.4 holds, note that
LfcXðxÞ ¼ rcx3 � rvx4 > 0; x 2 Supper

m , and LfcXðxÞ ¼
rcx3 þ rvx4 > 0; x 2 Slower

m . Next, to show (i) assume
that �ðJð��v=2; b;�cÞÞ < 1. Then it follows from
Proposition 1 that the fixed point ð��v=2; b;�cÞ of
(52) is locally asymptotically stable and by Theorem 1
the periodic orbit O of G is locally asymptotically
stable. Finally, the proof to (ii) follows analogously.

The condition �ðJð��v=2; b;�cÞÞ < 1 guarantees
local asymptotic stability of the escapement mechanism.
Alternatively, it follows from physical considerations
that for each choice of clock parameters, if the value
of the coefficient of restitution e is sufficiently close to
1, then the escapement mechanism dissipates less energy

1692 A. V. Roup et al.



during a collision event than it gains from the rotational
torque between collisions. This leads to instability of the
mechanism. However, the Jacobian matrix J is suffi-
ciently complex that we have been unable to show ana-
lytically the explicit dependence of the spectral radius of
J on the parameter e.

7. Numerical example

In this section we numerically integrate the equations
of motion (17)–(22) to illustrate convergence of the tra-
jectories to a limit cycle. We choose the parameters
� ¼ 1 N 	m, e ¼ 0:05, Ic ¼ 10 kg 	m2, Iv ¼ 0:15 kg 	m2,
rc ¼ 1 m, rv ¼ 0:3 m and �c ¼ 24 deg. For these para-
meters it follows from (39)–(43) that the periodic orbit
has an average crown gear velocity of 0.257 rad/s, a
crown gear velocity of 0.297 rad/s prior to collisions, a
crown gear velocity of 0.216 rad/s after collisions, a
verge speed of 0.813 rad/s, and a period of 1.63 sec.
Furthermore, the eigenvalues of the Jacobian matrix
(51) are 	1 ¼ �0:7191, 	2 ¼ 0:2072, and 	3 ¼ �0:0149,
which implies that the fixed point ð��v=2; b;�cÞ of (52)
is locally asymptotically stable and hence by Theorem 2
the periodic orbit of the escapement mechanism is
asymptotically stable. An initial verge position of
�v0 ¼ 0 is chosen for all simulations. We assume that
the verge and the crown gear are in contact at the
start of the simulation, which determines the crown
gear’s initial position.

For a collection of four initial conditions, Figure 5
shows the trajectories of the system in terms of the verge
and crown gear velocities _��v and _��c. For each choice of
initial conditions it can be seen that the trajectory
approaches a periodic orbit, which is discontinuous

due to the impulsive nature of the collisions.
Numerical computation of the amplitude and period
of this orbit from the simulation data yields 0.257
rad/s and 1.63 s, respectively, which agrees with the
values given by (39) and (43).

The kinetic energy time histories of the verge, crown
gear, and total system are shown in figure 6 for the
system considered in figure 5. It can be seen that the
verge kinetic energy converges, whereas the crown gear
and total system kinetic energies converge to periodic
signals.

For two values of the coefficient of restitution, figure
7 shows the time history of the crown gear velocity _��c
as it approaches the periodic orbit given by (39) and
(43). The average velocity and orbit period are 0.2449
rad/s and 1.7104 s, respectively, for e ¼ 0:1, and 0.1354
rad/s and 3.0942 s, respectively, for e ¼ 0:6. A full orbit
cycle appears as two consecutive saw-tooth patterns in

figure 7.
Finally, instability of the escapement mechanism

implies that the escapement mechanism gains more
energy from the rotational torque between collisions
than it loses during collisions. To illustrate that
�ðJð��v=2; b;�cÞÞ > 1 leads to an unstable limit cycle,
let � ¼ 10 N 	m, e ¼ 0:05, Ic ¼ 7 kg 	m2, Iv ¼
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Figure 5. Escapement phase portrait from four initial condi-
tions showing convergence to a periodic orbit. Initial
conditions are ( _��c; _��vÞ ¼ ð0:5; 3Þ; ð0:5;�3Þ; ð0; 3Þ; and
ð0;�3Þ. The average crown gear velocity from (39) is
plotted with a dotted line.
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Figure 6. Verge, crown gear, and total kinetic energy time
histories starting from rest.



0:15 kg 	m2, rc ¼ 3 m, rv ¼ 0:3 m and �c ¼ 24 deg, so
that the eigenvalues of the Jacobian matrix (51) are
	1 ¼ 1:8559, 	2 ¼ 0:1775 and 	3 ¼ 0:0046. Since the
fixed point ð��v=2; b;�cÞ of the discrete-time system
(52) is unstable, it follows from theorem 2 that the per-
iodic orbit of the escapement mechanism is also
unstable. Figure 8 shows the non-converging velocity
phase portrait of the system. Finally, figure 9 shows
�ðJð��v=2; b;�cÞÞ versus the coefficient of restitution
e for several values of the torque � .

8. Conclusion

In this paper we derived the equations of motion for
a verge and foliot escapement mechanism, which is a

mechanical regulator in which feedback occurs through
mechanical collisions. We showed that an impulsive dif-
ferential equation can be used to model the continuous
and impulsive dynamics of this system. Using conserva-
tion of momentum and accounting for energy lost dur-
ing collisions, we obtained analytical expressions for the
period and crown gear angular velocity of a periodic
orbit of the system. Furthermore, using Poincaré maps
for impulsive dynamical systems we showed that the
resulting periodic orbits are locally asymptotically
stable.

Finally, the model of the verge and foliot clock
developed and analysed in this paper includes the
dynamics of the clock under a simplified model of colli-
sion and contact. In particular, the collision model is a
simple restitution law, while the model does not include
sliding contact and associated friction that generally
occurs in a real clock when the pallets are in contact
with the teeth. While a more realistic treatment of
these effects is outside the scope of this paper, we expect
minimal impact on the existence and nature of limit
cycles.
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Appendix

The purpose of this Appendix is to characterize the
functions f2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ, f3ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ
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Figure 7. Time histories of the crown gear velocity _��c starting

from rest with coefficients of restitution of 0.1 and 0.6.

The values of _��c from (39) are plotted as dotted lines.
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ment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
τ = 5
τ =10
τ  =15
τ =20

 
 α

v 2
,b

, _  c
))

 

Coefficient of restitution, e

ρ(
J(

_

Figure 9. �ðJð��v=2; b;�cÞÞ versus coefficient of restitution
for different values of torque � .



and f4ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ given in (50). For this analysis
we denote the intermediate states of G between two
consecutive upper paddle collisions as follows: ðx01; x02;
x03; x

0
4Þ denotes the state of G immediately after the upper

paddle collision, ðx 00
1 ; x

00
2 ; x

00
3 ; x

00
4 Þ denotes the state of G

immediately before the lower paddle collision and
ðxF1; xF2; xF3; xF4Þ denotes the state of G immediately
after the lower paddle collision. Hence, using (18), the
next point immediately after the initial upper paddle
collision is given by

x02ðkÞ
x03ðkÞ
x04ðkÞ

2
64

3
75 ¼

0 0 0

0 �rcGc rvGc

0 rcGv �rvGv

2
64

3
75

x2ðkÞ
x3ðkÞ
x4ðkÞ

2
64

3
75þ

x2ðkÞ
x3ðkÞ
x4ðkÞ

2
64

3
75

ð60Þ
Since the verge moves with constant velocity and the
crown gear moves with acceleration �=Ic on the contin-
uous part of the trajectory, the next intermediate point
immediately before the lower paddle collision is given by

x 00
2 ðkÞ

x 00
3 ðkÞ

x 00
4 ðkÞ

2
64

3
75 ¼

x02ðkÞ
x03ðkÞ
x04ðkÞ

2
64

3
75þ

x04ðkÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ
ð�=IcÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

0

2
64

3
75

ð61Þ
where �t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ is the time between suc-
cessive collisions of the upper and lower paddles, re-
spectively. Similarly, using (18), the next intermediate
point immediately after the lower paddle collision is
given by

xF2ðkÞ
xF3ðkÞ
xF4ðkÞ

2
64

3
75 ¼

0 0 0

0 �rcGc �rvGc

0 �rcGv �rvGv

2
64

3
75

x 00
2 ðkÞ

x 00
3 ðkÞ

x 00
4 ðkÞ

2
64

3
75þ

x 00
2 ðkÞ

x 00
3 ðkÞ

x 00
4 ðkÞ

2
64

3
75

ð62Þ
Hence

x2ðkþ 1Þ

x3ðkþ 1Þ

x4ðkþ 1Þ

2
664

3
775 ¼

xF2ðkÞ

xF3ðkÞ

xF4ðkÞ

2
664

3
775

þ

xF4ðkÞ�t2ððx2ðkÞ; x3ðkÞ; x4ðkÞÞ

ð�=IcÞ�t2ððx2ðkÞ; x3ðkÞ; x4ðkÞÞ

0

2
664

3
775
ð63Þ

is the state of (50) associated with the instant immedi-
ately before the next upper paddle collision, where
�t2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ is the time between successive
collisions of the lower and upper paddles, respectively.
Now, using (60)–(63) we obtain

x2ðkþ 1Þ

x3ðkþ 1Þ

x4ðkþ 1Þ

2
6664

3
7775 ¼ A

x2ðkÞ

x3ðkÞ

x4ðkÞ

2
6664

3
7775

þ

0 0 0

0 �rcGc �rvGc

0 �rcGv �rvGv

2
6664

3
7775

�

x04ðkÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

ð�=IcÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

0

2
6664

3
7775

þ

1 0 0

0 1 0

0 0 1

2
6664

3
7775

�

x04ðkÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

ð�=IcÞ�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

0

2
6664

3
7775

þ

xF4ðkÞ�t2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

ð�=IcÞ�t2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

0

2
6664

3
7775ð64Þ

where

A ¼

0 0 0

0 �rcGc �rvGc

0 �rcGv �rvGv

2
664

3
775

0 0 0

0 �rcGc rvGc

0 rcGv �rvGv

2
664

3
775

þ

0 0 0

0 �rcGc �rvGc

0 �rcGv �rvGv

2
664

3
775

þ

0 0 0

0 �rcGc rvGc

0 rcGv �rvGv

2
664

3
775þ

1 0 0

0 1 0

0 0 1

2
664

3
775 ð65Þ

Next, we compute �t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ and
�t2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ as in } 4. Specifically, integrating
the continuous-time dynamics after the upper paddle
collision we obtain

x 00
1 ðkÞ ¼ x1ðkÞ þ x03ðkÞ�t1 þ

�

2Ic
�t21 ð66Þ

x 00
2 ðkÞ ¼ x2ðkÞ þ x04ðkÞ�t1 ð67Þ
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where x1ðkÞ is the position of the crown gear immedi-
ately before the initial upper paddle collision. Using (21)
the condition for the initial collision involving the upper
paddle is

rc sinðx1ðkÞ �m�cÞ ¼ rv tan x2ðkÞ þ
�v

2

� �
ð68Þ

where m is the index of the crown gear tooth involved in
the collision. Furthermore, using (26), (27), (66) and (67)
yields

rc sin �x1ðkÞ � x03ðkÞ�t1 �
�

2Ic
�t21 þm�c þ �þ �c

2

� �

¼ rv tan �x2ðkÞ � x04ðkÞ�t1 þ
�v

2

� �
ð69Þ

Since sinð�� �Þ ¼ sin� and, for small angles, sin� 
 �,
we can rewrite (68) and (69) as

rcðx1ðkÞ �m�cÞ ¼ rv x2ðkÞ þ
�v

2

� �
ð70Þ

rc x1ðkÞ þ x03ðkÞ�t1 þ
�

2Ic
�t21 �m�c �

�c

2

� �

¼ rv �x2ðkÞ � x04ðkÞ�t1 þ
�v

2
Þ ð71Þ

�
Subtracting (71) from (70) yields

rc�

2Ic
�t21 þ ðrcx03ðkÞ þ rvx

0
4ðkÞÞ�t1 þ 2rvx2ðkÞ �

rc�c

2
¼ 0

ð72Þ

which further implies (see (73) bottom of page)
Using (60) it follows that

rcx
0
3ðkÞ þ rvx

0
4ðkÞ ¼ rcð�rcGcx3ðkÞ þ rvGcx4ðkÞ þ x3ðkÞÞ

þ rvðrcGvx3ðkÞ � rvGvx4ðkÞ þ x4ðkÞÞ

¼ ð�r2cGc þ rc þ rvrcGvÞx3ðkÞ

þ ð�r2vGv þ rv þ rcrvGcÞx4ðkÞ

¼ ��x3ðkÞ � 
x4ðkÞ ð74Þ

where

� ¼ �ð�r2cGc þ rc þ rvrcGvÞ;


 ¼ �ð�r2vGv þ rv þ rcrvGcÞ ð75Þ

Thus, we obtain

�t1ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

¼
�x3ðkÞ þ 
x4ðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
rc�=Ic

ð76Þ

where 	X	ðx2ðkÞÞ ¼ ðrc�=IcÞðrc�c � 4rvx2ðkÞÞ: Next, it
follows from (62) that xF3ðkÞ and xF4ðkÞ are the
velocities of the crown gear and the verge, respectively,
immediately after the lower paddle collision, and hence
the positions of the crown gear and the verge before the
successive upper paddle collision are given by

x1ðkþ 1Þ ¼ xF1ðkÞ þ xF3ðkÞ�t2 þ
�

2Ic
�t22

x2ðkþ 1Þ ¼ xF2ðkÞ þ xF4ðkÞ�t2

9>=
>; ð77Þ

where xF1ðkÞ and xF2ðkÞ are positions of the crown gear
and the verge, respectively, immediately after the lower
paddle collision. Using a similar procedure as outlined
above, the conditions for the lower and upper paddle
collisions, respectively, are given by

rc sin m�c þ �þ �c

2
� xF1ðkÞÞ ¼ rv tanð�xF2ðkÞ þ

�v

2

� �

rc sinðxF1ðkÞ þ xF3ðkÞ�t2 þ
�

2Ic
�t22 � ðmþ 1Þ�cÞ

¼ rv tan xF2ðkÞ þ xF4ðkÞ�t2 þ
�v

2

� �

which can be approximated by

rc xF1ðkÞ �m�c �
�c

2

� �
¼ rv �xF2ðkÞ þ

�v

2

� �
ð78Þ

rcðxF1ðkÞ þ xF3ðkÞ�t2 þ
�

2Ic
�t22 � ðmþ 1Þ�cÞ

¼ rv xF2ðkÞ þ xF4ðkÞ�t2 þ
�v

2

� �
ð79Þ

Subtracting (79) from (78) gives

rc�

2Ic
�t22 þ ðrcxF3ðkÞ � rvxF4ðkÞÞ�t2 �

rc�c

2
� 2rvxF2ðkÞ ¼ 0

so that (see (80) bottom of page)

From (60)–(62), and (76) it follows that
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�t1 ¼
�ðrcx03ðkÞ þ rvx

0
4ðkÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrcx03ðkÞ þ rvx

0
4ðkÞÞ

2 þ ðrc�=IcÞðrc�c � 4rvx2ðkÞÞ
q

rc�=Ic
ð73Þ

�t2 ¼
�ðrcxF3ðkÞ � rvxF4ðkÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrcxF3ðkÞ � rvxF4ðkÞÞ2 þ ðrc�=IcÞðrc�c þ 4rvxF2ðkÞÞ

q
rc�=Ic

ð80Þ



xF3ðkÞ ¼ ð�rcGc þ 1Þ2 � rvGcrcGv þ �ð�Gc þ
1

rc
Þ

� �
x3ðkÞ

þ
�
rvGcð�rcGc þ 1Þ þ r2vGvGc � rvGc

þ 
ð�Gc þ
1

rc
Þ
�
x4ðkÞ

þ �Gc þ
1

rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
ð81Þ

Similarly, from (60)–(62) and (76) it follows that

xF4ðkÞ ¼ ðr2cGcGv � rcGv þ ð�rvGv þ 1ÞrcGv � �GvÞx3ðkÞ

þ ð�rcGvrvGc þ ð�rvGv þ 1Þ2 � 
GvÞx4ðkÞ

� Gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
ð82Þ

Now, using (81) and (82) we obtain

rcxF3ðkÞ � rvxF4ðkÞ ¼ ��x3ðkÞ � �x4ðkÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
ð83Þ

where

� ¼ �ðrcð�rcGc þ 1Þ2 � 2r2crvGcGv þ rcG
2
vr

2
v

þ �ð1þ rvGv � rcGcÞÞ ð84Þ

� ¼ �ð�rvr
2
cG

2
c þ 2r2vrcGvGc � rvð�rvGv þ 1Þ2

þ 
ð1þ rvGv � rcGcÞÞ ð85Þ

� ¼ �ð1þ rvGv � rcGcÞ ð86Þ

Next, using xF2ðkÞ ¼ x2ðkÞ þ x04ðkÞ�t1, (60) and (76), it
follows that

xF2ðkÞ ¼ x2ðkÞ þ
1

rc�=Ic
ðrcGvx3ðkÞ � rvGvx4ðkÞ þ x4ðkÞÞ

� �x3ðkÞ þ 
x4ðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q� �
ð87Þ

Thus, equation (80) can be rewritten as

�t2ðx2ðkÞ;x3ðkÞ;x4ðkÞÞ

¼
�x3ðkÞ þ �x4ðkÞ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
rc�=Ic

þ 1

ðrc�=IcÞ
ð�x3ðkÞ þ �x4ðkÞ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q� �2

þ4rvðrcGvx3ðkÞ � rvGvx4ðkÞ þ x4ðkÞÞ

� �x3ðkÞ þ 
x4ðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
Þ þ 


� �1=2

ð88Þ

where 
X
ðx2ðkÞÞ ¼ ðrc�=IcÞðrc�c þ 4rvx2ðkÞÞ. Finally,
it follows from (64) using (76) and (88) that

x2ðkþ 1Þ
x3ðkþ 1Þ
x4ðkþ 1Þ

2
64

3
75 ¼ A

x2ðkÞ
x3ðkÞ
x4ðkÞ

2
64

3
75

þ

ð1=ðrc�=IcÞÞ~ggðx3ðkÞ;x4ðkÞÞ�ggðx2ðkÞ;x3ðkÞ;x4ðkÞÞ

ð�Gc þ ð1=rcÞÞð�x3ðkÞ þ 
x4ðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
Þ

�Gvð�x3ðkÞ þ 
x4ðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
Þ

2
66664

3
77775

þ

ð1=ðrc�=IcÞÞ~ff ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ�ff ðx2ðkÞ; x3ðkÞ;x4ðkÞÞ

ð1=rcÞð�x3ðkÞ þ �x4ðkÞ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
Þ

0

2
6664

3
7775

þ
0

ð1=rcÞf̂f ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ
0

2
64

3
75 ð89Þ

where

~ggðx3ðkÞ; x4ðkÞÞ ¼ rcGvx3ðkÞ � rvGvx4ðkÞ þ x4ðkÞ
�ggðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ �x3ðkÞ þ 
x4ðkÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
~ff ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ �x3ðkÞ þ �x4ðkÞ

� Gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
�ff ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ �x3ðkÞ þ �x4ðkÞ

þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
þ f̂f ðx2ðkÞ; x3ðkÞ;x4ðkÞÞ

f̂f ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ ð�x3ðkÞ þ �x4ðkÞð

þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
Þ2

þ 4rv~ggðx3ðkÞ; x4ðkÞÞ�ggðx2ðkÞ; x3ðkÞ; x4ðkÞÞ þ 

�1=2

� ¼ r2cGvGc � rcGv � �Gv þ ð�rvGv þ 1ÞrcGv

� ¼ �rcrvGcGv � 
Gv þ ð�rvGv þ 1Þ2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð90Þ

Now, using (89) we can characterize the functions
f2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ, f3ðx2ðkÞ; x3ðkÞ, x4ðkÞÞ, and
f4ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ appearing in (50); namely

f2ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ âa11x2ðkÞ þ âa12x3ðkÞ þ âa13x4ðkÞ

þ 1

rc�=Ic
~ggðx3ðkÞ; x4ðkÞÞ�ggðx2ðkÞ; x3ðkÞ; x4ðkÞÞ

þ 1

rc�=Ic
~ff ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ�ff ðx2ðkÞ;x3ðkÞ; x4ðkÞÞ

ð91Þ
f3ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ âa21x2ðkÞ þ âa22x3ðkÞ þ âa23x4ðkÞ

þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q

þ 1

rc
f̂f ðx2ðkÞ;x3ðkÞ; x4ðkÞÞ ð92Þ

f4ðx2ðkÞ; x3ðkÞ; x4ðkÞÞ ¼ âa31x2ðkÞ þ âa32x3ðkÞ þ âa33x4ðkÞ

� Gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x3ðkÞ þ 
x4ðkÞÞ2 þ 	

q
ð93Þ
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where ! ¼ ð�=rcÞ � Gc þ ð1=rcÞ and âaij denotes the ði; jÞ
component of the matrix ÂA given by

ÂA ¼ Aþ

0 0 0

0 �ð�Gc þ ð1=rcÞÞ 
ð�Gc þ ð1=rcÞÞ

0 ��Gv �
Gv

2
6664

3
7775

þ

0 0 0

0 �=rc �=rc

0 0 0

2
6664

3
7775 ð94Þ
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