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N
onminimum-phase zeros, that is, closed-right-half-plane (CRHP) zeros, affect both 
the open- and closed-loop behavior of continuous-time linear systems in undesirable 
ways [1]. For example, an asymptotically stable linear system with an odd number 
of positive zeros experiences initial undershoot to a step input (see “Initial Under-
shoot”). Moreover, under the rules of root locus, zeros in the open-right-half plane 

(ORHP) attract closed-loop poles, which limits the controller gain and thus the performance 
of the closed-loop system. In linear quadratic Gaussian theory, closed-loop poles are attracted 
to the refl ected locations of the open-loop ORHP zeros in the high-control-authority (that is, 
cheap-control) limit, thus constraining the achievable closed-loop bandwidth [2, p. 289]. 

Given the critical role of nonminimum-phase zeros, it is useful to identify physical 
characteristics that give rise to them. Although spatial separation between sensors and 
actuators is often postulated as a source of nonminimum-phase zeros, analysis of the 
transfer functions between separated masses in a serially connected structure shows that 
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this is not necessarily the case [3]. On the other hand, nonco-
location in rotational motion may give rise to nonminimum-
phase zeros [4], [5]. 

Aside from zero locations, the number of zeros deter-
mines the relative degree of the system, which impacts the 
asymptotic, that is, high frequency, phase of the transfer 
function. The relative degree of an asymptotically stable 
transfer function also plays a role in the initial behavior of 
the step response. This relationship is apparent from the 
initial value theorem applied to the derivative of the 
output. When the initial slope of the output is zero, higher 
order derivatives of the initial response, which determine 
the initial curvature of the output, can be evaluated to 
detect the possibility of initial undershoot. In particular, 
the sign of the first nonzero derivative of the output rela-
tive to the sign of the dc gain determines whether or not 
the step response exhibits initial undershoot. The number 
of derivatives that must be evaluated to determine the sign 
of the first nonzero derivative is equal to the relative 
degree of the system. 

In aircraft dynamics, the instantaneous acceleration 
center of rotation (IACR) of an aircraft is the point on the 
aircraft that has zero instantaneous acceleration. For an 
aircraft that is perturbed from steady horizontal flight by 
an elevator step deflection, the IACR is the point at which 
the elevator-to-vertical-velocity transfer function and the 

elevator-to-horizontal-velocity transfer function both have 
at least one zero that vanishes. 

For the elevator-to-vertical-velocity transfer function, 
the zero that vanishes typically corresponds to a nonmini-
mum-phase zero aft of the IACR and a minimum-phase 
zero forward of the IACR. In this case, as the point p, at 
which the vertical-velocity response is determined, is 
moved forward from the tail to the IACR, a real nonmini-
mum-phase zero moves toward `, where it vanishes. As p 
moves past the IACR, the zero “reappears” at 2` and 
moves toward an asymptotic location as a minimum-phase 
zero. Thus, the vertical-velocity measurement at each point 
along the aircraft between the tail and the IACR exhibits 
initial undershoot. This phenomenon plays a role in the lit-
erature on aircraft dynamics and control [6, pp. 313–316], 
[7]–[15]. Vanishing zeros are discussed in [16]. 

In the present article, we demonstrate the relationship 
between vanishing zeros and the response of the aircraft 
at the IACR. The IACR of a rigid body is related to, but 
distinct from, the center of rotation. See “Center of Rota-
tion and Center of Percussion,” which discusses the 
motion of a bar-like rigid body in response to an impact. A 
bar-like rigid body possesses a point, called the center of 
percussion, with the property that an impulsive force 
at this location leads to zero velocity at another point on 
the body, called the center of rotation, at the instant 

Initial undershoot occurs when the step response of a transfer 

function initially moves in the direction opposite to the direc-

tion of its asymptotic value. 

Let G 1s2 ! b 1s2 / 1sra 1s22  be a strictly proper transfer function 

with relative degree d . 0, where r $ 0 and a 1s 2  is asymptoti-

cally stable. Let y 1 t 2  be the unit-step response of G. Then initial 

undershoot occurs at t 5 0 if 

y 1d 2 1012y 1r 2 1̀ 2 , 0,

where y 1d 2 1012 ! limtS01y 1d 2 1t 2  and y 1r 2 1`2 ! limtS` y 1r 2 1t 2 . The 

unit-step response has the initial curvature 

y 1d2 10125 lim
tS01

y 1d2 1t 25 lim
sS`

s 1sdŷ 1s225 lim
sS`

sd11aG 1s21
s
b5 lim

sS`
sdG 1s220,

as well as the asymptotic curvature 

y 1r2 1̀ 2 ! limtS`y 1r2 1t 2 5 lim
sS0

sr 11aG 1s21
s
b 5

b 102
a 102 .

The initial direction of the step response depends on the 

sign of the product of the initial curvature y 1d 2 1012  and the 

asymptotic curvature y 1r2 1̀ 2. The following result is dis-

cussed in [1]. 

PROPOSITION S1 
Let G ! b 1s2 / 1sra 1s2 2  be a strictly proper transfer function, 

where r $ 0 and a 1s2  is asymptotically stable. Then the unit 

step  response has an initial undershoot if and only if G 1s2  has 

an odd number of positive zeros. 

As an example, consider the transfer function G 1s2 5

2 1s 212 1s 2 22 1s 2 32 / 1s 1s 112 1s 122 1s 132 1s 14 22 .  The unit step 

response exhibits initial undershoot with three direction rever-

sals due to the three positive zeros, as shown in Figure S1. 
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FIGURE S1 Unit step response of the transfer function G(s) 5 
2(s 2 1)(s 2 2)(s 2 3)y(s(s 1 1)(s 1 2)(s 1 3)(s 1 4)). The 
step response of this system exhibits initial undershoot with 
three direction reversals due to its three positive zeros.
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Consider the free rigid body shown in Figure S2, with con-

centrated masses m1, c, mn at distances of ,1, c, ,n, 

respectively, from the point OB, which is the origin of the 

body-fixed frame FB. The frame FA is assumed to be an iner-

tial frame. Consider a force FY that impacts the structure at the 

point P and perpendicular to the body, and assume that R is 

the point on the body at which the velocity vYR/OA/A of R relative 

to OA with respect to FA is zero at the instant immediately fol-

lowing the impact. The point R is the center of rotation relative 

to P; equivalently, P is the center of percussion relative to R. Let 

,R and ,P denote the distances from the upper end of the body 

to R and P, respectively. The distance ,c from the upper end of 

the body to the center of mass c is given by 

,c 5
a
n

i51
mi,i

mtotal
, 

where mtotal ! gn
i51 mi is the total mass of the body. 

Next, viewing OA as an unforced particle, Newton’s second 

law implies 

  FY  5 mtotal  v  Yc/OA/A, (S1)

where  FY 5 F0d 1 t 2  ĵ A , and vYc/OA/A is the velocity of c relative to 

OA with respect to FA, which can be written as vYc/OA/A 5 vc 1 t 2 ĵA. 
Thus, it follows from (S1) that F0d 1 t 2 5 mtotalv

#
c 1 t 2 , which implies 

that the velocity after the impulse, that is, at t 5 01, is given by 

 vc 101 2 5
F0

mtotal
. (S2)

Next, the moment  MY P/c  on P about c due to  F Y  is given by 

  MY P/c  5  rYP/c 3 FY5 Ic  vY  B/A , (S3)

where  vY  B/A is the angular velocity of FB relative to FA , 

Ic ! gn
i51mi 1,i 2 ,c 22 is the moment of inertia of the 

body relative to c, and the position of P relative to c is 

given by rYP/c 5 1,P 2 ,c 2 îB. Since FY5 F0d 1 t 2 ĵA 5 F0d 1 t 2 ĵB 

and k̂A is aligned with k̂B, it follows from (S3) that 

F0 1,P 2 ,c 2d 1 t 2 5 Ic v
# 1 t 2 , which implies that the angular ve-

locity after the impulse, that is, at t 5 01, is given by 

 v 101 2 5
F0 1,P 2 ,c 2

Ic
. (S4)

Next, the velocity vYR/OA/A of R relative to OA with respect to 

FA can be written as 

 vYR/OA/A 5  rYR /OA

 5  rYR /c 1  rYc/OA

 5 vYc/OA/A 1 rYR/c 1  vYB/A 3 rYR/c

 5  vYc/OA/A 1 vY B/A 3 rYR/c 

 5 vc ĵA 1 1,R 2 ,c 2v ĵB. (S5)

Note that rYR/c 5 0 since R and c are fi xed in the body. Since, at 

t 5 01, ĵA is aligned with ĵB, it follows from (S2), (S4), and (S5) 

that, for t 5 01, 

 vYR/OA/A 5 F0a 1
mtotal

1
1,R 2 ,c 2 1,P 2 ,c 2

Ic
b ĵA.

Lastly, since R is the center of rotation, we have, for t 5 01, 

 F0a 1
mtotal

1
1,R 2 ,c 2 1,P 2 ,c 2

Ic
b 5 0.

It follows that the location of R is given by

 ,R 5 ,c 2
Ic

mtotal 1,P 2 ,c 2 . (S6)

Consequently, if at t 5 t0 the force impacts the body at the 

center of percussion P relative to R, where P is located at ,P,
then the velocity vYR/OA/A at the center of rotation located at ,R 

given by (S6) is zero at t 5 t0
1. In other words, (S6) character-

izes the location of R. 
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FIGURE S2 A free rigid body with nonuniform concentrated 
masses m1, c, mn at distances of ,1, c, ,n from the 
upper end OB of the structure. The point R is the center of 
rotation relative to P, while the point P is the center of 
 percussion relative to R.
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L et B  be a rigid body with body-fixed frame FB, let FA be a 

frame with origin OA,  and let  vY  B/A be the angular velocity 

of FB relative to FA. A point p that is fixed relative to B  is an 

instantaneous velocity center of rotation (IVCR) of B  relative to 

FA at time t if  vY  B/A 1t 2 2 0 and vY p/OA/A 1t 2 5 0 [S1, pp. 147–149], 

[S2, pp. 49–52]. For convenience, we omit the phrase “relative 

to FA”. The motion of B  can be viewed as instantaneously rotat-

ing about p. See Figure S3. 

Let q be a point that is fixed relative to  B. It follows from the 

definition of an IVCR and the transport theorem that p is an 

IVCR of  B  if and only if vY  B/A 2 0 and 

 vYp/OA/A 5  vY  B/A 3  rYp/q 1  vYq/OA/A 5 0. (S7)

Resolving vYq/OA/A,  vY  B/A, and  rYp/q  in FB as 

 v ! vYq/OA/A `
B
, v ! v YB/A `

B
, r ! rYp/q ̀

B
,

(S7) can be rewritten as 

 v 3r 1 v 5 0. (S8)

The existence of an IVCR thus depends on the existence 

of a solution r  to (S8). Since v 3  is singular, (S8) has either 

zero or infinitely many solutions. Let  R  denote range. 

FACT S1

The following statements hold: 

i) If v o R 1v 3 2 , then  B has no IVCR. 

ii) If v [ R 1v 3 2 , then B  has infinitely many IVCRs. 

iii)  Suppose v [ R 1v 3 2 . Then p is an IVCR if and only if 

there exists a [ R such that 

 r 5 av 2
1

|v|2
v 3 v. (S9)

It follows from (S7) that, if p is an IVCR of  B  and q is 

fixed relative to  B , then  vY  B/A
#  vYq/OA/A 5 vTv 5 2vT 1v 3r 2 5 0. 

Hence, if  vYB/A
# vYq/OA/A 2 0, then B  has no IVCR. This situation 

occurs, for example, in bullet flight, where the translational ve-

locity is parallel to its angular velocity. 

FACT S2

p is an IVCR of  B  if and only if p satisfies the following conditions: 

i)  vYB/A
# vYq/OA/A 5 0.

ii)  vYB/A 3 arYp/q 2
1

|vYB/A|2
 vY B/A 3 vYq/OA/A b 5 0. 

In this case, 

  rYp/q 5  
1

|vYB/A|2
 vY B/A 3 vYq/OA/A 1

 vYB/A
# rYp/q 

|vYB/A|2  vYB/A. (S10)

PROOF

Assume that p is an IVCR of  B . Then it follows from (S7) that 

  vYB/A
# vYq/OA/A 5  vY B/A

# 12vY  B/A 3 rYp/q 2 5 0,

which proves i 2 . To prove ii 2 , it follows from (S7) that 

 vYB/A 3 arYp/q 2
1

|vYB/A|2
 vY B/A 3 vYq /OA/A b  5 vYB/A 3  rYp/q 1 vYq/OA/A

  5 0.

Hence, ii 2  holds. 

Conversely, it follows from ii 2  that there exists a [ R such 

that  rYp/q 5 11/|vYB/A|2 2vYB/A 3 vYq/OA/A 1 a vYB/A. Using i 2  and ii 2 , it 

follows that 

  vYp/OA/A 5 vYp/q/A 1 vYq/OA/A 

  5 vY p/q/B 1 vYB/A 3  rYp/q 1 vYq/OA/A

 5  vYB/A 3 a 1

|vY  B/A|2
 vY  B/A 3 vYq/OA/A 1 avYB/Ab 1 vYq/OA/A 

 5 2vYq/OA/A 1 vYq/OA/A 

 5 0.

To show (S10), assume p is an IVCR of  B . It follows from 

(S7) that 

 vYB/A 3 1  vY  B/A 3 rYp/q 1 vYq/OA/A 2 5 0,

which is equivalent to 

1  vYB/A
# rYp/q 2  vYB/A 2 | vY B/A|2 rYp/q 1 vYB/A 3 vYq/OA/A 5 0. (S11)

Solving for  rYp/q  in (S11) yields (S10). h 
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Instantaneous Velocity Center of Rotation 

FIGURE S3 Instantaneous velocity center of rotation p. B  is a 
rigid body, and the point q is fixed relative to  B. FA is a frame 
with origin OA,  vY  B/A is the angular velocity of FB relative to FA, 
and it is assumed that  vYB/A 2 0. The point p, which is fixed 
relative to  B, has the property that, at time t, the velocity of p 
relative to OA with respect to FA is zero. Thus,  B is instanta-
neously rotating about p.
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 immediately following the impact. Another related notion 
is the instantaneous velocity center of rotation (IVCR), 
which is discussed in “Instantaneous Velocity Center of 
Rotation.” 

To demonstrate the relationship between vanishing 
zeros and the response of the aircraft at its IACR, we 
consider both the vertical-velocity response and the hor-
izontal-velocity response of the aircraft to an elevator 
step deflection. In particular, we show that, at the IACR, 
the relative degree of the linearized transfer function 
from elevator deflection to vertical velocity (and thus to 
altitude) increases by at least one, and the relative degree 
of the linearized transfer function from elevator deflec-
tion to horizontal velocity increases by at least one. 
Moreover, we provide conditions under which the zeros 
that vanish at the IACR are nonminimum phase. Fur-
thermore, we characterize the relationship between 
these vanishing zeros and the potential for initial under-
shoot in the aircraft’s step response. For a business jet 
example, we show that each point on the aircraft that is 
aft of the IACR experiences initial undershoot in vertical 
velocity, whereas each point forward of the IACR does 
not experience initial velocity undershoot in the vertical 
direction. 

To provide a tutorial development of the relevant 
transfer functions, we begin with the nonlinear equa-
tions of motion, show how these equations incorporate 
aerodynamic effects in terms of stability derivatives, 
and then arrive at the transfer functions for the linear-
ized motion. This development provides an introduc-
tion to aircraft dynamics, which may be useful to 
readers who have not had the benefit of a course on 
flight dynamics. For further details on aircraft dynam-
ics, see [6], [17], and [18].

AIRCRAFT KINEMATICS 
The Earth frame FE,  whose orthogonal axes are labeled îE, 
ĵE, and k̂E, is assumed to be an inertial frame, that is, a frame 
with respect to which Newton’s second law is valid [19]. A 
hat denotes a dimensionless unit-length physical vector. 
The origin OE of the Earth frame is any convenient point on 
the Earth. The axes îE and  ĵE are horizontal, while the axis 
k̂E points downward; we assume the Earth is flat. The air-
craft frame FAC,  whose axes are labeled îAC,  ĵAC, and k̂AC, is 
fixed to the aircraft. The center of mass c and frame vectors 
îAC and k̂AC are shown in Figure 1. The aircraft is assumed 
to be a three-dimensional rigid body. 

In longitudinal flight, the aircraft moves in an inertially 
nonrotating vertical plane by translating along îAC and k̂AC 
and by rotating about  ĵAC. The direction of  ĵAC is thus fixed 
with respect to FE. For convenience, we assume that  ĵAC 5

 ĵE. The velocity and acceleration of the aircraft along  ĵAC 
are thus identically zero for longitudinal flight, as are the 
roll and yaw components of the angular velocity of the air-
craft relative to the Earth frame. The sign of the pitch angle 
Q, which is the angle from îE to îAC, is determined by the 
right-hand rule with the thumb pointing along  ĵAC and 
with the fingers curled around  ĵAC. For example, the pitch 
angle Q, shown in Figure 1, is positive. 

Let p denote a point in the plane that is parallel to the îAC - k̂AC 
plane and passes through c. The position of p relative to OE 
can be written as 

 rYp/OE
5 rphîE 1 rpvk̂E, (1)

where a harpoon denotes a physical vector. The position of 
p relative to c is given by 

 rYp/c 5 rYp/OAC
 1 rYOAC/c 5 rY p/OAC

2 rYc/OAC
, (2)

which can be written as 

 rYp/c 5 ,îAC 1 hk̂AC, (3)

where , . 0 indicates that p is forward of c, that is, toward 
the nose, and , , 0 denotes that p is aft of c, that is, toward 
the tail. Resolving rYp/c in FAC yields 

 rYp/c `
AC

5 £ ,0
h

§ . (4)

The distance between the aircraft center of mass c and the 
point p is given by 

 |rYp/c| 5",2 1 h2.

The orientation matrix, that is, the direction cosine 
matrix, of FAC relative to FE corresponding to the pitch 
angle Q is 

  O AC/E ! £ cos Q 0 2sin Q
0 1 0

sin Q 0 cos Q
§ .

Θ

η

ιEp

ιAC,

∧

kE

∧

∧

kAC
∧

Center of Mass c

FIGURE 1 Aircraft and Earth frames. The aircraft frame is fixed to 
the aircraft, while the Earth frame is assumed to be an inertial 
frame. The signed quantities , and h determine the location of the 
point p at which the output is defined relative to the center of 
mass c. The pitch angle Q, which is positive as shown, is deter-
mined by the right-hand rule about the axis ĵAC 5 ĵE, which is not 
shown but is directed out of the page.
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Therefore, 

  O E/AC 5  O AC/E
T 5 £ cos Q 0 sin Q

0 1 0
2sin Q 0 cos Q

§ . (5)

Hence, using (4) we have 

 rYp/c `
E

5  O E/AC rYp/c `
AC

5 £ , cos Q 1 h sin Q
0

2, sin Q 1 h cos Q
§ . (6)

Since, in longitudinal flight, the aircraft rotates about 
 ĵAC, the angular velocity of FAC relative to FE and resolved 
in FAC is given by 

 vY AC/E `
AC

5 £ P
Q
R
§ 5 £ 0

Q
#

0
§ . (7)

Note that Q 5 Q
#
 and that P and R are identically zero. 

Resolving vY AC/E in FE, we have 

 vY AC/E `
E

5  O E/AC vY AC/E `
AC

5 £ 0
Q
#

0
§ . (8)

To change the frame with respect to which the physical 
vector xY is differentiated, we use the transport theorem, 
which is given by the “ABBA rule”

 xY 5 xY 1 vY B/A 3 xY , (9)

where a labeled dot over a physical vector denotes the frame 
derivative with respect to the indicated frame. In particular, 
if xY5 x1îA 1 x2 ĵ A 1 x3k̂A, then xY

Ad

5 x
#
1îA 1 x

#
2 ĵ A 1 x

#
3k̂A. Hence, 

 vYAC/E 5  vY   AC/E 1  vYAC/E 3 vYAC/E 5   vY   AC/E, (10)

and thus it follows from (7), (8), and (10) that 

 vYAC/E †
AC

5 vYAC/E †
E

5 vYAC/E †
E

5 vYAC/E †
AC

5 £ 0
Q
$

0
§ .

Let vYc /OE /E and aYc /OE / E denote the velocity and accelera-
tion of c relative to OE with respect to FE, respectively, and 
let vYp /OE /E and aYp /OE / E denote the velocity and acceleration of 
p relative to OE with respect to FE, respectively, that is, 

 vYc /OE /E !  rYc /OE
,

 aYc /OE / E !  rYc /OE
,

and 

 vYp /OE /E !  rYp /OE
,

 aYp /OE / E !  rYp /OE
.

We resolve vYc /OE /E in FAC as 

 vYc /OE / E `
AC

 5  £ U
V
W
§ 5 £ U

0
W
§ , (11)

and note that V is identically zero for longitudinal flight. 
Next, it follows from (2) that 

 rp /OE
Y 5 rYp/c 1 rYc /OE

,

which implies that 

 vYp /OE /E 5  rY p/OE
5 rYp/c 1 rY c /OE

5 vYp/c /E 1 vYc /OE /E , (12)

where 

 vYp /c /E !  rYp /c 5 vYAC/E 3 rYp/c. (13)

Next, it follows from (5)–(8) and (11)–(13) that 

 vYp /OE /E `
E
 5 vYc /OE /E `

E
1 avYAC /E 3 rYp /cb `

E

 5 £ cos Q 0 sin Q
0 1 0

2sin Q 0 cos Q
§ £ U

0
W
§

 1 £ 0
Q
#

0
§ 3 £ , cos Q 1 h sin Q

0
2, sin Q 1 h cos Q

§
 5 £ vph

0
vpv

§ ,

where 

vph ! 1cosQ 2U 1 1sinQ2W 2 , 1sinQ 2Q# 1 h 1cosQ 2Q# , (14)

vpv !2 1sinQ 2U 1 1cosQ 2W 2 , 1cosQ 2Q# 2 h 1sinQ 2Q# . (15)

Next, it follows from (9) and (11) that 

 aYc /OE /E `
AC

5 vY c /OE / E `
AC

 5 avY c /OE /E 1  vYAC/E 3 vYc /OE /Eb `
AC

 5 £ U
#

0
W
#
§ 1 £ 0

Q
#

0
§ 3 £ U

0
W
§

 5 £U
#

1 Q
#
W

0
W
#

2 Q
#
U
§ . (16)

Differentiating the transport theorem (9) yields 

 xY 5 xY 1  vY B/A 3 xY 1  vYB/A 3 xY

BdAd

ACd ACdEd

Ed EdACd ACd

Ed

Edd

Ed

Edd

Ed Ed Ed

Ed

Ed

ACd

Ad

Add Bd

U

Ad Ad
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 5  xY 1 vYB/A 3 xY 1 vY B/A 3 xY 1  vY B/A 3 Q xY1 vY B/A3 xY R
 5  xY 1  2vY B/A 3 xY 1 vY B/A 3 xY 1 vY B/A 3 1vY B/A 3 xY 2 ,
 (17)

which is the double transport theorem. Note that 

 ap/OE/EY !  rYp/OE
5  rYp/c 1 rYc/OE

 5 ap/c/EY 1 ac/OE/EY , (18)

where 

 ap/c/EY !  rYp/c. (19)

Now, using (16)–(19), we have 

 ap/OE/EY `
AC

5 ap/c/EY `
AC

1 ac/OE/EY `
AC

 5 arYp/c 1 2vY AC/E 3 rYp/c 1 vY AC/E 3 rp/cY

 1 vY AC/E 3 1vY AC/E 3 rp/cY 2b `
AC

1 ac/OE/EY `
AC

 5 vY AC/E `
AC

3 rp/cY `
AC

1 vYAC/E `
AC

 3 avY AC/E `
AC

3 rp/cY `
AC
b1 ac/OE/EY `

AC

 5 £ 0
Q
$

0
§ 3 £ ,0

h

§ 1 £ 0
Q
#

0
§ 3 ° £ 0

Q
#

0
§ 3 £ ,0

h

§ ¢

 1 £U
#

1 Q
#
W

0
W
#

2 Q
#
U
§

 5 £2,Q
#

2 1 U
#

1 WQ
#

1 hQ
$

0
2,Q

$
1 W

#
2 UQ

#
2 hQ

#
2

§ . (20)

AIRCRAFT DYNAMICS 
To apply Newton’s second law for translational accelera-
tion, we view OE as an unforced particle [19] and all forces 
as acting at the aircraft’s center of mass. We thus have 

 m ac/OE/EY 5 m gY 1 FA
Y 1 FYT, (21)

where m is the mass of the aircraft, gY5 gk̂E is the accelera-
tion due to gravity, FYA is the aerodynamic force, and FYT is 
the engine thrust force. Resolving (21) in FAC yields 

 m ac/OE/EY `
AC

5 m gY `
AC

1 FA
Y `

AC
1 FT
Y `

AC
, (22)

where 

 gY `
AC

5  O AC/E  gY `
E

5 £2g sin Q
0

g cos Q
§ , (23)

under longitudinal flight. 
Next, the aerodynamic force FA

Y  is given by 

 FA
Y 5 2 DîW 2 Ds ĵ W 2 Lk̂W,

where îW,  ĵ W, and k̂W are the axes of the wind frame, 
which is a velocity-dependent frame defined such that îW 
is aligned with vc/OE/EY ; k̂W is aligned with the stability-
frame unit vector k̂S defined below; and where D, Ds, and 
L denote the magnitudes of the drag, side drag, and lift 
forces, respectively. For simplicity, we assume Ds 5 0, and 
thus 

 FA
Y `

W
5 £2D

0
2L

§ .

The stability frame FS with axes îS,  ĵ S, and k̂S is obtained by 
rotating the wind frame through the sideslip angle b, 
which is the angle from the îAC-k̂AC plane to vc /OE /EY . Resolv-
ing FA

Y  in the stability frame yields 

 FAY `
S

5 £ cos b sin b 0
2sin b cos b 0

0 0 1
§ £2D

0
2L

§  5 £2D cos b
2D sin b

2L
§ .

Furthermore, resolving FA
Y  in the aircraft frame yields 

 FA
Y `

AC
5 £ cos a 0 2sin a

0 1 0
sin a 0 cos a

§ £2D cos b
2D sin b

2L
§

 5 £2D 1cos b 2  cos a 1 L sin a
2D sin b

2D 1cosb 2  sin a 2 L cos a
§ ,

where a is the angle of attack of the aircraft, that is, the 
angle from îS to îAC. Since we consider only longitudinal 
flight, it follows that b is identically zero, and thus 

 FA
Y `

AC
5 £ 2D cos a 1 L sin a

0
2D  sin a 2 L cos a

§ . (24)

For the thrust force, we have 

 FT
Y `

AC
5 £ cos FT 0 sin FT

0 1 0
2sin FT 0 cos FT

§ £FT

0
0
§ 5 £ FT cos FT

0
2 FT sin FT

§ ,

 (25)

AdBdd Bd Bd

BdBdd Bd

EddEddEdd

Edd

ACd ACdACdd

ACd
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where FT ! |FT
Y | is the engine force magnitude and FT is the 

angle from îAC to the engine force direction. We assume that 
the component of the engine thrust in the direction  ĵ AC is zero. 

Now, substituting (16), (23), (24), and (25) into (22) yields 
the surge and plunge equations 

 m 1U# 1 WQ
# 2 5 2mg sin Q 2 D cos a 1 L sin a 1 FT cos FT, 

 (26)
 m 1W# 2 UQ

# 2 5 mg cos Q 2 D sin a 2 L cos a 2 FT sin FT.
 (27)

The sway equation for V
#
 plays no role in longitudinal 

flight. 
Note that differential equations (26) and (27) involve the 

variables U, W, Q, and a. To eliminate W from (26) and (27), 
we derive a relationship among W, U, and a. Resolving 
vcyOEyEY  in FS yields 

 vcyOEyEY `
S

5 £U
0
0
§ ,

where U !"U2 1 W2. Likewise, resolving vc /OE /EY  in FAC 
yields 

 vc/OE/EY `
AC

5 £ cos a 0 2sin a
0 1 0

sin a 0 cos a
§ £U

0
0
§ 5 £U cos a

0
U sin a

§ . (28)

It follows from (11) and (28) that 

 £ U
0
W
§ 5 £U cos a

0
U sin a

§ .

Hence, 

 
W
U

5 tan a. (29)

For longitudinal flight, U is nonzero. Thus, it follows from 
(29) that 

 W 5 U tan a,  (30)

which implies 

 W
#

5 U
#  tan a 1 U 1sec2 a 2a# . (31)

Finally, substituting (30) and (31) into (26) and (27) yields 

 m 1U# 1U 1tan a2Q# 252mg sin Q2D cos a
 1L sin a1FT cos FT,
 (32)

m 1U#  tan a 1 U 1sec2 a 2a# 2 U Q
# 25 mg cos Q 2 D sin a

 2 L cos a 2 FT sin FT.
 (33)

Next, the rotational momentum equation for the aircraft 
about its center of mass is given by Euler’s equation 

 II
S

AC/c vY AC/E 1 vY AC/E 3 II
S

AC/c vY AC/E 5 MY AC/c , (34)

where the physical inertia matrix is defined by 

 I
S

AC/c ! 3
AC

|rdm/cY |2U
S

2 rdm/cY rYdm/c
r

 dm, (35)

rdm/cY  is the position of a mass element relative to c, 1 # 2 r 
de notes a physical covector [20, p. 269], and the physical iden-
tity matrix U

S
 is defined by 

 U
S
! îAC îAC

r 1 ĵ  AC ĵ  AC
r 1 k̂AC k̂AC

r . (36)

Note that the integral in (35) is evaluated over the aircraft 
body. In (35) and (36), the notation xY yY r for vectors xY and yY 
denotes a second-order tensor, which operates on a vector zY 
according to 1xY yYr 2zY 5 xY yYr zY 5 1yY # zY 2xY [20]. Finally, MAC/c

Y  
denotes the total thrust and aerodynamic moment acting 
on the aircraft relative to c. 

Next, resolving I
S

AC/c in FAC yields 

 I
S

AC/c `
AC

5 £ Ixx 2Ixy 2Ixz

2Ixy Iyy 2Iyz

2Ixz 2Iyz Izz

§ ,  (37)

where 

 Ixx 5 3
AC
1y2 1 z2 2dm, 

 Ixy 5 3
AC

xy dm, 

and likewise for the remaining entries. Assuming that 
îAC-k̂AC is a plane of symmetry of the aircraft, it follows 
that 

 Ixy 5 Iyz 5 0.

Thus, (37) becomes 

 I
S

AC/c `
AC

5 £ Ixx 0 2Ixz

0 Iyy 0
2Ixz 0 Izz

§ .

Now resolving Euler’s equation (34) in the aircraft 
frame, that is, 

 a I
S

AC/c  vY ACb `
AC

1 avYAC/E 3 I
S

AC/c  vY AC/Eb `
AC

5 MAC/c
Y `

AC
,

yields 

ACd

ACd
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 £ 0
IyyQ

$

0
§ 1 £ 0 0 Q

#

0 0 0
2Q

#
0 0

§ £ 0
IyyQ

#

0
§  5 £ LAC

MAC

NAC

§ , 

where MAC/cY `
AC
! 3LAC MAC NAC 4T. The pitch equation 

is thus given by 

 IyyQ
$

5 MAC. (38)

LINEARIZING THE EQUATIONS OF MOTION 
In steady horizontal longitudinal flight, the aircraft is 
assumed to fly at constant velocity U 5 U0, constant 
angle of attack a 5 a0, and constant pitch angle Q 5 Q0, 
with vc/OE/EY  aligned with îE. To simplify the aerodynamic 
analysis, we choose FAC so that Q0 5 0. This choice is uni-
versally made in the literature [18, p. 67]. Since the steady 
flight-path angle is zero, this choice of FAC implies that 
the steady angle of attack a0 is zero, that is, in steady 
flight, îS is aligned with îAC. Linearizing the surge, 
plunge, and pitch equations (32), (33), and (38) about 1U0, a0, Q0 2  using the first-order approximations 
U < U0 1 u, a < a0 1 da, and Q < Q0 1 u, where 
a0 5 Q0 5 0, and dividing the linearized equations by the 
mass m and inertia Iyy to solve for the linear and angular 
acceleration, yields 

 u
#

5 2gu 1 fAx
1 fTx

,  (39)

 U0da
#

5 U0q 1 fAz
,  (40)

 q
#
5 mAC,  (41)

 u
#

5 q,  (42)

where 

 fAx
! Xu0 u 1 Xa0 da 1 Xde0

de,  (43)

 fTx
! XTu0

u,  (44)

 fAz
! Zu0 u 1 Za0 da 1 Za

#
0
da
#

1 Zq0 q 1 Zde0 de,  (45)

 mAC ! Mu0 u 1 Ma0 da 1 Ma
#

0
da
#

1 Mq0 q 1 Mde0 de

 1 MTu0
u 1 MTa0

da,  (46)

and de denotes the elevator perturbation from its trim 
deflection. Note that fAx

 and fAz
 are the perturbations of FA

Y  
in the direction of îAC and k̂AC, respectively. Furthermore, fTx

 
is the perturbation of FT

Y  in the direction of îAC, and mAC is 
the perturbation of MAC. The stability parameters Xu0

, Xa0
, 

Xde0
, XTu0

, Zu0
, Za0

, Za
#

0
, Zq0

, Zde0
, Mu0

, Ma0
, Ma

#
0
, Mq0

, Mde0
, MTu0

, 
and MTa0

 are combinations of aerodynamic parameters 
and stability derivatives, which are defined in Table 1, 
Table 2, and Table 3. The stability parameters are defined 
in Table 4. 

It follows from (39)–(46) that the linearized surge, 
plunge, and pitch equations are given by 

 u
#

5 1Xu0
1 XTu0

2u 1 Xa0
da 2 gu 1 Xde0

de,  (47)

 U0da
#

5 Zu0 u 1 Za0 da 1 1U0 1 Zq0
2q 1 Za

#
0 da
#

1 Zde0 de,  (48)

S Wing area 

b Wing tip-to-tip distance 

c Wing mean chord 

r Air density 

VAC Aircraft speed 

pd Dynamic pressure 12 rVAC
2

VAC0
U0

pd0

1
2 rU0

2 

TABLE 1 Aerodynamic parameters. These parameters 
characterize the basic features of the aircraft for steady 
longitudinal flight.

CL 1u, q, da, da
#
, de 2 CL0

1
1
U0

CLu0

u 1
c

2U0
CLq0

q

  1 CLa0

da 1
c

2U0
CLa

#
0

da
#

1 CLde0

de

CL0

L
pd0

S

CLu0

'CL

' 1 uU0
2 `

0

CLq0

'CL

' 1 cq
2U0
2 `

0

CLa0

'CL

'da
`
0

CLa
#

0

'CL

' 1cda
#

2U0
2 `

0

CLde0

'CL

'de
`
0

CD 1u, q, da, da
#
, de 2 CD0

1
1
U0

CDu0

u 1
c

2U0
CDq0

q 

  1 CDa0

da 1 CDa
#
0

da
#

1 CDde0

de

CD0

D
pd0

S

CDu0

2KCL0
CLu0

CDq0

2KCL0
CLq0

CDa0

2KCL0
CLa0

CDa
#

0

2KCL0
CLa

#
0

CDde0

2KCL0
CLde0

TABLE 2 Force stability derivatives. The aerodynamic 
parameters are given in Table 1. These lift and drag stability 
derivatives model the aerodynamic forces applied to the 
aircraft due to perturbations from steady longitudinal flight. 
This table is based on [17, Table 6.1].
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 q
#
5 1Mu0

1 MTu0

2u 1 1Ma0
1 MTa0

2da 1 Mq0 q

 1 Ma
# 0 da

#
1 Mde0 de,  (49)

 u
#

5 q. (50)

LAPLACE TRANSFORM ANALYSIS 
Taking the Laplace transform of (47)–(50) and assuming that the 
initial conditions of the perturbations 1u, da, u 2 are zero yields 

 £ s2 1Xu0
1 XTu 0

2 2Xa0
g

2Zu0
s 1U02Za

#
0
22Za0

2 1U0 1 Zq0
2s

2 1Mu0
1 MTu0

2 2 1Ma
#

0
s 1 Ma0

1 MTa0
2 s22Mq0

s
§

 # £ û 1s 2
dâ 1s 2
û 1s 2 § 5 £ Xde0

Zde0

Mde0

§  dê 1s 2 ,
where hat in this context denotes the Laplace transform of 
a scalar function of time. The transfer functions from dê 1s 2  
to û 1s 2 , dâ 1s 2 , and û 1s 2  are thus given by 

£ Gû/dê 1s 2
Gdâ/dê 1s 2
Gû/dê 1s 2 § ! C û 1 s 2

dê 1 s 2
dâ 1 s 2
dê 1 s 2
û 1s 2
dê 1 s 2

S
5 £ s2 1Xu0

1 XTu 0
2 2Xa0

g
2Zu0

s 1U02Za
#

0
22Za0 2 1U0 1 Zq0

2s
2 1Mu0

1 MTu0

2 2 1Ma
#

0
s 1 Ma0 1 MTa0

2 s22Mq0
s

§21

 # £ Xde0

Zde0

Mde0

§ .

Consequently, 

 Gû/dê1s25 Aus3 1 Bus2 1 Cus 1 Du

Es4 1 Fs3 1 Gs2 1 Hs 1 I
, (51)

 Gdâ/dê 1s2 5
Aas31Bas21Cas1Da

Es41Fs31Gs21Hs1I
,  (52)

 Gû/d ê 1s2 5
Aus

2 1 Bus 1 Cu

Es4 1 Fs3 1 Gs2 1 Hs 1 I
, (53)

Cm 1u, q, da, da
#
, de 2 1

U0
12Cm0

1 Cmu0

2u 1 c
2U0

 Cmq0
q

1 Cma0

da 1
c

2U0
Cm #

a0
  da
#

1 Cmde0

de

Cm0
MA

pd0
S c

Cmu0

'Cm

' 1 u
U0
2 `

0

Cmq0

'Cm

' 1 cq
2U0
2 `

0

Cma0

'Cm

'da
`
0

Cma
#
0

'Cm

' 1cda
#

2U0
2 `

0

Cmde0

'Cm

'de
`
0

TABLE 3 Moment stability derivatives. The aerodynamic 
parameters are given in Table 1. These pitch stability 
derivatives model the aerodynamic moments applied to 
the aircraft due to perturbations from steady longitudinal 
flight. This table is based on [17, Table 6.1]. Stability 

Parameter Definition Units 

Xu0
2

pd0
S

mU0

12CD0
1 CDu0

2 1/s 

XTu0

pd0
S

mU0

12CTx0
1 CTxu0

2 1/s 

Xa0

pd0
S

m
1CL0

2 CDa0

2 ft/s2-rad 

Xde0

pd0
S

m
CDde0

ft/s2-rad 

Zu0
2

pd0
S

mU0

12CL0
1 CLu0

2 1/s 

Za0

pd0
S

m
1CLa0

2 CD0
2 ft/s2-rad 

Za
#
0

2
pd0

Sc

2mU0
CLa

#
0

ft/s-rad 

Zq0
2

pd0
Sc

2mU0
CLq0

ft/s-rad 

Zde0
2

pd0
S

m
CLde0

ft/s2-rad 

Mu0

pd0
Sc

IyyU0

12Cm0
1 Cmu0

2 rad/ft-s

MTu0

pd0
Sc

IyyU0

12C Tm0
1 CTmu0

2 1/ft-s 

Ma0

pd0
Sc

Iyy
Cma0

1/s2

MTa0

pd0
Sc

Iyy
CTma0

1/s2

Ma
#
0

pd0
Sc 2

2IyyU0
Cma

#
0

1/s 

Mq0

pd0
S c 2

2IyyU0
Cmq0

1/s 

Mde0

pd0
Sc

Iyy
Cmde0

1/s2

TABLE 4 Stability parameters. These parameters are func-
tions of the aircraft parameters and stability derivatives 
given in Table 2. This table is based on [17, Table 6.3].
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where the coefficients of (51)–(53) are defined in tables 5 
and 6. Note that the relative degree of (53) is two. For 
details, see “Markov Parameters and Relative Degree.” 

Next, we find the transfer function from the elevator 
perturbation to the vertical-velocity perturbation. It follows 
from (15) and (30) that

 vpv 5 2 1sin Q2U 1 1cos Q2U 1 tan a 2
 2 , 1cos Q 2Q# 2 h 1sin Q 2Q# . (54)

Letting vpv0
 denote the vertical velocity in steady horizontal 

longitudinal flight, it follows from (54) that 

 vpv0
5 0.

Linearizing (54) about 1U0, a0, Q02 5 1U0, 0, 0 2  using the 
first-order approximations vpv < vpv0

1 dvpv, U < U0 1 u, 
a < da, and Q < u yields 

 vpv0
1 dvpv 5 2 1sin u 2 1U0 1 u 2 1 1cos u 2 1U0 1 u 2 1 tan da 2

 2 , 1cos u 2u# 2 h 1sin u 2u# , 
where dvpv is the first-order approximation of the vertical-
velocity perturbation. Neglecting products of perturbation 
variables, and approximating cos u < 1, sin u < u, and 
tan da < da yields 

 dvpv 5 U0da 2 U0u 2 ,u
#
. (55)

Next, taking the Laplace transform of (55) and assuming 
that the initial conditions of the perturbations 1u, da, u 2  are 
zero yields 

 dv̂pv 1s 2 5 U0dâ 1s 2 2 1U0 1 ,s 2 û 1s2 . (56)

It follows from (52), (53), and (56) that the transfer function 
from dê 1s 2  to dv̂pv 1s 2  is given by 

 Gdv̂pv/dê 1s2 5
Avs3 1 Bvs2 1 Cvs 1 Dv

Es4 1 Fs3 1 Gs2 1 Hs 1 I
, (57)

where the numerator coefficients are defined in Table 5 and 
the denominator coefficients are defined in Table 6. 

Next, to find the transfer function from the elevator per-
turbation to the horizontal-velocity perturbation, it follows 
from (14) and (30) that 

vph 5 1cos Q 2U 1 1sin Q2 1 tan a 2U 2 , 1sin Q2Q# 1 h 1cos Q2Q# .
 (58)

Letting vph0
 denote the horizontal velocity in steady hori-

zontal longitudinal flight, it follows from (58) that 

 vph0
5 U0.

Au Xde0
1U0 2 Za

#
0
2

Bu 2 Xde0 
3 1U0 2 Za

#
0
2Mq0

1 Za0
1 Ma

#
 0
1U0 1 Zq0

2 1 Zde0
Xa0
4

Cu Xde0
3Mq0

Za0
2 1Ma0

1 MTa0

2 1U0 1Zq0
24 2 Zde0

3Ma
#
0
g 1 Xa0

Mq0
4

     1 Mde0
3Xa

#
0
1U0 1 Zq0

2 2 1U0 2 Za# 0
2g 4

Du 2 Zde0
Ma0

g 1 Mde0
Za0

g

Aa Zde0

Ba Xde0
Zu0

1 Zde0
3 2Mq0

2 1Xu0
1 XTu0

2 4 1 Mde0
1U0 1 Zq0

2
Ca Xde0

3 1U0 1 Zq0
2 1Mu0

1 MTu0

2 2 Mq0
Zu0
4 1 Zde0

Mq0
1Xu0

1 XTu0

2
     2 Mde0

1U0 1 Zq0
2 1Xu0

1 XTu0

2
Da Zde0

1Mu0
1 MTu0

2g 2 Mde0
Zu0

g

Au Mde0
1U0 2 Za# 0 2 1 Zde0

Ma
#

0

Bu Xde0
3Zu0

Ma
#
0
1 1U0 2 Za

#
0
2 1Mu0

1 M Tu 0

2 4
      1 Zde0

3 1Ma0
1 MTa0

2 2 Ma
#

0
1Xu0

1 XTu0

2 4
     1 Mde0

3 2 Za0
2 1U0 2 Za

#
0
2 1Xu0

1 XTu0

2 4
Cu Xde0

3 1Ma0
1 MTa0

2Zu0
2 Za0

1Mu0
1 MTu0

2 4
      1 Mde0

3Za0
1Xu0

1 XTu0

2 2 Xa0
Zu0
4

     1 Zde0
3 21Ma0

1 MTa0

2 1Xu0
1 XTu0

2 1 Xa0
1Mu0

1 MTu0

2 4
Av 2 ,Au 1 U0Aa

Bv 2 ,Bu 2 U0Au 1 U0Ba

Cv 2 ,Cu 2 U0Bu 1 U0Ca

Dv 2 U0Cu 1 U0Da

Ah hAu 1 Au

Bh hBu 1 Bu

Ch hCu 1 Cu

Dh Du

TABLE 5 Transfer function numerator coefficients. These 
coefficients appear in the transfer functions from the el-
evator deflection dê 1s 2  to û 1s 2, dâ 1s 2 , û 1s 2 , dv̂ph 1s 2 , and 
dv̂pv 1s 2 .

E U0 2 Za
#
0

F 2 1U0 2 Za
#
0
2  1Xu0

2 XTu0

1 Mq0
2 2 Za0

2 Ma
#

0
1U0 1 Zq0

2
G 1Xu0

2 XTu0

2 3Mq0
1U0 2 Za

#
0
2 1 Za0

2 Ma
#

0
1U0 1 Zq0

2 4
      1 Mq0

Za0
2 Zu0

Xa0
2 1Ma0

1 MTa0

2 1U0 1 Zq0
2

H g 3Zu0
Ma

#
0
1 1Mu0

1 MTu0

2 1U0 2 Za
#
0
2 4

      1 1Mu0
1 MTu0

2 3 2Xa0
1U0 1 Zq0

2 4 1 Zu0
Xa0

Mq0

       1 1Xu0
1 XTu0

2 3 1Ma0
1 M Ta0

2 1U0 1 Zq0
2 2 Mq0

Za0
4

I g 3 1Ma0
1 MTa0

2Zu0
2 Za0

1Mu0
1 MTu0

2 4

TABLE 6 Transfer function denominator coefficients. These 
coefficients appear in the transfer functions from the 
 elevator deflection dê 1s 2  to û 1s 2, dâ 1s 2 , û 1s 2 , dv̂ph 1s 2 , and 
dv̂pv 1s 2 .
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Linearizing (58) about 1U0, a0, Q0 2 5 1U0, 0, 0 2  using the 
first-order approximations vph < vph0

1 dvph, U < U0 1 u, 
a < da, and Q < u yields 

vph0
1 dvph 5 1cos u 2 1U0 1 u 2 1 1sin u 2 1U0 1 u 2 1 tan da 2

 2, 1sin u 2u# 1 h 1cos u 2u# , 
where dvph is the first-order approximation of the horizon-
tal-velocity perturbation. Neglecting products of perturba-
tion variables, and approximating cos u < 1, sin u < u, and 
tan da < da yields 

 dvph 5 u 1 hu
#
. (59)

Next, taking the Laplace transform of (59) and assuming 
that the initial conditions of the perturbations 1u, da, u 2  are 
zero yields 

 dv̂ph 1s 2 5 û 1s 2 1 hsû 1s 2 . (60)

It follows from (51), (53), and (60) that the transfer function 
from dê 1s 2  to dv̂ph 1s 2  is given by 

 Gdv̂ph/dê 1s2 5
Ahs3 1 Bhs2 1 Chs 1 Dh

Es4 1 Fs3 1 Gs2 1 Hs 1 I
, (61)

where the numerator coefficients are defined in Table 5, and 
the denominator coefficients are defined in Table 6.

INSTANTANEOUS VELOCITY 
CENTER OF ROTATION
The point pIVCR is an IVCR of the aircraft at time t0 if pIVCR 
is fixed relative to the aircraft and, at time t0, the angular 
velocity of the aircraft relative to FE is not zero and the 
velocity of pIVCR relative to OAC with respect to FE is zero. 
For details, see “Instantaneous Velocity Center of 
 Rotation.” It follows that the location of the unique pIVCR 
whose coordinate along ĵAC is zero, if it exists, has 
the form 

Consider 

 x
# 1 t 2 5 A

&
x 1 t 2 1B

&
u 1 t 2 , 

 y
# 1 t 2 5 C

&
x 1 t 2 1 D

&
u 1 t 2 , 

whose Laplace form is given by 

 sx̂ 1s 2 2 x 10 2 5 A
|
x̂ 1s 2 1 B

|
û 1s 2 , 

 ŷ 1s 2 5 C
&
x̂ 1s 2 1 D

&
û 1s 2 .

Then, 

 ŷ 1s 2 5 C
& 1sI 2 A

& 221x 10 2 1 3C& 1sI 2 A
& 221B

&
1 D

& 4û 1s 2 , 
where 

 G 1s 2 ! C
& 1sI 2 A

& 221B
&

1 D
&
.

Expanding G 1s 2  in a Laurent series about infi nity yields 

 G 1s 2 5
1
s

C
&aI 2

1
s

A
&b21

B
&

1 D
&

 5 D
&

1
1
s

C
|
B
&

1
1

s2
C
&
A
&
B
&

1
1

s3
C
&
A
&

2B
&

1c. (S12) 

We now consider Gû /dê 1s 2  given by (53). Using (S12), we obtain 

 lim
sS` 

sGû /dê 1s 2 5 C
&
B
&
.

Writing (47)–(49) in state-space form with elevator-defl ection 

input and setting Za
#
0
5 0 and Ma

#
0
5 0 for convenience yields 

 ≥ u
#

da
#

q
#

u
#
¥ 5 A

& ≥ u
da

q
u

¥ 1 B
|

de. (S13)

where 

 A
&
! E

Xu0
1 XTu0

Xa0
Xq0

2g
Zu0

U0

Za0

U0

U0 1 Zq0

U0
0

Mu0
1 MTu0

Ma0
1 MTa0

Mq0
0

0 0 1 0

U ,

 B
&
! E

Xde0

Zde0

U0

Mde0

0

U
 
,      C

&
! 30 0 0 1 4.

Note that 

 C
&
B
&

5 0.

Since D
&

5 0 and C
&
B
&

5 0, it follows from (S12) that 

 lim
sS` 

s 2G 1s 2 5 C
&
A
&
B
&
. (S14) 

Therefore, 

 lim
sS`

s2Gû /dê 1s 2 5
Au

E
,  (S15)

where Au is the coeffi cient of s2 in the numerator of (53). From 

(S14) and (S15) it follows that Au/E 5 C
&
A
&
B
&

5 Mde0
 for Za

#
0
5 0 

and Ma
#
0
5 0. It thus follows that the numerator of Gû /dê 1s 2  in (53) 

is of second order. 

Markov Parameters and Relative Degree 
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 rYpIVCR/c `
AC

5 £ ,IVCR

0
hIVCR

§ . (62)

It thus follows from (S10) that 

    rYpIVCR/c 5
1

|wYAC/E|2 vYAC/E 3 vYc/OE/E 1
vYAC/E

# rYpIVCR/c

|vYAC/E|2
vYAC/E. (63)

Note that the second term in (63) is zero since vYAC/E is 
aligned with  ĵAC and the component of rpIVCR/cY  along  ĵAC is 
zero. Thus, (63) can be written as 

 rpIVCR/cY 5
1

|vYAC/E|2 vY AC/E 3 vc/OE/EY

 5
1

Q
#

2
3Q#  ĵ AC 3 1U îAC 1 Wk̂AC 2 4

 5
W
Q
# îAC 2

U
Q
#  k̂AC. (64)

Therefore, 

 ,IVCR 5
W
Q
# 5

U tan a
Q
# ,  (65)

 hIVCR 5 2
U
Q
# . (66)

Since Q
#

0 5 0, it follows that ,IVCR and hIVCR are infinite for 
steady flight, and thus no IVCR exists in steady flight. 

Next, for the elevator step deflection de 1t 2 5 e1 1t 2 t0 2 , 
where e 2 0, we approximate ,IVCR and hIVCR at t0

1 using the 
first-order approximations U < U0 1 u, a < da, and Q < u. 
Thus, 

 ,IVCR 1t0
12 < 1U0 1 u 1t0

12 2 1 tan d a 1t0
12 2

u
# 1t0

12 ,  (67)

 hIVCR 1t0
12 < 2

U0 1 u 1t0
12

u
# 1t0

12 ,  (68)

where it follows from the initial value theorem that 

 u 1t0
12 5 lim

sS` 
sû 1s 2

 5 lim
sS` 

sGû/dê 1s 2 es
 5 lim 

sS`

e 1Aus
2 1 Bus 1 Cu2

Es4 1 Fs3 1 Gs2 1 Hs 1 I
 5 0,  (69)

 u
# 1t0

12 5 lim
sS` 

s 3su^ 1s2 2 u 1t0
12 4

 5 lim
sS` 

s2 Gû/dê 1s 2 es
 5 lim

sS`
 

e 1Aus
3 1 Bus

2 1 Cus 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5 0,  (70)

 da 1t0
12 5 lim

sS  ̀ 
sdâ 1s 2

 5 lim
sS` 

sGdâ/dê 1s 2 es  

 5 lim
sS`

e 1Aas3 1 Bas2 1 Cas 1 Da2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5 0,  (71)

 u 1t0
1 2 5 lim

sS` 
sû 1s 2

 5 lim
sS` 

sGû/dê 1s 2 es
 5 lim

sS`
 
e 1Aus3 1 Bus2 1 Cus 1 Du2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5 0. (72)

Thus it follows from (67)–(72) that 

 ,IVCR 1t0
12 < U0 tan a0

u
# 1t0

12 5 `, 

 hIVCR 1t0
12 < 2

U0

u
# 1t0

12 5 `.

Therefore, no IVCR exists for an elevator step deflection. 

INSTANTANEOUS ACCELERATION 
CENTER OF ROTATION 
The point pIACR is an IACR of the aircraft at time t0 if pIACR 
is fixed relative to the aircraft and, at time t0, the accelera-
tion of pIACR relative to OAC with respect to FE is zero. For 
details, see “Instantaneous Acceleration Center of Rota-
tion.” It follows that the location of the unique pIACR whose 
coordinate along ĵ AC is zero, if it exists, has the form 

 rpIACR/cY `
AC

5 £ ,IACR

0
hIACR

§ . (73)

It thus follows from (20) and the definition of the IACR 
that 

 apIACR/OE/EY `
AC

5 £ 2 ,IACRQ
#

2 1 U
#

1 WQ
#

1 hIACRQ
$

0
2 ,IACRQ

$
1 W

#
2 UQ

#
2 hIACRQ

#
2

§ 5 0,

which implies 

 ,IACR 5
WQ

#
3 1 U

#
Q
#

2 2 UQ
#
Q
$

1 W
#

Q
$

Q
#

4 1 Q
$

2 ,  (74)

 hIACR 5
2 UQ

#
3 1 W

#
Q
#

2 1 WQ
#
Q
$

2 U
#
Q
$

Q
#

4 2 Q
$ 2 . (75)

Alternatively, using (S27) yields 

 rYpIACR/c 5
0  vYAC/E 02 aYc/OE/E 1 vYAC/E 3 aYc /OE /E0  vYAC/E 04 1 0vYAC/E 02

 5
Q
#

2aYc/OE /E 1 vYAC/E 3 aYc /OE /E

Q
#

4 1 Q
$

2 .

Therefore, 

ACd

ACd

ACd
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rYpIACR/c `
AC

5
1

Q
#

4 1 Q
$ 2 °Q# 2 £U

#
1 WQ

#

0
W
#

2 UQ
# § 1 £ 0

Q
$

0
§ 3 £U

#
1 WQ

#

0
W
#

2 UQ
# § ¢

 5 E
WQ

#
3 1 U

#
Q
#

2 2 UQ
#
Q
$

1 W
#
Q
$

Q
#

4 1 Q
$

2

0
2UQ

#
3 1 W

#
Q
#

2 1 WQ
#
Q
$

2 U
#
Q
$

Q
#

4 1 Q
$

2

U,

which agrees with (73)–(75). 
Next, it follows from (30), (31), (74), and (75) that 

,IACR 5
U 1tan a2Q# 31 U

#
Q
# 2 2 UQ

#
Q
$

1 1U#  tan a1U 1sec2a 2a# 2Q$
Q
#

4 1 Q
$ 2 ,

 (76)

hIACR 5
2UQ

#
31 1U 

#
tan a1U 1sec2a2a# 2Q# 21U 1tan a2Q# Q$ 2U

#
Q
$

Q
#

4 1 Q
$ 2 .

 (77)

Since Q
#

0 5 0 and Q
$

0 5 0, it follows that ,IACR and hIACR are 
infinite for steady flight. 

Next, for the elevator step deflection de 1t 2 5 e1 1t 2 t0 2 , 
where e 2 0, we approximate ,IACR and hIACR at t0

1 using the 
first-order approximations U < U0 1 u, a < da, and Q < u. 
Thus, 

 ,IACR 1t0
12 < 1

u
$2 1012 1 u

# 4 1012 1 3U01u 1t0
124 1tan da 1t0

122u# 3 1t0
12

 1 u
# 1t0

12u# 2 1t0
12 1 3u# 1t0

12 1tan da 1t0
122

 1 3U0 1 u 1t0
124 1sec2 da 1t0

122da
# 1t0

124u$ 1t0
12

 2 3U0 1 u
# 1t0

124u# 1t0
12u$ 1t0

122 , (78)

 hIACR 1t0
12 < 1

u
$2 1012 1 u

# 41012 13U01 u 1t0
124 1tan da 1t0

122u# 1t0
12u$ 1t0

12
 2 u

# 1t0
12u$ 1t0

121 3u# 1t0
12 1tan da 1t0

122
 1 3U0 1 u 1t0

124 1sec2 da 1t0
122da

# 1t0
124u# 2 1t0

12
 2 3U0 1 u 1t0

124u# 3 1t0
122 ,  (79)

where the initial value theorem implies that 

 da
# 1t0

12 5 lim
sS` 

s 3sdâ 1s2 2 da 1t0
124

 5 lim
sS`

 s2Gdâ/dê 1s2 es
 5 lim

sS`

e 1Aas4 1 Ba s3 1 Ca s2 1 Da2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eAa

E
, (80)

 u
$ 1t0

125 lim
sS` 

s 3s2û 1s2 2 su 1t0
12 2 u

# 1t0
124

 5 lim
sS`

 s3Gû/dê 1s2 es
 5 lim

sS`

e 1Aus4 1 Bus3 1 Cus22
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eAu

E
, (81)

 u
# 1t0

12 5 lim
sS` 

s 3sû 1s2 2 u 1t0
124

 5 lim
sS` 

s2Gdû/dê 1s2 es
 5 lim

sS`

e 1Aus4 1 Bu s3 1 Cu s2 1 Dus2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eAu

E
. (82)

It thus follows from (69)–(72), (78)–(82), and the expres-
sions given in Table 5 that 

 ,IACR 1t0
12 < U0Aa

Au

 5
U0Zde0

Zde0
Ma

#
0
1 Mde0

1U0 2 Za
#

0
2  (83)

and 

 hIACR 1t0
12 <2

Au

Au

 5 2
Xde0

1U0 2 Za
#

0
2

Zde0
Ma

#
0
1 Mde0

1U0 2 Za
#

0
2 . (84)

INITIAL SLOPE AND QUADRATIC CURVATURE 
OF THE VERTICAL- AND HORIZONTAL-VELOCITY 
PERTURBATIONS AT THE IACR FOR AN ELEVATOR 
STEP DEFLECTION 
The vertical-velocity perturbation dvpv 1t0

12  at p due to the 
elevator step deflection de 1t 2 5 e1 1t 2 t0 2 , where e 2 0, is 
given by 

 dvpv 1t0
12 5 lim

sS` 
sdv̂pv 1s2

 5 lim
sS` 

sGdv̂pv /dê 1s2 es
 5 lim

sS`

e 1Avs3 1 Bvs2 1 Cvs 1 Dv 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5 0

while the initial slope dv
#
pv 1t0

12  of the vertical-velocity per-
turbation is given by

In aircraft dynamics, the instantaneous acceleration center of rotation of an 

aircraft is the point on the aircraft that has zero instantaneous acceleration.
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Let B be a rigid body with body-fixed frame FB,  let FA be a 

frame with origin OA,  and let vY B/A be the angular velocity 

of FB relative to FA. A point p that is fixed relative to B  is an in-

stantaneous acceleration center of rotation (IACR) of B  relative 

to FA at time  t  if aYp/OA/A 1 t 2 5 0 [S1, pp. 150–155], [S3, pp. 336–

338]. For convenience, we omit the phrase “relative to FA.” 

To characterize this property, let q be a point fixed relative 

to the rigid body B. It follows from the definition of an IACR and 

the transport theorem that p is an IACR if and only if 

aY  p/O A/A 5 v Y B/A 3 rYp/q 1 Yv B/A 3 1 YvB/A 3 Yrp/q 2 1 Ya  q/ O A/A 5 0. (S16)

Resolving aYq/OA/A, vYB/A, vYB/A, and rYp/q in FB as 

 a ! aYq/OA/A `
B
, v ! vYB/A `

B
, v# ! vYB/A `

B
, r ! rYp/q `

B
,

(S16) can be rewritten as

 1v 3 1
.

v 32 2r 1 a 5 0. (S17)

The existence of an IACR thus depends on the existence of 

a solution r  to (S17). Furthermore, (S17) can yield zero, one, or 

infinitely many IACRs. 

Note that the determinant of  v 3 1
.

v 32 is given by  

det 1v 3 1
.

v 32 2 5 1vYB/A
# vYB/A 22 2 1vYB/A

# vYB/A 2 1vYB/A
# vYB/A 2

 5 2 |YvB/A|2| YvB/A|2 sin2 u, (S18) 

where 

 u ! cos21
vYB/A vYB/A0vY B/A 0 0vY B/A|

. (S19) 

FACT S3 

There exists a unique IACR if and only if u/p is not an integer, 

vYB/A 2 0, and vYB/A 2 0. 

PROOF 

Suppose (S17) has a unique solution. Therefore,  v 3 1
.

v 32 is 

nonsingular, and thus the determinant of  v 3 1
.

v 32 is nonzero. 

Hence, it follows from (S18) that  

 det 1v 3 1
.

v 32 2 5 2 0vYB/A 0 2 0vYB/A 0 2 sin2 u 2 0,

which implies that u/p is not an integer, vYB/A 2 0, and  vYB/A 2 0. 
Conversely, since u/p is not an integer, vYB/A 2 0, and 

vYB/A 2 0, it follows from (S18) that  det 1v 31
.

v 32 2 5

2 0vYB/A 0 2 0vYB/A 0 2 sin2 u 2 0, which implies that (S17) has a 

unique solution.  h 

FACT S4 

Assume YvB/A 5 0, vYB/A 2 0, and Yaq/OA/A 2 0. Then p is an IACR 

if and only if p satisfies the following conditions: 

i) vYB/A
# aYq/OA/A 2 0. 

ii) vYB/A 3 arYp/q 2
1

|vYB/A|2

 vYB/A 3 aYq/OA/Ab 5 0. 

In this case, p satisfi es 

 Yrp/q 5
1

|vYB/A |2
 vYB/A 3 aYq/OA/A 1

vY B/A
# rYp/q

|vYB/A|2
 vYB/A. (S20) 

PROOF 

Assume p is an IACR. Since vYB/A 5 0, it follows from (S16) that 

vYB/A
# aYq/OA/A 5 vYB/A

# Q2vY B/A 3 rYp/q 2 vYB/A 3 1vY B/A 3 rYp/q 2R
 5 2vYB/A

# 1vYB/A 3 rYp/q 2
 5 0, 

which proves i). To prove ii), it follows from (S16) that 

 vYB/A 3 arYp/q 2
1

|vYB/A|2

 vYB/A 3 aYq/OA/Ab 5  vYB/A 3 rYp/q 1 aYq/OA/A

 5 0.

Hence, ii) holds. 

Conversely, it follows from ii) that there exists a [ R such that 

 rYp/q 5
1

|vYB/A|2

 vYB/A 3 aYq/OA/A 1  a vYB/A. (S21) 

Using i) and (S21), it follows that 

 aYp/OA/A 5 rYp/OA

 5 Yr p/q 1 Yr q/OA

 5 Yrp/q 1 2 YvB/A 3 Yrp /q 1 YvB/A 3 Yrp/q

 1 YvB/A 3 1YvB/A 3 Yrp/q 2 1 Yaq/OA/A

 5 YvB/A 3 a 1

|vYB/A|2

 vYB/A 3aYq/OA/A 1 a YvB/Ab 1 Yaq/OA/A

 5
YvB/A

# Yaq/OA/A

| YvB/A|2
 YvB/A 2 Yaq/OA/A 1 Yaq/OA/A

 5 0,

and thus p is an IACR. 

To show (S20), assume p is an IACR. It follows from (S16) that 

 YvB/A 3 Yap/OA/A 5 YvB/A 3aYvB/A 3 Yrp/q 1 YvB/A3 1YvB/A 3 Yrp/q21 Yaq/OA/Ab5 0,

which implies that 

1YvB/A
# Yrp/q2  YvB/A 2 1YvB/A

# YvB/A 2Yrp/q 1 YvB/A 3 Yaq/OA/A 5 0. (S22)

Hence, solving for Yrp/q in (S22) yields (S20). h 
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AUGUST 2011 « IEEE CONTROL SYSTEMS MAGAZINE 83

FACT S5 

Assume Y vB/A 5 0, YvB/A 2 0, and Yaq/OA/A 2 0. Then p is an IACR 

if and only if p satisfies the following conditions: 

i)  YvB/A
# Yaq/OA/A 5 0. 

ii)  YvB/A 3 aYrp/q 2
Yaq/OA/A

| YvB/A|2
b 5 0. 

In this case, p satisfies 

 Y rp/q 5
Yaq/OA/A

| YvB/A|2
1
YvB/A

# Yrp/q

| YvB/A|2
 YvB/A. (S23) 

PROOF 

Assume p is an IACR. Since YvB/A 5 0, it follows from (S16) that 

Y vB/A
# Yaq/OA/A 5 YvB/A

# a2 YvB/A 3 Yrp/q 2 YvB/A 3 1 YvB/A 3 Yrp/q 2b
 5 2 YvB/A

# QYvB/A 3 1 YvB/A 3 Yrp/q 2R
 5 0,

which proves i). To prove ii), it follows from (S16) that 

Y vB/A 3 aYrp/q 2
Yaq/OA/A

| YvB/A|2
b 5 YvB/A 3 Yrp/q 2 YvB/A

 3
2 YvB/A 3 Yrp/q 2 YvB/A 3 1YvB/A 3 Yrp/q 2

| YvB/A|2

 5 YvB/A 3 Yrp/q 1 YvB/A 3
YvB/A 3 1YvB/A 3 Yrp/q 2

| YvB/A|2

 5 YvB/A 3 Yrp/q 2 YvB/A 3 Yrp/q

 5 0. (S24) 

Hence, ii) holds. 

Conversely, it follows from ii) that there exists a [ R such that 

 Yrp/q 5
Yaq/OA/A

| YvB/A|2
1 a YvB/A. (S25) 

Using i) and (S25), it follows that 

 aYp/OA/A 5 rY  p/OA

 5 Yrp/q 1 Yr q/OA

 5 Yr p/q 1 2 YvB/A 3 Yr p /q 1 YvB/A 3 Yrp/q

 1 YvB/A 3 1YvB/A 3 Yrp/q2 1 Yaq/OA/A

 5 YvB/A 3 aYvB/A 3 a Yaq/OA/A

|YvB/A|2
1 a YvB/Abb 1 Yaq/OA/A

 5 2Yaq/OA/A 1 Yaq/OA/A

 5 0.

To show (S23), assume p is an IACR. It follows from (S16) that 

 YvB/A 3 Yrp/q 1 YvB/A 3 1YvB/A 3 Yrp/q 2 1 Yaq/OA/A

 5 YvB/A 3 1YvB/A 3 Yrp/q 2 1 Yaq/OA/A

 5 1 YvB/A
# Yrp/q 2YvB/A 2 1YvB/A

# YvB/A 2Yrp/q 1 Yaq/OA/A

 5 0. (S26) 

Solving (S26) for Yrp/q yields (S23).  h

FACT S6 

Assume YvB/A 5 0 and YvB/A 5 0. Then every point p that is 

fixed relative to B is an IACR if and only if 

 Yaq/OA/A 5 0.

PROOF 

Assuming p is an IACR, it follows from (S16) that 

 0 5 YvB/A 3 Yrp/q 1 YvB/A 3 1 YvB/A 3 Yrp/q 2 1 Yaq/OA/A

 5 Yaq/OA/A.

Conversely, 

  Ya p /OA /A 5 Yrp /OA

 5 Yrp/q 1 Yrq/OA

 5 Yr p/q 1 2 YvB/A 3 Yr p /q 1 YvB/A 3 Yrp/q

 1 YvB/A3 1 YvB/A3Yrp/q2 1 Yaq/OA/A

 5 Yaq/OA/A

 5 0.

FACT S7 

Assume vYB/A and vYB/A are colinear, and let k ! 1vYB/A
# vYB/A 2 / 

|vYB/A|2. Then p is an IACR if and only if p satisfi es the following 

conditions: 

i)  YvB/A
# Yaq/OA/A 5 0. 

ii)  YvB/A 3 ° Yrp/q2 
|vYB/A|2 aYq/OA/A 1 vY B/A 3 aYq/OA/A

|vY B/A|4 1 |vYB/A|2
¢  5 0.

In this case, p satisfi es 

 Yrp/q 5
|vYB/A|2 aYq/OA/A 1 vY B/A 3 aYq/OA/A

|vY B/A|4 1 |vYB/A|2

 1
|vY B/A|2 1vYB/A

# rYp/q 2 1 k vY B/A
# rYp/q 

|vY B/ A|4 1 | vYB/A|2
 vYB/A. (S27) 

PROOF 

Assume p is an IACR. It follows from (S16) that  YvB/A
# Yaq/OA/A 5 0, 

which proves i). To prove ii), note that, since p is an IACR, it 

follows from (S16) that 

0 5 YvB/A 3 Yrp/q 1 YvB/A 3 1YvB/A 3 Yrp/q 2 1 Yaq/OA/A

5 YvB/A 3 Yrp/q 1 1YvB/A
# Yrp/q 2  YvB/A2 1YvB/A

# YvB/A 2Yrp/q1 Yaq/OA/A. (S28)

Next, the cross product of  YvB/A and (S28) can be expressed as 

 0 5 vYB/A 3 avYB/A 3 rYp/q 1 1vYB/A
# rYp/q 2vYB/A

 2 1vY B/A
# vYB/A 2rYp/q 1 aYq/OA/Ab

 5 1vY B/A
# rYp/q 2vY B/A 2 |vYB/A|2rYp/q

 2 |vYB/A|2 1vYB/A 3 rYp/q 2 1 vYB/A 3 aYq/OA/A. (S29)
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 dv
#
pv 1t0

12 5 lim
sS` 

s 3sdv̂pv 1s2 2 dvpv 1t0
124

 5 lim
sS` 

s2Gdv̂pv/dê 1s2 es
 5 lim

sS`

e 1Avs4 1 Bvs3 1 Cvs2 1 Dvs 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eAv

E
. (85)

Hence, if eAv/E 2 0, then the vertical-velocity perturba-
tion has a slope discontinuity due to the elevator step 
deflection. Note that the initial slope dv

#
pv 1t0

12  of the ver-
tical-velocity perturbation is the initial value of the ver-
tical-acceleration perturbation. 

Next, it follows from the expression for Av given in Table 5 
that 

 Av 5 2,Au 1 U0Aa. (86)

Therefore, Av 5 0 if and only if 

 ,5
U0 Aa

Au

. (87)

Hence, it follows from (85) that dv
#
pv 1t0

12 5 0 if and only if , 
satisfies (87). For details, see “The Initial Curvature Theo-
rem and Unit-Step Response.” 

Similarly, the horizontal-velocity perturbation dvph 1t0
12  

at p due to the elevator step deflection de 1t 2 5 e1 1t 2 t0 2 , 
where e 2 0, is given by 

 dvph 1t0
12 5 lim

sS` 
sdv̂ph 1s2

 5 lim
sS` 

sGdv̂ph/dê 1s2 es
 5 lim

sS`

e 1Ahs3 1 Bhs2 1 Chs 1 Dh2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5 0,

while the initial slope dv
#
ph 1t0

12  of the horizontal-velocity 
perturbation is given by 

 dv
#
ph 1t0

12 5 lim
sS` 

s 3sdv̂ph 1s2 2 dvph 1t0
124

 5 lim
sS` 

s2Gdv̂ph/dê 1s2 es
 5 lim

sS`

e 1Ahs4 1 Bhs3 1 Chs2 1 Dhs 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eAh

E
. (88)

Next, it follows from the expression for Ah given in Table 5 that 

 Ah 5 hAu 1 Au. (89)

Therefore, Ah 5 0 if and only if 

 h 5 2
Au

Au

. (90)

Hence, it follows from (88) that dv
#
ph 1t0

12 5 0 if and only if h 
satisfies (90). 

It follows from (S28) that 

  vYB/A 3 rYp/q 5 2 1vYB/A
# rYp/q 2  vY B/A

  1 1  vYB/A
# vYB/A 2  rYp/q 2 aYq/OA/A . (S30) 

Substituting (S30) into (S29) yields 

 0 5 1vY B/A
# rYp/q 2vYB/A 2 |vYB/A|2rYp/q 1 |vYB/A|2 1vYB/A

# rYp/q 2vYB/A

  2 |vYB/A|4rYp/q 1 |vYB/A|2aYq/OA/A 1 vYB/A 3 aYq/OA/A

 5 3k vYB/A # rYp/q 1 |vYB/A|2 1vYB/A
# rYp/q 2 4vYB/A

 1 |vY B/A|2aYq/OA/A 1 vYB/A 3 aYq/OA/A 2 1|vYB/A|2 1 |vYB/A|4 2  rp/q .

 (S31)

Now, solving (S31) for  rY p/q  yields (S27), which implies that ii) 

is satisfi ed. 

Conversely, it follows from ii) that there exists a [ R such 

that 

 rYp/q 5
|vY B/A|2aYq/OA/A 1 vYB/A 3 aYq/OA/A

|vYB/A|4 1 |vY B/A|2
1 avY B/A. (S32)

Using i) and (S32),  aYp/OA/A  is given by 

 aYp/OA/A 5 rYp/OA

 5 rYp/q 1 rYq/OA

 5 rYp/q 1 2vYB/A 3 rYp/q 1 vYB/A 3 rYp/q

 1 vYB/A 3 1  vY B/A 3 rYp/q 2 1 aYq/OA/A 

 5 vY B/A 3 £|vY B/A|2 aYq/OA/A 1 vYB/A 3 aYq/OA/A 

|vYB/A|4 1 |vY B/A |2
1 avYB/A≥

 1  vYB/A 3 £vYB/A 3 £|vYB/A|2 aYq/OA/A 1 vYB/A 3 aYq/OA/A 

| vYB/A|4 1 | vY B/A |2

 1 avYB/A≥≥ 1  aYq/OA/A 

 5 2 aY q/OA/A 1 aYq/OA/A 

 5 0. h
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Next, it follows from (83) and (84) that pIACR for an eleva-
tor step deflection satisfies both (87) and (90). Therefore, 
Av 5 0 and Ah 5 0 if and only if 1,, h 2 5 1,IACR, hIACR 2 . Thus, 
evaluating (85) and (88) at pIACR for the elevator step 
 deflection de 1t 2 5 e1 1t 2 t0 2 , where e 2 0, yields dv

#
pv 1t0

12 5 0 
and dv

#
ph 1t0

12 5 0. Therefore, at the IACR, the initial slopes of 
the vertical- and horizontal-velocity perturbations are zero. 
Equivalently, despite the step discontinuity in the elevator 
deflection, the initial values of the vertical- and horizontal-

acceleration perturbations are zero. Therefore, the initial 
value of the acceleration measured by a body-fixed acceler-
ometer whose direction of measurement is orthogonal to 
ĵAC is zero [6, pp. 313–316], [7]–[15]. 

Since Av 5 0 at the IACR, it follows that the transfer 
function Gdv̂pv/dê 1s2  at the IACR becomes 

 Gdv̂pv/dê 1s2 5
Bvs2 1 Cvs 1 Dv

Es4 1 Fs3 1 Gs2 1 Hs 1 I
.

INITIAL SLOPE THEOREM 

Let ŷ 1s 2  denote the Laplace transform of y 1 t 2 . Then the initial 

slope of y 1 t 2  is given by 

 y r 101 2 ! lim
tS01

y r 1 t 2 5 lim
sS` 

s 3sŷ 1s 2 2 y 101 2 4.
To illustrate the initial slope theorem, we consider the 

unit-step response of the asymptotically stable, strictly prop-

er transfer function G with relative  degree d $ 1. The unit-

step response has the initial value y 101 2 ! limtS01y 1 t 2 5

limsS`s 1G 1s 21/s 2 5 G 1` 2 5 0. The initial slope of y 1 t 2  is thus 

given by 

 y r 101 2 5 lim
sS`

s2 ŷ 1s 2 5 lim
sS` 

sG 1s 2 .
Consequently, if d 5 1, then y r 101 2 2 0, whereas, if d $ 2, 

then y r 101 2 5 0. These results are illustrated in Figure S4 and 

Figure S5. 

INITIAL CURVATURE THEOREM 

Let ŷ 1s 2  denote the Laplace transform of y 1 t 2 . Then the initial 

curvature of y 1 t 2  is given by 

 y 1d2 101 2 ! lim
tS01

y 1d 2 1 t 2 5 lim
sS`

s d11ŷ 1s 2 , 
where y 1d 2 denotes the d th derivative of y, and d  is the smallest 

integer such that y 1d 2 101 2 2 0. 

We now consider the unit-step response of the asymptoti-

cally stable, strictly proper transfer function G with relative de-

gree d $ 1, where 

 G 1s 2 5
bn2d sn2d 1 bn2d21s

n2d21 1c1 b0

s n 1 an21s
n21 1c1 a0

.

The initial derivatives of the unit step response are thus given by 

 y 1i 2 101 2 5 lim
sS`

s i11ŷ 1s 2
 5 lim

sS`
s i11G 1s 21

s

 5 lim
sS`

s iG 1s 2
 5  e0, i 5 1, c, d 2 1,  

bn2d, i 5 d.  

Therefore, the initial curvature of the unit step response is 

y 1d2 101 2 5 bn2d. 

The Initial Curvature Theorem and the Unit-Step Response 

FIGURE S5 The unit step response of the asymptotically stable 
transfer function G 1s 2 5 1s 2 3 2 / 1s 1 5 24, whose relative 
degree is three. The initial slope y r 101 2  of the unit step 
response is zero, whereas the initial curvature y rr 1012  of the 
unit step response is one. 
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FIGURE S4 The unit step response of the asymptotically stable 
transfer function G 1s 2 5 1s 2 2 22/ 11s 1 1 2 1s 1 2 2 1s 1 3 2 2  with 
relative degree d 5 1. The initial slope y r 101 2  of the unit step 
response is one. 
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Next, at the IACR, it follows from the expression for Bv 
given in Table 5 that 

 Bv 5 2,IACRBu 2 U0Au 1 U0Ba

 5 2aAaBu

Au

1 Au 2 BabU0.

Consequently, if Bv 2 0, then the relative degree of Gdv̂pv/dê 1s2  
increases from one to two, and thus one of the zeros of 
Gdv̂pv/dê 1s2  vanishes at the IACR. 

Similarly, at the IACR, Ah 5 0. Thus, if Bh 2 0, then the 
relative degree of Gdv̂ph/dê 1s2  increases from one to two, and 
thus one of the zeros of Gdv̂ph/dê 1s2  vanishes at the IACR. The 
vanishing zeros are a consequence of the fact that the initial 
slope of the vertical-velocity perturbation and the 
 horizontal-velocity perturbation are zero at the IACR. Note 
that ,IACR and hIACR depend on the speed U0 and the stabil-
ity derivatives Zde0

, Za
#

0, Xde0
, Ma

#
0, and Mde0

. Vanishing zeros 
are discussed in [16]. 

INITIAL UNDERSHOOT OF THE 
VERTICAL VELOCITY FOR AN ELEVATOR 
STEP DEFLECTION 
Let G 1s2 ! b 1s2 / 1sra 1s22  be a strictly proper transfer function 
with relative degree d . 0, where r $ 0 and a 1s 2  is asymp-
totically stable. Let y 1t 2  denote the response of G to the step 
command 1 1t 2 t0 2 . Then initial undershoot occurs at time t0 
if the step response initially moves in the direction opposite 
to its asymptotic direction, that is, 

 y1d2 1t0
1 2y1r2 1` 2 , 0. (91)

To determine whether the vertical-velocity perturbation 
dvpv 1t 2  to the elevator step deflection de 1t 2 5 e1 1t 2 t0 2  
exhibits initial undershoot, we investigate (91) with 
G 1s2 5 Gdv̂pv/dê 1s2 , r 5 0, and y 1t 2 5 dvpv 1t 2 . 

First, the asymptotic direction of the step response is 
given by the sign of 

 dvpv 1`2 5 lim
sS0  

sdv̂pv 1s2
 5 lim

sS0  
sGdv̂pv/dê 1s2 es

 5 lim 
sS0

e 1Avs3 1 Bvs2 1 Cvs 1 Dv 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eDv

I
. (92)

It follows from Table 5 and Table 6 that dvpv 1 2̀  does not 
depend on the location of p, that is, the value of 1,, h 2 . 

Next, the initial direction of the step response is given 
by the sign of 

dvpv
1d2 1t0

12 5 lim
sS` 

s 3sddv̂pv 1s22 sd21dvpv 1t0
12 2c2 dvpv

1d212 1t0
124

 5 lim
sS` 

sd11dv̂pv 1s2

 5 lim
sS` 

sd11Gdv̂pv/dê 1s2 es
 5 esda Avs3 1 Bvs2 1 Cvs 1 Dv

Es4 1 Fs3 1 Gs2 1 Hs 1 I
b

 5 µ
eAv
E , if d 5 1, 1that is, Av202 ,

eBv
E ,  if d 5 2, 1that is,  Av50, Bv2 02 ,

eCv
E , if d 5 3, 1that is,  Av5Bv50, Cv2 02 ,

eDv
E , if d 5 4, 1that is,  Av5 Bv5 Cv5 0, Dv202 .

 (93)

Thus, for d 5 1, dvpv 1t 2  exhibits initial undershoot if and only 
if dv

#
pv 1t0

12dvpv 1`2 5 AvDv/ 1EI 2 , 0; for d 5 2, dvpv 1t 2  exhibits 
initial undershoot if and only if dv

$
pv 1t0

12dvpv 1`2 5  
BvDv/ 1EI 2 , 0; for d 5 3, dvpv 1t 2  exhibits initial undershoot if 
and only if dvpv

132 1t0
12dvpv 1`2 5  CvDv/ 1EI 2 , 0. Furthermore, 

for d 5 4, dvpv 1t 2  does not exhibit initial undershoot since 
dvpv

142 1t0
1 2dvpv 1̀ 2 5  Dv

2/ 1EI 2 $ 0.
The following results follow from (87) and (91)–(93) 

along with Proposition S1. 

Proposition 1
Assume that , does not satisfy (87). Then the following 
statements hold: 

i)  The relative degree of Gdv̂pv/dê 1s2  is one, and thus 
Av 2 0. 

ii)  dvpv 1t 2  exhibits initial undershoot if and only if 
AvDv , 0. 

iii)  dvpv 1t 2  exhibits initial undershoot if and only if 
Gdv̂pv/dê 1s2  has either exactly one or exactly three real 
nonminimum-phase zeros.

Proposition 2
Assume that , satisfies (87) and Bv 2 0. Then the following 
statements hold: 

i)  The relative degree of Gdv̂pv/dê 1s2  is two, and thus 
Av 5 0. 

ii)  dvpv 1t 2  exhibits initial undershoot if and only if 
BvDv , 0. 

iii)  dvpv 1t 2  exhibits initial undershoot if and only if 
Gdv̂pv/dê 1s2  has exactly one real nonminimum-phase 
zero.

Following the same procedure for drpv 1t2  yields identical 
results, that is, drpv 1t2  exhibits initial undershoot if and only 
if dvpv 1t2  exhibits initial undershoot. 

INITIAL UNDERSHOOT OF THE HORIZONTAL 
VELOCITY FOR AN ELEVATOR STEP DEFLECTION 
To determine whether the horizontal-velocity perturbation 
dvph 1t 2  to the elevator step deflection de 1t 2 5 e1 1t 2 t0 2  
exhibits initial undershoot, we investigate (91) with 
G 1s2 5 Gdv̂ph/dê 1s2 , r 5 0, and y 1t 2 5 dvph 1t 2 . 

First, the asymptotic direction of the step response is 
given by the sign of 
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 dvph 1`2 5 lim
sS0  

sdv̂ph 1s2
 5 lim

sS0  
sGdv̂ph/dê 1s2 es

 5 lim
sS0

 
e 1Ahs3 1 Bhs2 1 Chs 1 Dh 2
Es4 1 Fs3 1 Gs2 1 Hs 1 I

 5
eDh

I
. (94)

It follows from Table 5 and Table 6 that dvph 1`2  does not 
depend on the location of p, that is, the value of 1,, h 2 . 

Next, the initial direction of the step response is given 
by the sign of 

dvph
1d2 1t0

12 5 lim
sS` 

s 3sddv̂ph 1s22 sd21dvph 1t0
12 2c2 dvph

1d212 1t0
124

 5 lim
sS` 

sd11dv̂ph 1s2
 5 lim

sS` 
sd11Gdv̂ph/dê 1s2 es

 5 esda Ahs3 1 Bhs2 1 Chs 1 Dh

Es4 1 Fs3 1 Gs2 1 Hs 1 I
b

 5 µ
eAh
E , if d 5 1, 1that is, Ah202 ,

eBh
E ,  if d 5 2, 1that is,  Ah50, Bh2 02 ,

eCh
E , if d 5 3, 1that is,  Ah5Bh50, Ch2 02 ,

eDh
E , if d 5 4, 1that is,  Ah5 Bh5 Ch5 0, Dh202 .

 (95)

Thus, for d 5 1, dvph 1t 2  exhibits initial undershoot if 
and only if dv

#
ph 1t0

1 2dvph 1` 2 5 AhDh/ 1EI 2 , 0; for d 5 2, 
dvph 1t 2  exhibits initial undershoot if and only if 
dv
$

ph 1t0
1 2 dvph 1` 2 5 BhDh / 1EI 2 , 0; for d 5 3, dvph 1t 2  exhib -

its initial undershoot if and only if dv
132
ph 1t0

1 2dvph 1`2 5 
ChDh/ 1EI 2 , 0; Furthermore, for d 5 4, dvph 1t 2  does not 
exhibit initial undershoot since dv142ph 1t0

1 2 dvph 1`25  
Dh

2/ 1EI 2$ 0. 
The following results follow from (90), (91), (94), and 

(95) along with Proposition S1. 

Proposition 3
Assume that h does not satisfy (90). Then the following 
statements hold: 

i)  The relative degree of Gdv̂ph/dê 1s2  is one, and thus 
Ah 2 0. 

ii)  dvph 1t 2  exhibits initial undershoot if and only if 
AhDh , 0. 

iii)  dvph 1t 2  exhibits initial undershoot if and only if 
Gdv̂ph/dê 1s2  has either exactly one or exactly three real 
nonminimum-phase zeros.

Proposition 4
Assume that h satisfies (90) and Bh 2 0. Then the following 
statements hold: 

i)  The relative degree of Gdv̂ph/dê 1s2  is two, and thus 
Ah 5 0. 

ii)  dvph 1t 2  exhibits initial undershoot if and only if 
BhDh , 0.

iii)  dvph 1t 2  exhibits initial undershoot if and only if  
Gdv̂ph/dê 1s2  has exactly one real nonminimum-phase 
zero.

The following result is a special case of propositions 2 
and 4, where we consider the response at the IACR. 

Proposition 5
Assume that 1,, h 2 5 1,IACR, hIACR 2 , Bv 2 0, and Bh 2 0. 
Then the following statements hold: 

i)  The relative degrees of Gdv̂pv/dê 1s2  and Gdv̂ph/dê 1s2  are 
two. Thus, Av 5 0 and Ah 5 0. 

ii)  dvpv 1t 2  exhibits initial undershoot if and only if 
BvDv , 0. 

iii)  dvph 1t 2  exhibits initial undershoot if and only if 
BhDh , 0. 

iv)  dvpv 1t 2  exhibits initial undershoot if and only if  
Gdv̂pv/dê 1s2  has exactly one real nonminimum-phase 
zero. 

v)  dvph 1t 2  exhibits initial undershoot if and only if  
Gdv̂ph/dê 1s2  has exactly one real nonminimum-phase 
zero.

BUSINESS JET EXAMPLE 
To illustrate the instantaneous acceleration center of rota-
tion, the initial slope of the vertical velocity and horizontal 
velocity, and vanishing zeros, we consider a business jet in 
cruise whose numerical data are given in Table 7, which is 
a reproduction of data provided in [18, p. 330]. 

For all expressions below, the units of , and h are 
feet. Using the data given in Table 7 as well as the 
expressions given in Table 5 and Table 6, and (51), (52), 
(53), and (57), the transfer functions from dê 1s 2  to û 1s 2 , 
dâ 1s 2 , and û 1s2  are 

Gû/dê 1s2
 5

2 378.85s2 1 2.72e5s 1 2.40e5
675.99 1s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068 2   ft/(s-rad),

 Gdâ/dê 1s2 5
42.20s3 1 11939.02s2 1 88.5773s 1 79.30

675.99 1s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068 2 , 
 Gû /dê 1s2 5

2 11930.17s2 2 7652.06s 2 78.52
675.99 1s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068 2 .

Furthermore, the transfer functions from dê 1s 2  to dv̂pv and 
dv̂ph are shown in (96) and (97), found at the bottom of the 
next page. Next, with U0 5 675.12 ft/s, Aa 5 242.20 1/s, 
Au 5 0 m/s2, E 5 675.99 1/s, e 5 1 deg-s 5 0.017 rad-s, and 
Au 5 11930.17 1/s2, it follows from (83) and (84) that 

 ,IACR < 2
1675.12 2 142.20 2

11930.17
 ft 5 2 2.3881 ft, 

 hIACR < 2
0

11930.17
 ft 5 0 ft.
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Next, using (96), the initial vertical-velocity slope 
response due to the 1-deg elevator step deflection de 1t 2 510.017 21 1t 2 t0

1 2  is given by 

 dv
#
pv 1t0

1 2 5 42.15 1 17.65,.

It follows that, at ,5 ,IACR, dv
#
pv 1t0

1 2 5 0, and the number of 
zeros of the transfer function Gdv̂pv/dê 1s2  decreases from three 
to two. 

Likewise, using (97), the initial horizontal-velocity slope 
response due to the 1-deg step elevator deflection 
de 1t 2 5 10.017 21 1t 2 t0

1 2  is given by 

 dv
#
ph 1t0

1 2 5 17.65h.

It follows that h 5 hIACR, dv
#
ph 1t0

1 2 5 0, and the number of 
zeros of the transfer function Gdv̂ph/dê 1s2  decreases from 
three to two. 

To demonstrate the initial vertical-velocity perturba-
tion dvpv and initial horizontal-velocity perturbation dvph 
forward and aft of the IACR, we simulate dvpv and 
dvph with the 1-deg elevator step deflection 
de 1t 2 5 10.017 21 1t 2 t0

1 2  for several values of , and h. 
Figure 2 shows that, for ,5 220 ft, dvpv experiences ini-
tial undershoot, whereas, for h 5 20 ft, dvph experiences 
initial undershoot, as defined in [1] and “Initial Under-
shoot.” This initial undershoot is a consequence of the 
fact that, for all , , ,IACR, the transfer function Gdv̂pv/dê 1s2  
has one nonminimum-phase zero, while, for all h . hIACR, 
the transfer function Gdv̂ph/dê 1s2  has one nonminimum-
phase zero. On the other hand, for all , . ,IACR, the ini-
tial slope dv

#
pv 1012  is in the direction of the asymptotic 

vertical velocity, while, for all h , hIACR, the initial slope 
dv
#
ph 1012  is in the direction of the asymptotic horizontal 

velocity. Finally, for ,5 ,IACR, the initial slope dv
#
pv 1012  is 

zero, and, for h 5 hIACR, the initial slope dv
#
ph 1012  is zero. 

Note that, at pIACR, the initial slopes of both dv
#
pv 1012  and 

dv
#
pv 1012  are zero, as a consequence of the definition of 

the IACR. Simulations over a longer time interval are 
shown in Figure 3. 

Next, we apply the Routh test to determine the loca-
tions of the poles and zeros of (96); for details, see “Routh 
Test for Third- and Fourth-Order Polynomials.” Follow-
ing the same procedure for the horizontal-velocity per-
turbation transfer function (97) yields similar r esults. 
Thus, we analyze the vertical-velocity perturbation 
transfer function (96) as an example. Writing the denomi-
nator of (96) as p 1s 2 , where p 1s 2 5 s4 1 a3s

3 1 a2s
2 1 a1s 1 a0 

is defined by 

 p 1s 2 5 s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068, 

it follows that 

 a1a2a3 2 a0a3
2 2 a1

2 5 1.2353 1/s6 . 0,

where the units 1/s6 reflect the assumption that the leading 
coefficient of the monic polynomial p(s) is dimensionless. 
Consequently, all of the poles of Gdv̂pv/dê 1s2  are in the open 
left-half plane (OLHP). 

To determine the zeros of the transfer function from the 
elevator deflection dê 1s 2  to the vertical-velocity perturba-
tion dv̂pv 1s 2 , we apply the Routh test to the numerator of 
(96). Defining the polynomial q 1s 2 5 s3 1 a2s

2 1 a1s 1 a0 by 

 Gdv̂pv/dê 1s2 5
142.15 1 17.65, 2s3 1 123854.0 1 11.3, 2s2 1 17740.6 1 0.1, 2s 1 157.2

s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068
 ft/ 1s-rad2  (96)

 Gdv̂ph/dê 1s2 5 2
17.65hs3 1 111.32h 2 0.56 2s2 2 1402.4 2 0.12h 2s 1 355.0

s4 1 2.01s3 1 8.05s2 1 0.085s 1 0.068
 ft/ 1s-rad2  (97)

TABLE 7 Stability parameter values. These data for a 
 business jet are given in [18, p. 330].

Stability Parameter Value Units 

Q0 0.0000 rad

U0 400.0000 kt

Xu0
20.0074 1/s 

XTu0
0.0000 1/s

Xa0
8.9782 ft-rad/s2

Xde0
0.0000 ft-rad/s2

Zu0 0.1390 1/s

Za0 2445.7224 ft-rad/s2 

Za
#

0
20.8705 ft-rad/s

Zq0
21.8598 ft-rad/s

Zde0
242.1968 ft-rad/s2

Mu0
0.0011 rad/ft-s

MTu0 20.0002 1/ft-s 

Ma0
27.4416 1/s2 

MTa0

0.0000 1/s2

Ma
#

0
20.4062 1/s

Mq0 20.9397 1/s 

Mde0
2 17.6737 1/s2 
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q 1s 2 ! s31
177307 1 84.13,
313.3 1 131.2,

 s21
57535.6 1 0.8608,

313.3 1 131.2,
 s 

 1
1168.6

313.3 1 131.2,
, 

it follows that 

 a1a2 2 a0 5 a57535.6 1 0.8608,
313.3 1 131.2,

b a177307 1 84.13,
313.3 1 131.2,

b
 2

1168.6
313.3 1 131.2,

 5
g 1, 21313.3 1 131.2, 2 10.11,1 0.27 2   ft/s,  (98)

where g 1, 2 ! ,2 1 457.36,1 0.88 ft2. For , . ,IACR, it fol-
lows that 313.3 1 131.2,, 0.11,1 0.27, and g 1, 2  are positive, 
and thus (98) is positive. Therefore, for all , . ,IACR, all of 
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FIGURE 2 The response of the vertical-velocity perturbation dvpv 1 t 2  and the horizontal-velocity perturbation dvph 1 t 2  of a typical business 
jet to the 1-deg elevator step deflection de 1 t 2 5 0.0171 1 t 2 t0 2 at t0 5 0 based on the data given in [18]. In (a) and (b), for , , ,IACR 5 2 2.388 ft 
and h [ R, where ,IACR is the component of rYpIACR /c along k̂AC. the transfer function Gdv̂pv /dê 1s2  has one positive zero. For ,5 ,IACR and all 
h [ R, the initial slope of the vertical-velocity perturbation is zero, that is, the vertical-acceleration perturbation at t0

1 is zero. In (c) and 
(d), for , [ R and h . hIACR 5 0 ft, where hIACR is the component of rYpIACR /c along îAC , the transfer function Gdv̂ph/dê 1s2  has one positive zero. 
For , [ R and h 5 hIACR, the initial slope of the horizontal-velocity perturbation is zero, that is, the horizontal-acceleration perturbation 
is zero at t0

1, which indicates that 1,, h 2 5 1,IACR, hIACR 2  is the location of the IACR. This point is characterized by the vanishing zero, 
which, because of the increase in relative degree, yields zero initial velocity-perturbation slopes in both directions îAC and k̂AC. Figure 3 
shows the same simulations over a longer time interval.

All three roots of the cubic polynomial of p 1s 2 5 s3 1

a2s2 1 a1s 1 a0 are in the open left-half plane (OLHP) 

if and only if 

 a0, a1, a2 . 0

and 

a0 , a1a 2.

All four roots of the quartic polynomial p 1s 2 5 s4 1

a3s
3 1 a2s

2 1 a1s 1 a0 are in the OLHP if and only if 

 a0, a1, a2, a3 . 0

and 

 a0a3
2 1 a1

2 , a1a2a3.

Routh Test for Third- and 
Fourth-Order Polynomials 
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the roots of q 1s 2  are in the OLHP. On the other hand, for all 
, , ,IACR, one zero of Gdv̂pv/dê 1s2  is in the ORHP and two 
zeros are in the OLHP. This result follows from the first row 
of the Routh table, where one sign change appears. 

Figure 4 shows that a real zero approaches ` as , 
increas es toward ,IACR, whereas a real zero approaches 2 ` 
as , decreases toward ,IACR. This zero thus vanishes at the 
IACR. For , [ 3225, 25 4 ft, Figure 5 shows the locations of 
the two remaining zeros of Gdv̂pv/dê 1s2 , which are real and do 
not vanish at the IACR. 

For the horizontal-velocity perturbation dvph, Figure 
6(a) and (b) shows that, as h increases toward hIACR, one 
zero approaches 2`, one zero approaches 717.7 rad/s, 
and the remaining zero approaches 0.88 rad/s. Figure 
6(c) and (d) shows that, as h decreases toward hIACR, one 
zero approaches `, one zero approaches 717.7 rad/s, and 
the remaining zero approaches 0.88 rad/s. In Figure 6, 
(b) and (d) are zoom-in views near the origins of (a) and 
(c), respectively. 

CONCLUSIONS 
In this article, we used transfer function techniques to ana-
lyze the response of an aircraft to an elevator step deflec-
tion. We showed that the aircraft’s initial response to an 
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FIGURE 3 The responses of the vertical-velocity perturbation dvpv 1 t 2 , the vertical-acceleration perturbation dv
#
pv 1t 2 , the horizontal-velocity per-

turbation dvph 1t 2 , and the horizontal-acceleration perturbation dv
#
ph 1t 2  of a typical business jet to the 1-deg elevator step deflection 

de 1 t 2 5 0.0171 1 t 2 t0
1 2  at t0 5 0 based on the aircraft parameters given in [18]. The asymptotic values are denoted by the dotted lines. Note 

that, for all values of 1,, h 2 , the poles in (96) and (97) are close to the imaginary axis. Thus, dvpv 1 t 2 , dv
#
pv 1 t 2 , dvph 1 t 2 , and dv

#
ph 1t 2  reach their 

asymptotic values slowly. As shown in Figure 2, the initial curvatures of dvpv 1 t 2  and dvph 1 t 2  are different for different values of 1,, h 2 . However, 
for all values of 1,, h 2 , the vertical-velocity perturbation and the horizontal-velocity perturbation approach nonzero constants, while both accel-
eration perturbations approach zero. Note that, due to the magnitude of the transients, the traces in each plot are indistinguishable.
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FIGURE 4 The real zero of a business jet based on data given in 
[18]. This plot shows the location of one of the real zeros of the 
numerator of the transfer function Gdv̂pv /dê 1s2  from the elevator input 
de to the vertical velocity dvpv of the aircraft at p as a function of the 
component , of the location of p along the direction k̂AC. Note that 
negative values of , correspond to locations of p aft of the air-
craft’s center of mass, that is, toward the tail of the aircraft. As , is 
increased from 225 ft to ,IACR 5 22.3 ft, the zero moves along the 
real axis from 59.383 rad/s to `. This zero vanishes at ,IACR. As , 
is increased from ,IACR to 25 ft, the zero reappears at 2` and 
moves along the real axis to 249.606 rad/s. Figure 5 shows the 
locations of the remaining real zeros. 
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elevator step command is characterized by the IACR, which 
is the point at which the acceleration relative to OAC with 
respect to FE is zero. This point, which depends on the iner-
tia and aerodynamics of the aircraft, is determined by 

deriving the linearized longitudinal equations of motion 
and evaluating the location of the IACR to first order. The 
initial vertical-velocity and horizontal-velocity response at 
the IACR to an elevator step deflection corresponds to an 
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increase in relative degree of the associated transfer func-
tions at the IACR. This increase in relative degree reflects, 
in turn, the fact that zeros vanish at the IACR. 
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The initial vertical-velocity and horizontal-velocity response at the IACR to an 

elevator step deflection corresponds to an increase in relative degree of the 

associated transfer functions at the IACR. This increase in relative degree 

reflects, in turn, the fact that zeros vanish at the IACR. 
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