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In this paper we introduce new lower and upper robust stability bounds for struc-
tured uncertainty involving arbitrary spatial norms. Speci® cally, we consider a
norm-bounded block-structured uncertainty characterization wherein the de® ning
spatial norm is not necessarily the maximum singular value. This new uncertainty
characterization leads to the notion of structured matrix norms for characterizing
the allowable size of the nominal transfer function for robust stability. The lower
and upper bounds are specialized to speci® c matrix norms including HoÈ lder, uni-
tarily invariant, and induced norms to provide conditions for robust stability with
several di� erent characterizations of plant uncertainty. One of the key advantages
of the proposed approach over the structured singular value is the reduction is
computational complexity gained by directly addressing a given uncertainty char-
acterization without having to transform it to a spectral-norm type characteriza-
tion. Finally, we introduce a performance block within the structured matrix norm
framework to address robust performance in the face of structured uncertainty.

Nomenclature

R , C real numbers, complex numbers
R ń m, C ń m n ´ m real matrices, n ´ m complex matrices
xi ith entry of x
i ´ i , ||| ´||| vector or matrix norm, vector or matrix operator norm
i xi 2 Euclidian norm of vector x (= ê ê ê ê ê ê ê êx*xÏ )
A* Complex conjugate transpose of A
det A,trA determinant of A, trace of A
s i (A) ith singular value of A
s max (A) maximum singular value of A
i Ai F Frobenius norm of A (= (trAA*)1 /2)
spec (A) spectrum of A
q (A), q R(A) spectral radius of A, real spectral radius of A
A(i,j) (i,j)th entry of A
rowi (A),coli (A) ith row of A, ith column of A
Eij elementary matrix with unity in the (i, j) position and zeros else-

where
i Ai p [å m

i=1 å n
j=1 |A(i,j) |p]1 /p,1 £ p < ¥

0020-7179/98 $12.00 Ñ 1998 Taylor & Francis Ltd.

INT. J. CONTROL, 1998, VOL. 71, NO. 4, 535± 557

Received 30 January 1998.
² School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-

0150, USA.
³ Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI

48109-2118, USA.
§e-mail: wm.haddad@aerospace.gatech.edu (corresponding author).



i Ai ¥ maxi,j |A(i,j) |
i Ai s p [å r

i=1 s p
i (A)]1 /p, 1 £ p < ¥ , r = rankA

i Ai s ¥ s max (A)
A £ £ B(<< B) A(i,j) £ B(i,j) (A(i,j) < B(i,j) ) for all i and j, where A and B are real

matrices of the same size
A Ä B Kronecker product of A and B
Hn

¥ Hardy space of n ´ 1 functions bounded on the imaginary axis
with analytic continuation into the right half plane

1. Introduction

The ability to address block-structured uncertainty is essential for reducing con-
servatism in the analysis and synthesis of control systems involving robust stability
and performance objectives. Accordingly, the structured singular value provides a
generalization of the spectral (maximum singular value) norm to permit small-gain-
type analysis of systems involving block-structured uncertainty (Fan et al. 1991,
Packard and Doyle 1993). The role of the structured singular value in robust analysis
can readily be understood by observing that bounds on the structured singular value
prevent the multivariable Nyquist plot of the loop gain from encircling the critical
point when the uncertainty has a norm-bounded block-diagonal structure (Bernstein
et al. 1995, Haddad et al. 1996).

For block-structured uncertainty with non-spectral norm characterization, a
robustness theory has been developed by Chen and Nett (1992) wherein the uncer-
tainty is bounded by equi-induced HoÈ lder norms and robust stability bounds are
developed in terms of the Perron root of matrix majorants and interaction par-
ameters. Robustness theory for block-structured uncertainty has also been developed
in the context of operator norms. In particular, block-structured extensions of small-
gain theory have been developed in °p theory (Khammash and Pearson 1993, Young
and Dahleh 1995).

In the present paper we derive structured-singular-value-type robustness con-
ditions involving arbitrary spatial norms. In particular, we consider norm-bounded,
block-structured uncertainty for which the de® ning norm is not necessarily the maxi-
mum singular value. This generalization of the structured singular value leads to the
notion of structured matrix norms for characterizing the size of the nominal transfer
function. Structured matrix norms thus include the structured singular value as a
special case.

The usefulness of structured matrix norms lies in their ability to characterize
plant uncertainty that is not consistent with the geometry of singular value bounds.
For example, an uncertain matrix block whose entries have independently bounded
magnitudes or whose entries satisfy a bound on the sum of their absolute values can
be directly characterized by an appropriate matrix norm, but can only be conserva-
tively bounded by the spectral norm. For block-structured uncertainty with non-
spectral norm characterization, structured matrix norms thus provide a useful exten-
sion of the structured singular value.

Since all norms de® ned on ® nite-dimensional spaces are equivalent (Horn and
Johnson 1985, Stewart and Sun 1990), it follows that robust stability guarantees
obtained via the standard small-¹ theorem for system uncertainties bounded by
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the spectral norm can be used to obtain robust stability guarantees for system
uncertainties bounded by arbitrary norms. However, these bounds are conservative
for the given uncertainty characterization, and thus the resulting robust stability
guarantees are su� cient but not necessary. Hence, this framework is useful for
reducing the conservatismof robust stability predictions for systems involving uncer-
tainties bounded by arbitrary norms.

A practical advantage of structured matrix norms over the structured singular
value is the reduction in computational complexity gained by directly addressing a
given uncertainty characterization without having to transform it to a spectral-norm
type characterization. In particular, to apply structured singular value analysis to
systems with multiple sources of uncertainty, system uncertainty is typically recast
into a block-diagonal structure and robust stability guarantees are computed with
respect to this uncertainty structure. However, as pointed out by Chen et al.
(1996a,b) the conversion of a given uncertainty characterization into a block-diag-
onal characterization amenable to structured singular value analysis can increase the
problem size and thus the computational complexity. Alternatively, structured
matrix norms do not require that system uncertainty be recast into a block-diagonal
structure. Speci® cally, structured matrix norms permit nonzero o� -diagonal sub-
blocks with each subblock perturbed independently. This feature is demonstrated
in Example 1.

The paper begins with several de® nitions concerning submultiplicative matrix
norms, induced norms, and equi-induced norms. A useful reference on this topic
is Stewart and Sun (1990), which provides numerous relevant results. Next, we turn
our attention in §3 to the de® nition of the structured matrix norm. This de® nition is
then used in Theorem 1 where necessary and su� cient conditions for robust stability
are given in terms of the structured matrix norm. This result is then followed by the
development of lower and upper bounds for the structured matrix norm. In §5 these
bounds are specialized to speci® c matrix norms to provide conditions for robust
stability in terms of several di� erent characterizations of plant uncertainty. In §6
we extend the results of the previous sections to block-norm uncertainty where the
size of the uncertain blocks is characterized by di� erent spatial norms. In §7, as in
the structured singular value framework, we introduce a performance block within
the structured matrix norm framework to address robust performance in the face of
structured uncertainty. Section 8 considers several numerical examples and compares
the proposed bounds to the structured singular value bounds. Finally, we draw some
conclusions in §9.

2. Mathematical preliminaries

In this section we give several de® nitions and lemmas concerning matrix norms
(Stewart and Sun 1990). Let i ´ i Â Â , i ´ i Â , i ´ i denote matrix norms on C l ´ n, C l ´ m,
and C m ´ n, respectively. We say ( i ´ i Â Â , i ´ i Â , i ´ i ) is a submultiplicative triple of
matrix norms if i ABi Â Â £ i Ai Â i Bi , for all A Î C l ´ m and B Î C ḿ n. Furthermore,
if l = m = n and ( i ´ i , i ´ i , i ´ i ) is a submultiplicative triple of matrix norms, then
i ´ i is said to be submultiplicative. A matrix norm i ´ i on C m ´ n is unitarily invariant
if i UAV i = i Ai for all A Î C ḿ n and for all unitary matrices U Î C ḿ m and
V Î C ń n. Furthermore, a unitarily invariant matrix norm i ´ i on C ḿ n is normal-
ized if i Ai = s max (A) for all rank-one matrices A Î C ḿ n.
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Next, let i ´ i Â and i ´ i Â Â denote vector norms of C m and C n, respectively. Then
i ´ i : C ń m ® R de® ned by i Ai 7 maxi xi Â =1 i Axi Â Â is the matrix norm induced by
i ´ i Â and i ´ i Â Â . If m = n and i ´ i Â = i ´ i Â Â , then i ´ i is an equi-induced norm. If
i ´ i Â = i ´ i p and i ´ i Â Â = i ´ i q, where p,q Î [1, ¥ ], then the resulting induced
matrix norm on C ń m is denoted by i ´ i q,p.

Finally, consider a partitioned matrix A Î C m ´ m such that A =
[Aij], i,j = 1,. . . ,r, where Aij Î C mi ´ mj and å r

i=1 mi = m. Then the block-norm matrix
of A is the matrix [i Aij i (i,j) ] Î R ŕ r whose (i, j)th entry is i Aij i (i,j) , where i ´ i (i,j) is a
speci® ed matrix norm on C mi ´ mj . For convenience we write i ´ i (i) for i ´ i (i,j) .
Furthermore, if i ´ i (i,j) = i ´ i Â , i,j = 1,. . . ,r, where i ´ i Â is a matrix norm of
C mi ´ mj , then [ i Aij i (i,j) ] is denoted by [i Aij i Â ].

The following lemmas are needed for developing robustness bounds in later
sections.

Lemma 1: Let 1 £ p £ ¥ and 1 £ q £ ¥ be such that 1/p + 1/q = 1 and let
A Î C ḿ n. Then

i Ai p,q £ i Ai p (1)

Proof: First, suppose p = ¥ and q = 1. Then for all x Î C n it follows that

i Axi ¥ = max
i=1,...,m å

n

j=1
A(i,j)xj

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

£ max
i=1,...,m å

n

j=1
|A(i,j) i xj| £ i Ai ¥ i xi 1

Next, suppose 1 £ p < ¥ . Then for all x Î C n it follows from HoÈ lder’s inequality
that

i Axi p = å
m

i=1
|rowi (A)x|p[ ]

1/p

£ å
m

i=1
i rowi (A) i p

p i xi p
q[ ]

1 /p

= å
m

i=1
å

n

j=1
|A(i,j) |p[ ]

1 /p

i xi q = i Ai p i xi q

which implies that i Ai p,q £ i Ai p. h

Remark 1: In several special cases (1) is an equality. For example, if p = ¥ and
q = 1 then i Ai ¥ ,1 = i Ai ¥ for all A Î C ḿ n (Kahan 1966). Alternatively, if p = 1,
q = ¥ , and A has all nonnegative entries, then i Ai 1 = i Axi 1 /i xi ¥ , where
x = [1,1,. . . ,1]T, and hence i Ai 1,¥ = i Ai 1.

Lemma 2: Let i ´ i be a unitarily invariant matrix norm on C m ´ n and let
A Î C ḿ n. Then s max (A) i E11 i £ i Ai .

Proof: If A = 0 the result is immediate. Next, let A /= 0 and note that E11 is a
rank-one matrix. Hence s max ( s max (A)E11) = s max (A) is the only non-zero singular
value of s max (A)E11. The result is now a direct consequence of Theorem II.3.7 of
Stewart and Sun (1990). h
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Corollary 1 (Stewart and Sun 1990, p. 80): Let i ´ i be a normalized untarily in-
variant matrix norm on C m ´ n and let A Î C ḿ n. Then s max (A) £ i Ai .

Lemma 3 (Stewart and Sun 1990, p. 68): Let i ´ i , i ´ i Â , and i ´ i Â Â denote vector
norms on C m. Let i ´ i Â Â Â Â Â be induced by i ´ i and i ´ i Â Â , let i ´ i Â Â Â Â be induced by
i ´ i Â and i ´ i Â Â , and let i ´ i Â Â Â be induced by i ´ i and i ´ i Â . Then
( i ´ i Â Â Â Â Â , i ´ i Â Â Â Â , i ´ i Â Â Â ) is a submultiplicative triple.

Corollary 2: Every equi-induced matrix norm is submultiplicative.

Remark 2: If we set i ´ i = i ´ i Â Â = i ´ i q and i ´ i Â = i ´ i p, where 1 £ p £ ¥
and 1 £ q £ ¥ in Lemma 3 then it follows from Lemma 3 that
( i ´ i q,q, i ´ i q,p, i ´ i p,q) is a submultiplicative triple. Furthermore, if (1/p) + (1/q) =
1 it follows from Lemma 1 that

i ABi q,q £ i Ai q,p i Bi p,q £ i Ai q i Bi p

which implies that ( i ´ i q,q, i ´ i q, i ´ i p) is a submultiplicative triple.

Lemma 4: Let i ´ i be a matrix norm on C m ´ m and de® ne the matrix norm i ´ i Â
on C ḿ m by i ´ i Â 7 k i ´ i , where k ³ max{ i ABi : A,B Î C ḿ m, i Ai £ 1,
i Bi £ 1} . Then i ´ i Â is submultiplicative on C m ´ m.

Proof: Since

k ³ max{ i ABi : A,B Î C m ´ m, i Ai £ 1, i Bi £ 1}

= max i ABi
i Ai i Bi

: A,B Î C m ´ m,A,B /= 0{ } ,

it follows that if A,B Î C m ´ m, then i ABi £ ki Ai i Bi , and hence
ki ABi £ k2 i Ai i Bi , which shows that ki ´ i is submultiplicative on C ḿ m. h

Remark 3: Note that if i ´ i is submultiplicative on C m ´ m then
max{ i ABi : A,B Î C ḿ m, i Ai £ 1, i Bi £ 1} £ 1. Hence, ki ´ i is submultiplica-
tive for all k ³ 1. Furthermore, it can be shown that max{ i ABi ¥ : A,B Î C ḿ m,
i Ai ¥ £ 1, i Ai ¥ £ 1, i Bi ¥ £ 1} = m and hence mi ´ i ¥ is submultiplicative on
C ḿ m.

Lemma 5 (Horn and Johnson 1985, p. 491): Let A,B Î R m ´ m. If 0 £ £ A £ £ B,
then q (A) £ q (B) .
Lemma 6 (Ostrowski 1975): Let A Î C m ´ m be partitioned such that
A = [Aij], i,j = 1,. . . ,r, where Aij Î C mi ´ mj and å r

i=1 mi = m, and let i ´ i be a sub-
multiplicative matrix norm on C mi ´ mj . Then q (A) £ q ([ i Aij i ]) .

The following well-known specialization of Lemma 2.6 is given by Stewart and
Sun (1990).
Corollary 3: Let i ´ i be a submultiplicative matrix norm on C ḿ m. If A Î C ḿ m

then q (A) £ i Ai .

3. Necessary and su� cient condition for robust stability

In this section, we give a generalization of the structured singular value (Packard
and Doyle 1993) and provide necessary and su� cient conditions for robust stability.
First, we consider a nominal square transfer function G(s) Î C m ´ m in a negative
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feedback interconnection with an uncertain complex square matrix D Î C m ´ m as
shown in ® gure 1. The matrix D belongs to the set D Í C m ´ m of block-diagonal
matrices de® ned by

D 7 { D Î C ḿ m : D = block-diag(Il1 Ä D 1,Il2 Ä D 2,. . . ,Ilr+c Ä D r+c),
D i Î R mi ´ mi ,i = 1,. . . ,r; D i Î C mi ´ mi, i = r + 1,. . . ,r + c}

where the dimension mi and the number of repetitions li of each block are given, and
r + c ³ 1. We refer to the case r = 0 as complex, r,c > 0 as mixed, and r = 0, c = 1,
l1 = 1 as single full complex block.

Now, let i ´ i denote a matrix norm on C ḿ m and for G Î C ḿ m de® ne the
structured matrix norm t (G) by

t (G) 7 min
D Î D

{ i D i : det [I + GD ] = 0}( ) - 1

(2)

and if det [I + GD ] /= 0 for all D Î D , then t (G) 7 0. To show that `min’ in (2) is
attained let b > 0 and de® ne the closed set 8 b 7 { D Î D : i D i £ b ,
det [I + GD ] = 0} . Note that if, for all b > 0, 8 b is empty then, by de® nition,
t (G) = 0. Alternatively, if 8 b is non-empty then if follows that 8 b is compact.
Hence it follows from the continuity of i ´ i that the min{ i D i : D Î 8 b } exists
which implies that t (G) is well de® ned. Furthermore, for g > 0, de® ne the set of
norm-bounded, block-diagonal uncertain matrices D g by

D g 7 { D Î D : i D i £ g - 1}

Henceforth throughout the paper the notation i ´ i denotes the matrix norm appear-
ing in the de® nitions of t (G) and D g .

Next we present a necessary and su� cient condition for robust stability of the
feedback interconnection of G(s) and D for all D Î D g . We assume that the feedback
interconnection of G(s) and D is well posed (Zhou et al. 1996, p. 119), that is,
det [I + G( ¥ ) D ] /= 0 for all D Î D g .
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Theorem 1: Let g > 0 and suppose G(s) is asymptotically stable. Then the negative
feedback interconnection of G(s) and D is asymptotically stable for all D Î D g if
and only if t (G(jx )) < g for all x Î R .

Proof: Let

G(s) ~
A B
C D[ ]

where A is Hurwitz, and suppose the negative feedback interconnection of G(s) and
D given by

(I + G(s) D )- 1G(s) ~
A - BD (I + DD )- 1C

(I + DD )- 1C
B - BD (I + DD )- 1D

(I + DD )- 1D[ ]
is asymptotically stable for all D Î D g . Next, note that, for all D Î D g and x Î R ,

det [I + G(jx ) D ] = det [I + (C(jx I - A)- 1B + D) D ]
= det (I + DD ) det [I + (jx I - A)- 1BD (I + DD )- 1C]
= det (I + DD ) det (jx I - A)- 1 det [jx I - (A - BD (I + DD )- 1C)]
/= 0

Hence, minD Î D { i D i : det [I + G(jx ) D ] = 0} > 1/g for all x Î R which implies that
t (G(jx )) < g for all x Î R .

Conversely, suppose t (G(jx )) < g for all x Î R and assume that

G(s) ~
A B
C D[ ]

is minimal. Then, by assumption, det [I + G( ¥ ) D ] = det [I + DD ] /= 0 for all
D Î D g . Now, suppose there exists D Î D g such that (I + G(s) D )- 1G(s) is not
asymptotically stable and hence A - BD (I + DD )- 1C is not Hurwitz. Since G(s) is
assumed to be asymptotically stable it follows that A is Hurwitz and thus there exists
e Î (0,1) such that A - e BD (I + e DD )- 1C has an imaginary eigenvalue j ^x . Hence,

det [I + e G(j ^x ) D ] = det (I + e DD ) det (j ^x I - A)- 1 det [j ^x I- (A- e BD (I + e DD )- 1C) ]
= 0

However, since e D Î D g and t (G(jx )) < g or, equivalently, minD Î D { i D i :

det [I + GD ] = 0} > 1/g for all x Î R , it follows that det [I + e G(j ^x ) D ] /= 0, which
is a contradiction. h

Remark 4: If r = 0 and i ´ i is either a HoÈ lder norm (p-norm) or a normalized
unitarily invariant norm then, using a similar construction given in Theorem 11.8
of Zhou et al. (1996), Theorem 1 can be extended to the case in which D is a real
rational stable matrix transfer function. Extensions to more general norms is a
subject of current research.

Finally, the following proposition provides an ordering between di� erent struc-
tured matrix norms
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Proposition 1: Let G Î C ḿ m and let i ´ i Â and i ´ i Â Â denote matrix norms on
C ḿ m. Assume that there exists D Î D such that det [I + GD ] = 0 and let k1,k2 > 0
satisfy

k1 i D i Â £ i D i Â Â < k2 i D i Â (3)

for all D Î D such that det Ç[I + GD ] = 0. Furthermore, let t Â (G) and vÂ Â (G) denote the
structured matrix norms with de® ning norms i ´ i Â and i ´ i Â Â , respectively. Then

k1 t Â Â (G) £ t Â (G) £ k2 t Â Â (G) (4)

Proof: The existence of k1 and k2 satisfying (3) follows from the equivalence of
matrix norms (Stewart and Sun 1990, p. 65). Now, it follows from (3) that

k1 min
D Î c i D i Â £ min

D Î c i D i Â Â £ k2 min
D Î c i D i Â

where c 7 { D Î D : det [I + GD ] = 0}, which implies (4). h

Remark 5: Proposition 1 can be used to construct upper bounds for structured
matrix norms in terms of alternative structured matrix norms.

The results of Theorem 1 cannot be obtained from the standard small-¹ theorem
by using the equivalence of matrix norms, that is, the fact that for an arbitrary pair
of matrix norms i ´ i , i ´ i Â on C ḿ n such that i ´ i /= i ´ i Â there exist k1,k2 > 0 such
that k1 i Ai £ i Ai Â £ k2 i Ai for all A Î C ḿ n (Stewart and Sun 1990). (Henceforth
we assume that k1,k2 such that equality is achieved for some A Î C m ´ n.) Speci® cally,
using the necessary and su� cient conditions of the standard small-¹ theorem for
robust stability we can obtain su� cient but not necessary conditions for robust
stability for the same system with uncertainty bounded by an arbitrary matrix
norm i ´ i /= s max ( )́ . To see this, let i ´ i be an equi-induced HoÈ lder norm on
C ḿ m such that i ´ i /= s max ( )́ . In this case there exist k1,k2 > 0 such that
k1 < 1 < k2 and k1 i Ai £ s max (A) £ k2 i Ai for all A Î C ḿ m. Now for g > 0 it
can be shown that D k2 g Í { D Î D : s max (D ) £ g - 1} Í D k1 g . Next, let G be such
that k1¹ (G) = t (G) where ¹(G) denotes the structured singular values. Then it fol-
lows from the standard small-¹ theorem that det [I + GD ] /= 0 for all
D Î { D Î D : s max (D ) < g - 1} which implies that det [I + GD ] /= 0 for all D Î D k2 g .
Furthermore, it follows from Theorem 1 that det [I + GD ] /= 0 for all D Î D k1 g .
Hence, since D k2 g Í D k1 g the robust stability predictions via the equivalence of
matrix norms may be conservative.

As an illustration of the above discussion let b > 0, consider the constant matrix

G = b - 1 1 0
0 0[ ]

and let g > 0 be the maximum allowable uncertainty such that det (I + GD ) /= 0 for
all D Î { D Î C 2́ 2 : i D i ¥ < g } , where i D i ¥ 7 maxi,j=1,2 |D (i,j) |. Since
s max (G) = b - 1, it follows from the small-¹ theorem or, equivalently, in this case the
small gain theorem, that det (I + GD ) /= 0 for all D Î { D Î C 2́ 2 : s max (D ) < b } .
Using the equivalence of matrix norms we have i D i ¥ £ s max (D ) £ 2i D i ¥ .
Hence, the largest value of g that can be guaranteed by the small-¹ theorem
to satisfy det (I + GD ) /= 0 for all D Î { D Î C 2́ 2 : i D i ¥ < g } is b /2. How-
ever, a direct computation yields that det (I + GD ) /= 0 for all
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D Î { D Î C 2́ 2 : i D i ¥ < b } . Thus the robust stability prediction of the structured
singular value is conservative by a factor of two.

Although, as shown by Proposition 1, one can use standard mixed-¹ upper
bounds (Fan et al. 1991, Haddad et al. 1996) to compute upper bounds for struc-
tured matrix norms involving mixed real and complex uncertainty, as noted above,
these upper bounds may be conservative. In the next section we construct alternative
lower and upper bounds for structured matrix norms.

4. Lower and upper bounds for the structured matrix norm

In this section we provide lower and upper bounds for the structured matrix norm.

4.1. A lower bound for the structured matrix norm
In order to develop a lower bound for t (G) de® ne the real spectral radius q R(G)

by (Young et al. 1991)

q R(G) 7 max{ |̧ | : ¸ Î spec (G) ´ R },
0,

if spec (G) ´ R /= [
otherwise{

Theorem 2: Let G Î C ḿ m. Then
q R(G)
i I i £ t (G) (5)

Furthermore, if r = 0, then
q R(G)
i Ii £

q (G)
i I i £ t (G) (6)

Proof: The result (5) is immediate if q R(G) = 0. Now, suppose q R(G) > 0. In this
case, it follows that either q R(G) or - q R(G) is an eigenvalue of G. Hence either
det [I + q - 1

R (G)G] = 0 or det [I - q - 1
R (G)G] = 0. Next, since q - 1

R (G)I Î D , it follows
that

min
D Î D

{ i D i : det [I + GD ] = 0} £ i I i
q R(G)

which implies (5). Next, (6) is immediate if q (G) = 0. Now, suppose q (G) > 0 and let
¸ Î spec(G) be such that |̧ | = q (G) . Then det [I - -̧ 1G] = 0 and, since r = 0,
-̧ 1I Î D . Now it follows that

min
D Î D

{ i D i : det [I + GD ] = 0} £ i I i
q (G)

which implies (6). h

The following corollaries are immediate.

Corollary 4: Let G Î C ḿ m and suppose i I i = 1. Then q R(G) £ t (G) . Further-
more, if r = 0 then q (G) £ t (G) .
Remark 6: Note that if i ´ i is an equi-induced matrix norm then i I i = 1. How-
ever, i I i ¥ = 1 although i ´ i ¥ is not submultiplicative and thus is not equi-
induced.
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Corollary 5 (Young et al. 1991): Let G Î C m ´ m and suppose i ´ i = s max ( )́ . Then
q R(G) £ ¹(G) . Furthermore, if r = 0 then q (G) £ ¹ (G) .

4.2. Upper bounds for the structured matrix norm
In this subsection we provide several upper bounds for t (G) . First, we present

su� cient conditions (which are also necessary if r = 0) for a constant g ³ 0 to
provide an upper bound for the structured matrix norm. The following lemmas
are needed.

Lemma 7: Let G Î C m ´ m and g ³ 0. If q (GD ) £ g i D i for all D Î D then
t (G) £ g .

Proof: Note that if g = 0 then q (GD ) = 0 for all D Î D which implies that
det [I + GD ] /= 0 for all D Î D and hence t (G) = 0. Next, assume g > 0. Suppose
q ( g D ) £ g i D i for all D Î D and assume g < t (G) . Then it follows from the de® -
nition of t (G) that there exists ^D Î D such that i ^D i = b - 1 and det [I + G ^D ] = 0
where b 7 t (G) . Since q (GD ) £ g i D i for all D Î D it follows that
q (G ^

D ) £ g /b < 1 and hence det [I + G ^
D ] /= 0 which is a contradiction. h

Lemma 8: Let G Î C m ´ m, g ³ 0, and assume r = 0. Then q (GD ) £ g i D i for all
D Î D if and only if t (G) £ g . Furthermore, t (G) = maxD Î D 1

q (GD ) .

Proof: It follows from Lemma 7 that if q (GD ) £ g i D i for all D Î D then
t (G) £ g . Conversely, assume t (G) £ g and suppose there exists ^

D Î D such that
q (G ^

D ) > t (G) i ^
D i . If t (G) = 0 then det [I + GD ] /= 0 for all D Î D . However,

since q (G ^
D ) > t (G) i ^

D i = 0 there exists - ¸ Î spec (G ^
D ) such that |̧ | = q (G ^

D ) .
Hence, since r = 0, ~

D = ¸ ^D Î D and det [I + G~
D ] = 0 which is a contradiction.

Next, assume t (G) > 0 and let - ¸ Î spec (G ^D ) such that |̧ | = q (G ^D ) . In this case
det [I + -̧ 1G ^

D ] = 0 and, since r = 0, -̧ 1 ^
D Î D and i -̧ 1 ^

D i = q - 1 (G ^
D ) i ^

D i <
1/t (G) . Now, it follows by de® nition that det [I + GD ] /= 0 for all D Î D such that
i D i < 1/t (G) which is a contradiction. Hence, q (GD ) £ t (G) i D i £ g i D i for all
D Î D . Next, note that q (GD ) £ t (G) i D i for all D Î D if and only if
maxD Î D 1

q (GD ) £ t (G) . Now suppose maxD Î D 1
q (GD ) < t (G) and let h satisfy

maxD Î D 1
q (GD ) < h < t (G) . In this case q (GD ) < h i D i for all D Î D and hence it

follows from Lemma 7 that t (G) £ h which is a contradiction. Hence,
maxD Î D 1 q (GD ) = t (G) . h

The following theorem uses Lemma 7 to construct upper bounds for the struc-
tured matrix norm in terms of a function u ( )́ . In order to account for the structure
of D we introduce the set of scaling matrices $ de® ned by

$ 7 {D Î C m ´ m : det D /= 0 and DD = D D, for all D Î D } (7)

Now the following theorem is immediate.

Theorem 3: Let G Î C ḿ m and let u : C ḿ m ® R be such that q (AD ) £ u (A) i D i
for all D Î D and A Î C ḿ m. Then

t (G) £ inf
DÎ $

u (DGD- 1) (8)
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Proof: Note that t (G) = t (DGD)- 1 for all D Î $ . Hence, since
q (DGD- 1D ) £ u (DGD- 1) i D i for all D Î D and D Î $ it follows from Lemma 7
that t (G) £ u (GDG- 1) which implies (8). h

An immediate application of Lemma 7 is the following result involving G that
commute with uncertainties D .

Corollary 6: Let G Î C ḿ m, let i ´ i be a submultiplicative matrix norm such that
i I i = 1, and assume GD = D G for all D Î D . Then

q R(G) £ t (G) £ q (G) (9)

Furthermore, if r = 0, then

t (G) = q (G) (10)

Proof: Since GD = D G for all D Î D , it follows that q (GD ) £ q (G) q (D ) £
q (G) i D i for all D Î D . Then it follows from Lemma 7 that t (G) £ q (G) . Finally,
(9) and (10) follow from (5) and (6). h

The next result uses Theorem 3 to construct an upper bound for the structured
matrix norm.

Corollary 7: Let G Î C m ´ m and k ³ max{ i ABi : A,B Î C ḿ m, i Ai £ 1,
i Bi £ 1} . Then

t (G) £ k2 inf
DÎ $ i DGD- 1 i (11)

Proof: It follows from Lemma 4 that the matrix norm ki ´ i is submultiplicative.
Next, using Corollary 3 we obtain

q (AD ) £ ki AD i £ k2 i Ai i D i
for all D Î D and A Î C m ´ m. The result is now a direct consequence of Theorem 3
with u (A) = k2 i Ai for all A Î C m ´ m. h

Note that if i ´ i is submultiplicative then the assumptions of Corollary 7 are
satis® ed with k = 1 and hence the following result is immediate.

Corollary 8: Let G Î C m ´ m and assume i ´ i is submultiplicative. Then
t (G) £ inf DÎ $ i DGD- 1 i .

Finally we provide upper bounds for the structured matrix norm for the case in
which i ´ i is an induced matrix norm on C ḿ m.

Corollary 9: Let G Î C ḿ m and assume i ´ i is induced by vector norms i ´ i Â and
i ´ i Â Â . Then t (G) £ infDÎ $ i DGD- 1 i Â Â Â , where i ´ i Â Â Â is induced by i ´ i Â Â and i ´ i Â .
Proof: Let i ´ i Â Â Â Â be equi-induced by i ´ i Â . Then it follows from Corollary 1 that
( i ´ i Â Â Â Â , i ´ i Â Â Â , i ´ i ) is a submultiplicative triple. Hence,

q (AD ) £ i AD i Â Â Â Â £ i Ai Â Â Â i D i
for all D Î D and A Î C ḿ m. Now the result is a direct consequence of Theorem 3
with u (A) = i Ai Â Â Â for all A Î C ḿ m. h
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5. Specializations to HoÈ lder, unitarily invariant, and induced matrix norms

In this section we specialize the results of §4 to the cases in which i ´ i represents
HoÈ lder norms (p-norms), unitarily invariant norms, and induced norms. First we
consider the case in which i ´ i is a p-norm.

Proposition 2: Let G Î C m ´ m, and let 1 £ p £ ¥ and 1 £ q £ ¥ be such that
1/p + 1/q = 1. If i ´ i = i ´ i p then

q R(G)
m1 /p £ t (G) £ inf

D Î $ i DGD- 1 i q (12)

Proof: The lower bound is a direct consequence of Theorem 2 and the fact that
i Ii p = m1 /p. Next, it follows from Lemmas 1, 3, and Corollaries 2, 3 that

q (AD ) £ i AD i q,q £ i Ai q,p i D i p,q £ i Ai q i D i p

for all D Î D and A Î C m ´ m. The result now follows immediately from Theorem 3
with u (A) = i Ai q for all A Î C m ´ m. h

Next, we consider the case in which i ´ i is unitarily invariant matrix norm.

Proposition 3: Let G Î C ḿ m and assume i ´ i is a unitarily invariant matrix norm
on C ḿ m. Then

q R(G)
i I i £ t (G) £ 1

i E11 i inf
DÎ $

s max (DGD- 1) (13)

Proof: The lower bound is a restatement of Theorem 2. Next, it follows from
Lemma 2 that

q (AD ) £ s max (A) s max (D ) £ 1
i E11 i s max (A) i D i

for all D Î D and A Î C ḿ m. The result is now a direct consequence of Theorem 3
with u (A) = s max (A) /i E11 i for all A Î C ḿ m. h

The following corollary is a direct consequence of Proposition 3 by noting that
i E11 i = 1 for all normalized unitarily invariant matrix norms.

Corollary 10: Let G Î C ḿ m and assume i ´ i is a normalized unitarily invariant
matrix norm on C m ´ m. Then

q R(G)
i I i £ t (G) £ inf

DÎ $
s max (DGD- 1) (14)

For i ´ i = i ´ i s p, where 1 £ p £ ¥ , the following corollary is an immediate
consequence of Corollary 10 since i I i s p = m1/p and i ´ i s p is a normalized unitarily
invariant matrix norm.

Corollary 11: Let G Î C m ´ m, 1 £ p £ ¥ , and assume i ´ i = i ´ i s p. Then
q R(G)
m1 /p £ t (G) £ inf

DÎ $
s max (DGD- 1) (15)

Furthermore, if i ´ i = i ´ i s ¥ = s max ( )́ then

q R(G) £ ¹(G) £ inf
D Î $

s max (DGD- 1) (16)
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Finally, we consider two special cases in which i ´ i is an induced norm.

Proposition 4: Let G Î C m ´ m. If i ´ i = i ´ i 1,1 then

q R(G) £ t (G) £ inf
DÎ $ i DGD- 1 i 1,1 (17)

Furthermore, if i ´ i = i ´ i ¥ ,¥ then

q R(G) £ t (G) £ inf
DÎ $ i DGD- 1 i ¥ ,¥ (18)

Proof: The lower bounds are a direct consequence of Theorem 2. Next, it
follows from Corollary 2 that i ´ i 1,1 and i ´ i ¥ ,¥ are submultiplicative on C ḿ m.
The result now follows from Corollary 8. h

Remark 7: Note that the cases in which i ´ i = i ´ i ¥ ,1 = i ´ i ¥ and
i ´ i = i ´ i 2,2 = s max ( )́ correspond to particular p-norms and s p-norms already
discussed in the previous subsections.

6. Extensions to block-norm uncertainty characterization with mixed spatial norms

In this section we specialize the structured matrix norm to the case in which the
uncertainty is characterized by mixed spatial norms which allows the size of the
uncertain blocks to be characterized by di� erent spatial norms. Now let i ´ i be
given by

i Ai = i [ i Aij i i,j]i ¥ (19)

for all A Î C ḿ m where A is partitioned as A = [Aij], i,j = 1,. . . ,c, Aij Î C mi ´ mj ,
å c

i=1 mi = m where i ´ i (i,j) is a speci® ed matrix norm on C mi ´ mj . Next, let r = 0,
and let li = 1, i = 1 . . . ,c, so that

D = { D Î C ḿ m : D = block-diag(D 1,. . . , D c), D i Î C mi ´ mj ,i = 1,. . . ,c} (20)

where the dimension mi of each block is given such that å n
i=1 mi = m. We assume

that G is conformally partitioned with the elements of D as [Gij], where
Gij Î C mi ´ mj,i, j = 1, . . . ,c. Now the structured matrix norm t (G) de® ned with
respect to the norm given by (19) and uncertainty set D can be written as

t (G) = min
D Î D

{ max
i=1,...,c i D i i (i) : det [I + GD ] = 0}( ) - 1

, (21)

where i ´ i (i) is a given matrix norm on C mi ´ mi for i = 1,. . . ,c, and if there does not
exist D Î D such that det [I + GD ] = 0 then t (G) = 0. Furthermore, in this case D g
can be equivalently characterized by

D g = { D Î D : i D i i (i) £ g - 1,i = 1,. . . ,c} (22)

Note that Theorems 1, 2, 3, and Corollary 7 hold for the block-norm uncertainty
characterization given by (22). This uncertainty characterization allows for di� erent
spatial norms in capturing the size of the respective uncertainty blocks.

Next we consider several cases of the above uncertainty characterization and
develop upper bounds for the structured matrix norm t (G) . As in §3 we can intro-
duce scaling matrices to account for structure of the uncertainty and hence reduce
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conservatism. However, in order to facilitate the presentation we shall not do so in
this section. First, we consider the case in which i ´ i (i) = i ´ i Â , i = 1,. . . ,c.
Proposition 5: Let G Î C m ´ m and let i ´ i (i) = i ´ i Â , i = 1,. . . ,c. Suppose there ex-
ists a submultiplicative triple of matrix norms ( i ´ i Â Â Â , i ´ i Â Â , i ´ i Â ) such that i ´ i Â Â Â
is submultiplicative. Then t (G) £ q ([Gij i Â Â ]) .
Proof: It follows from Lemma 6 that

q (AD ) £ q ([ i (AD ) ij i Â Â Â ]) (23)

for all D Î D and A Î C ḿ m. Next since by de® nition i D i i Â £ i D i note that

[i (AD ) ij i Â Â Â ] £ £ [i Aij i Â Â ][i D i i Â ] £ £ [i Aij i Â Â ]i D i
for all D Î D and A Î C ḿ m. Hence, it follows from Lemma 5 that

q ([i (AD ) ij i Â Â Â ]) £ q ([ i Aij i Â Â ]) i D i (24)

for all D Î D and A Î C ḿ m. The result now follows from (23), (24), and Theorem 3
with u (A) = q ([i Aij i Â Â ]) for all A Î C m ´ m. h

Next we specialize Proposition 5 to the case in which i ´ i (i) = i ´ i Â , i = 1,. . . ,c,
is submultiplicative.

Corollary 12: Let G Î C ḿ m and let i ´ i (i) = i ´ i Â , i = 1,. . . ,c be a submultiplica-
tive matrix norm. Then

t (G) £ q ([i Gij i Â ]) (25)

Remark 8: Note that if i ´ i Â = s max ( )́ then i D i = maxi s max (D i) = s max (D ) ,
i = 1,. . . ,c, and hence t (G) becomes the structured singular value. In this case the
upper bound given by (25) specializes to the upper bound given by Corollary 4.3
of Hyland and Collins (1989) and Equation (15) of Safonov (1982) for the case of
diagonal uncertainty. If, alternatively, i ´ i Â = i ´ i ¥ . ¥ then i D i =
maxi i D i ¥ . ¥ = i D i ¥ ,¥ , i = 1,. . . ,c, so that Corollary 12 specializes to the results
of Khammash and Pearson (1993) for the case where D i Î C mi ´ mi , i = 1,. . . ,c.
Remark 9: In order to connect the robust stability bounds for structured uncer-
tainty involving structured matrix norms and the robust stability bounds given by
Hyland and Collins (1989) via majorant analysis consider the block-structured un-
certainty characterized by majorant bounds given by

D g = { D Î C m ´ m : [i D ij i Â £ £ g - 1M},
where i ´ i Â is a given submultiplicative norm on C mi ´ mj and M Î R ć c, M >> 0.
Now, note that D g can be equivalently written as

{ D Î C m ´ m : i [i D ij i Â ] Ê MHI i ¥ £ g - 1}
where MHI denotes the Hadamard inverse of M and [i D ij i Â ] Ê MHI denotes the
Hadamard product of [i D ij i Â ] and MHI. Next using Lemmas 5 and 6 it follows
that

q (G(jx ) D ) £ q ([i Gij (jx ) i Â ][ i D ij i Â ]) £ q ([i Gij (jx ) i Â ]M) i [i D ij i Â ] Ê MHI i ¥
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for all D Î C ḿ m and hence Lemma 7 yields t (G(jx )) £ q ([ i Gij (jx ) i Â ]M) , where
t (G(jx )) denotes the structured matrix norm with the de® ning norm
i D i = i [i D ij i Â ] Ê MHI i ¥ . Furthermore, it follows from Theorem 1 that if
q ([i Gij (jx ) i Â ]M) < g for all G Î C ḿ m then the feedback interconnection of G(s)
and D is asymptotically stable for all D Î D g which yields Theorem 4.1 of Hyland
and Collins (1989) with i ´ i Â = s max ( )́ and g = 1.

Next we let i ´ i (i) = i ´ i qi ,p, where p ³ 1 and qi ³ 1, i = 1,. . . ,c.
Proposition 6: Let G Î C ḿ m and let i ´ i (i) = i ´ i qi,p, where p ³ 1 and qi ³ 1,
i = 1,. . . ,c. Then t (G) £ q ([i Gij i Â (p,qj ) ]) .
Proof: Since i ´ i p,p is submultiplicative it follows from Lemma 6 that

q (AD ) £ q ([i (AD ) ij i p,p]) (26)

for all D Î D and A Î C ḿ m. Next note that

[ i (AD ) ij i p,p] £ £ [i Aij i Â (ij) ][i D ij i (i,j) ] £ £ [i Aij i Â (i,j) ]i D i (27)

for all D Î D and A Î C ḿ m. Now t (G) £ q ([i Gij i Â (p,qj) ]) follows as a direct con-
sequence of (26), (27), Lemma 5, and Theorem 3 with u (A) = q ([i Aij i Â (i,j) ]) for all
A Î C ḿ m. h

Next, we specialize the above results to the case in which i ´ i (i) , i = 1,. . . ,c, is
either a HoÈ lder norm or a unitarily invariant norm. The following result considers
the case where i ´ i (i) = i ´ i p, i = 1, . . . ,c.

Corollary 13: Let G Î C ḿ m and let 1 £ p £ ¥ and 1 £ q £ ¥ be such that
1/p + 1/q = 1. If i ´ i (i) = i ´ i p, i = 1,. . . ,c, then t (G) £ q ([i Gij i q]) .
Proof: Since i ´ i q,q is submultiplicative the result follows from Remark 2 and
Proposition 5. h

Now we consider the case in which i ´ i (i) = i ´ i Â , i = 1,. . . ,c, is a normalized
unitarily invariant matrix norm.

Corollary 14: Let G Î C ḿ m and let i ´ i Â be a normalized unitarily invariant
matrix norm. If i ´ i (i) = i ´ i Â , i = 1,. . . ,c, then t (G) £ q ([s max (Gij)]) .
Proof: It follows from Corollary 1 that for all A,B Î C mi ´ mj

s max (AB) £ s max (A) s max (B) £ s max (A) i Bi Â
so that ( s max ( )́, s max ( )́, i ´ i Â ) is a submultiplicative triple of matrix norms. Now,
since s max ( )́ is submultiplicative, the result follows immediately from
Proposition 5. h

Remark 10: Note that the cases i ´ i (i) = i ´ i 1,1 and i ´ i (i) = i ´ i ¥ ,¥ are special
cases of Corollary 12.

7. Robust performance

In this section we consider the problem of robust performance within the struc-
tured matrix norm framework. In order to do this consider the nominal square
transfer function matrix G(s) Î C ḿ̂ m̂ in a negative feedback interconnection with
structured uncertainty D Î D Í C ḿ m and external disturbance inputs w(s) and per-

Structured matrix norms 549



formance outputs z(s) shown in ® gure 2. Here we assume that w(s) Î Hmp
¥ so that

every element of the input vector w(s) in a stable function. Note that since the
Laplace transform of Lp signals, 1 £ p < ¥ , is in H¥ the above assumption allows
for a general class of disturbance inputs. Furthermore, we partition G(s) Î C ḿ̂ m̂ as

G(s) = G11 (s)
G21 (s)

G12 (s)
G22 (s)[ ]

where G11 (s) Î C ḿ m, G21 (s) Î C ḿ mp , G21 (s) Î C mp ´ m, and G22 (s) Î C mp ´ mp such
that m + mp = m̂. Here G(s) may denote a nominal closed-loop system. Next, the
output z(s) is related to the input w(s) by z(s) = ’ (s)w(s) where

’ (s) 7 G22 (s) - G21 (s) D (I + G11 (s) D )- 1G12 (s) (28)

Next we give several de® nitions for a class of subharmonic functions which prove
useful in assigning signal norms on Hmp

¥ . Let C + denote the open right half complex
plane. Recall that a function f : C + ® [- ¥ , ¥ ) is subharmonic (Boyd and Desoer
1985) if f ( )́ is continuous and

f (s) £ 1
2p ò

2p

0
f (s + a ejµ) dµ

for all s Î C + and a Î R such that 0 < a < Re s. Furthermore, de® ne a subset SH of
subharmonic functions by (Boyd and Desoer 1985).

SH 7 {f : C + ® [- ¥ , ¥ ) : f ( )́ is subharmonic, f ( )́ is bounded from above,
and lim

s ® 0
f ( s + jx ) = f (jx ), x Î R }.

Now it follows from Boyd and Desoer (1985) that

sup
x Î R

f (jx ) = sup
Re s³ 0

f (s), f ( )́ Î SH (29)

In order to address worst-case robust performance, i.e. the magnitude of the
output corresponding to the worst case input, de® ne the signal norms |i ´ i |Â
and |i ´ i |Â Â on Hmp

¥ such that i |w(s)|i Â 7 supx Î R i w(jx ) i Â , and i |z(s)|i Â Â 7
supx Î R i z(jx ) i Â Â , for all w(s) , z(s) Î Hmp

¥ where i ´ i Â and i ´ i Â Â are given vector
norms on C mp. Note that it follows from Theorem 2.1 of Boyd and Desoer (1985)
that i f ( )́ i Â , i f ( )́ i Â Â Î SH for all f ( )́ Î H

mp
¥ and hence it follows form (29) that
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i | ´|i Â and i | ´|i Â Â are valid signal norms on Hmp
¥ . In this case we can de® ne the worst

case robust performance as maxD Î D g i |’ (s) i |- where the signal norm |i ´ i |Â Â Â is
de® ned as

|i ’ (s) i |Â Â Â 7 max
|i w(s) i |Â £ 1

|i z(s) i |Â Â (30)

The following results are needed in obtaining robust performance bounds.

Theorem 4: Let i ´ i Â Â Â be the matrix norm induced by the vector norms i ´ i Â and
i ´ i Â Â . Then i |’ (s) i |Â Â Â = supx Î R i ’ (jx ) i Â Â Â .
Proof: Note that for all w(s) Î Hmp

¥

i |z(s) i |Â Â = sup
x Î R

i z(jx ) i Â Â £ sup
x Î R

i ’ (jx ) i Â Â Â i w(jx ) i Â £ sup
x Î R

i ’ (jx ) i Â Â Â i |w(s) i |Â

and hence i |’ (s) i |Â Â Â £ supx Î R i ’ (jx ) i Â Â Â . Next, note that for all e > 0 there exists
^x Î R such that supx Î R i ’ (jx ) i Â Â Â - i ’ (j ^x ) i Â Â Â £ e . Furthermore, let ŵ(j ^x ) Î C mp be
such that i ’ (j ^x )ŵ(j ^x ) i Â Â = i ’ (j ^x ) i Â Â Â i ŵ(j ^x ) i Â . Now de® ne w(s) Î Hmp

¥ such that
w(jx ) = ŵ(j ^x ) for all w Î R so that i |w(s) i |Â = i ŵ(j ^x ) i Â . In this case

i |z(s) i |Â Â = i |’ (s)w(s) i |Â Â = sup
x Î R

i ’ (jx )ŵ(jx ) i Â Â ³ i ’ (j ^x )ŵ(j ^x ) i Â Â

= i ’ (j ^x ) i Â Â Â i ŵ(j ^x ) i Â ³ sup
x Î R

i ’ (jx ) i Â Â Â - e( ) i |w(s) i |Â ,

which implies that i |’ (s) i |Â Â Â ³ supx Î R i ’ (jx ) i Â Â Â - e for all e > 0. Now, since
supx Î R i ’ (jx ) i Â Â Â - e £ i |’ (s) i |Â Â Â £ supx Î R i ’ (jx ) i Â Â Â for all e > 0 it follows that
i |’ (s) i |Â Â Â = supx Î R i ’ (jx ) i Â Â Â . h

Remark 11: It follows from Theorem 4 that it su� ces to compute upper bounds
for maxD Î D g i ’ (jx ) i Â Â Â for all x Î R in order to obtain the robust performance
measure maxD Î D g i |’ (s) i |Â Â Â . Hence the following results are focused on obtaining
upper bounds for maxD Î D g i ’ (jx ) i Â Â Â using the structured matrix norm frame-
work.

Lemma 9: Let G Î C m ´ m and let i ´ i Â be a matrix norm on C ḿ m such that for all
A Î C ḿ m there exists B Î C m ´ m such that q (AB) = i Ai Â i Bi and t (A) £ i Ai Â . If
r = 0, c = 1, and l1 = 1 then t (G) = i Gi Â .
Proof: Note that there exists D Î C ḿ m such that q (GD ) = i Gi Â i D i and hence
maxD Î D g q (G) ³ i Gi Â . However, t (G) £ i Gi Â and hence it follows from Lemma 8
that t (G) = i Gi Â . h

Now we introduce a key de® nition which is used in the following lemmas. Let
i ´ i denote a vector norm on C m and de® ne the dual norm i ´ i D of i ´ i as
i yi D 7 maxi xi =1 |y*x|, where y Î C m (Stewart and Sun 1990). Note that
i ´ i DD = i ´ i (Stewart and Sun 1990, p. 56). The following key lemmas are needed
for the main results of this section.

Lemma 10: Let i ´ i denote the matrix norm on C m ´ m induced by vector norms
i ´ i Â and i ´ i Â Â on C m and let x,y Î C m. Then i xy*i = i xi Â Â i yi ÂD.

Proof: It need only be noted that i xy*i = maxi zi Â =1 i xy*zi Â Â =
maxi zi Â =1 i xi Â Â |y*z| = i xi Â Â i yi ÂD. h
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Lemma 11: Let G Î C ḿ m and let i ´ i be a matrix norm on C ḿ m induced vector
norms i ´ i Â and i ´ i Â Â and let i ´ i Â Â Â denote the matrix norm on C m ´ m induced by
vector norms i ´ i Â Â and i ´ i Â . If r = 0, c = 1, and l1 = 1 then t (G) = i Gi Â Â Â .
Proof: First note that Corollary 9 implies t (G) £ i Gi Â Â Â . Now let x Î C m be such
that i Gxi Â = i Gi Â Â Â i xi Â Â and let y Î C m be such that |y*Gx| = i yi ÂD i Gxi Â (note
that the existence of such a y follows from the fact that i ´ i ÂDD = i ´ i Â ). Next
choose D = xy*. In this case it follows from Lemma 10 that i D i = i xi Â Â i yi ÂD.
Hence,

q (GD ) = |y*Gx| = i yi ÂD i Gi Â Â Â i xi Â Â = i Gi Â Â Â i D i
The result now follows from Lemma 9. h

In order to address robust performance within the structured matrix norm frame-
work we introduce an additional uncertainty block D p between w(s) and z(s) so that
w(s) = D pz(s) and requite stability robustness in the face of all perturbations, includ-
ing the block D p. Now, de® ne the set

~D 7 { ~
D = block-diag(D , D p) : D Î D , D p Î C mp ´ mp},

and de® ne the associated structured matrix norm by

~t (G(jx )) 7 min
D Î ~D

{max ( i D i , i D p i Â ) : det [I + G(jx )~
D ] = 0}( ) - 1

and if there does not exist ~
D Î ~D such that det [I + G(jx ) ~

D ] = 0, then ~t (G(jx )) 7 0
where i ´ i , i ´ i Â are given matrix norms on C m ´ m and C mp ´ mp, respectively. Further-
more, de® ne

t p ( ’ (jx ), D ) 7 min
D p Î C mp ´ mp

{ i D p i Â : det [I + ’ (jx ) D p] = 0}( )
- 1

,

and if there does not exist D p Î C m ´ m such that det [I + ’ (jx ) D p] = 0, then
t p ( ’ (jx ), D ) 7 0.

Lemma 12: Let x , g Î R , g > 0. Then ~t (G(jx )) < g if and only if t (G11 (jx )) < g
and t p ( ’ (jx ), D ) < g for all D Î D g .

Proof: Note that it follows from the de® nition that if ~t (G(jx )) < g then
det [I + G(jx )~

D ] /= 0 for all ~
D = block-diag(D ,0) , D Î D g . Hence,

det [I + G11 (jx ) D ] /= 0, D Î D g , and hence t (G11 (jx )) < g . Next, since

det [I + G(jx ) ~
D ] = det [I + G11 (jx ) D ] det [I + ’ (jx ) D p]

it follows that maxD Î D g
t p ( ’ (jx ), D ) < g . The converse follows by reversing these

steps. h

The following corollary is immediate.

Corollary 15: Let x , g Î R , g > 0. If ~t (G(jx )) < g then

max{ t (G11 (jx )),max
D Î D g

t p ( ’ (jx ), D )} £ ~t (G(jx )) (31)

Now we present the main result of this section involving robust stability and
performance.
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Theorem 5: Let x , g Î R , g > 0 and let i ´ i Â denote the matrix norm on C mp ´ mp

(corresponding to the de® ning norm on D p) induced by vector norms i ´ i Â Â and
i ´ i Â Â Â . If supx Î R

~t (G(jx )) < g then the negative feedback interconnection of G11 (s)
and D is asymptotically stable for all D Î D g . Furthermore,

i z(jx ) i Â Â £ ~t (G(jx )) i w(jx ) i Â Â Â (32)

for all D Î D g .

Proof: It follows from Lemma 12 that if ~t (G(jx )) < g then t (G11 (jx )) < g for
all x Î R . Hence, it follows from Theorem 1 that the negative feedback intercon-
nection of G11 (s) and D is asymptotically stable for all D Î D g . Next, let i ´ i Â Â Â Â
denote the matrix norm on C mp ´ mp induced by i ´ i Â Â Â and i ´ i Â Â . Then, it follows
from Lemma 11 and Corollary 15 that

max
D Î D g

t p ( ’ (jx ), D ) = max
D Î D g

i ’ (jx ) i Â Â Â Â £ ~t (G(jx ))

which implies (32). h

Remark 12: Note that it follows from Theorems 4 and 5 that ~t (G(jx )) provides
an upper bound on the worst case performance. For example, if i ´ i Â = i ´ i p,q
where 1 £ p £ ¥ and 1 £ q £ ¥ then i |’ (s) i |q,p £ supx Î R

~t (G(jx )) . Speci® cally,
if i ´ i Â = s max ( )́ then i |’ (s) i |Â = supx Î R s max ( ’ (jx )) £ ~t (G(jx )) addresses H¥
performance. In general supx Î R

~t ( ’ (jx )) characterizes the allowable size on the
nominal transfer function for both robust stability and performance for speci® ed
spatial norms.

8. Illustrative examples

In this section we consider three examples to demonstrate the usefulness of
structured matrix norms.

Example 1: Consider the block diagonal matrix G = block-diag(1,09́ 9) and let
g > 0 be the maximum allowable uncertainty level such that det (I + GD ) /= 0
for all D Î { D Î C 10́ 10 : i D i ¥ < g } . In this case it follows from Lemma 11 and
Remark 1 that the structured matrix norm t (G) = i Gi 1,¥ = i Gi 1 = 1. Hence,
using Theorem 1, the maximum allowable uncertainty level g is equal to 1. Al-
ternatively, this problem can be equivalently formulated as a ¹ problem. In par-
ticular, let X, Y Î C 10́ 100 be such that D = X~

D Y*, where ~
D Î C 100 ´ 100 is a

diagonal matrix with ~
D (i,i) = (vec(D )) (i) , where i = 1, . . . ,100 and vec( )́ denotes

the column stacking operator. Next, note that i D i ¥ < g is equivalent to
s max (~D ) < g . Since det (I + GD ) = det (I + GX~

D Y*) = det (I + Y*GX~
D ) it fol-

lows that det (I + GD ) /= 0 for all D Î { D Î C 10́ 10 : i D i ¥ < g } if and only if
det (I + ~G~

D ) /= 0 for all ~
D Î { ~

D Î ~D : s max (~D ) < g } , where ~G7 Y*GX and~D 7 { ~
D Î C 100 ´ 100 :

~
D = diag (d 1, . . . , d 100) , d i Î C , i = 1,. . . ,100} . Now, it follows

from the small-¹ theorem that the maximum allowable uncertainty is given by
1/¹( ~G) where ¹( )́ is evaluated with respect to the uncertainty structure given by~D . Since ¹( ~G) cannot be computed exactly for the given block-structured uncer-
tainty, using the ¹-toolbox (Balas et al. 1991) we compute the upper bound
inf DÎ $ s max (D~GD- 1) where $ is the set of scaling matrices compatible with the
elements of ~D . For this example the upper bound coincides with ¹ (~G) , and hence
t (G) and ¹ (~G) give the same robust stability predictions. However, the number of
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¯ oating point operations (¯ ops) required for computing t (G) is 100 while number
of ¯ ops required for computing ¹ ( ~G) is 58269912. It can be shown that the num-
ber of ¯ ops for computing t (G) is proportional to m2 while the number of ¯ ops
for computing ¹ (~G) is proportional to m6, where m is the size of uncertainty D .
To reduce the computational complexity of the structured singular value one can
consider a subset of $ in the optimization of ¹ (~G). Speci® cally, choosing
~$ 7 {D Î C 100́ 100 : D = block-diag(d1I20,. . . ,d5I20) , di > 0, i = 1,. . . ,5} Ì $ and
using the ¹-toolbox it follows that ¹ (~G) £ 4.4721 so that the maximum allowable
uncertainty predicted is 0.2236. In this case the number of ¯ ops required for com-
puting ¹( ~G) is reduced to 16711487, however, at the signi® cant expense of robust
stability predictions.

Example 2: Let ¹ (G(jx )) and t 1 (G(jx )) denote the structured matrix norms with
de® ning norms s max ( )́ and i ´ i 1, respectively, and assume structured uncertainty
D = { D Î C 2́ 2 : D = diag (d 1, d 2) , d 1, d 2 Î C } . Furthermore, let

G(s) ~

- 0.25
- 1.3

1.3
- 0.25

1 0
0 1

1
0

0
1

0
0

0
0

é
êêë

ùúú
û

Since the exact computation of ¹ (G(jx )) and t (G(jx )) is di� cult we compute the
upper bounds given by infD (jx ) Î $ s max (D(jx )G(jx )D(jx )- 1) and
infD (jx ) Î $ i D(jx )G(jx )D(jx )- 1 i ¥ , respectively, where $ = {D Î R 2́ 2 : D =
diag (d1,d2) , d1 /= 0, d2 /= 0} . The upper bound infD (jx ) Î $ s max (D(jx )G(jx )D(jx )- 1)
is evaluated using LMI techniques (Gahinet and Nemirovskii 1993) while it can be
shown that

inf
D(jx ) Î $ i D(jx )G(jx )D- 1 (jx ) i ¥ = max{|G1,1 (jx )|, ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê|G(1,2) (jx )G(2,1) (jx )|Ï ,|G(2,2) (jx )|}

These upper bounds are shown in ® gure 3 and the predictions of robust stability for
the two uncertainty characterizations are shown in ® gure 4. This example demon-
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strates that bounding uncertainties by alternative spatial norms not consistent with
the geometry of singular value bounds can increase robust stability predictions.

Example 3: In this example, we demonstrate the utility of the proposed frame-
work for robust performance. Let t (G(jx )) denote the structured matrix norm
with de® ning norm i ´ i 1. Furthermore, let

G11 (s) ~

- 0.25
- 1.3

1.3
- 0.25

1 0
0 1

1
0

0
1

0
0

0
0

é
êêêë

ùúúú
û

G11 (s) ~

- 0.25
- 1.3

1.3
- 0.25

0
1

1
0

0
1

1
0

é
êêêë

ùúúú
û

G21 (s) ~

- 0.25
- 1.3

1.3
- 0.25

1 0
0 1

1 0 0 0

é
êêêë

ùúúú
û

G22 (s) ~

- 0.25
- 1.3

1.3
- 0.25

0
1

1 0 0

é
êêêë

ùúúú
û

and D = { D Î C 2́ 2 : D = diag ( d 1, d 2) , d 1, d 2 Î C } . Note that i D i 1 = i D i 1,¥ for all
D Î D . Now, introducing a performance block it follows from Theorem 5 that
i z(jx ) i ¥ £ ~t (G(jx )) i w(jx ) i 1, x Î R , where

G(s) ~

- 0.25
- 1.3

1.3
- 0.25

1 0 0
0 1 1

1
0
1

1
0
1

0
0
0

0
0
0

0
0
0

é
êêêêêêë

ùúúúúúú
û
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and where ~t (G(jx )) is de® ned with respect to the uncertainty set
~D = { ~

D Î C 3́ 3 :
~
D = block-diag(D , d p) , D Î D , d p Î C } , with de® ning norm given

by i ~
D i = max{ i D i 1,|d p|} . Next it follows from Proposition 6 with i ´ i (i) = i ´ i 1,¥

and i ´ i (i,j) = i ´ i ¥ ,1 = i ´ i ¥ , i,j = 1,2, that ~t (G(jx )) £ q (~G(jx )) where

~G(jx ) = i G11 (jx ) i ¥
i G21 (jx ) i ¥

i G12 (jx ) i ¥
i G22 (jx ) i ¥[ ]

Hence, we obtain a computable upper bound on robust performance given by

i z(jx ) i ¥ £ q (~G(jx )) i w(jx ) i 1, x Î R

Alternatively, we can provide an upper bound for robust performance using Prop-
osition 1. Speci® cally, it can be shown that 0.5i ~

D i £ s max (~D ) £ i ~
D i , ~

D Î ~D , and
hence it follows from Proposition 1 that 0.5¹ (G(jx )) £ t (G(jx )) £ ¹ (G(jx )) , x Î R .
Hence, we can compute an upper bound to ¹ (G(jx )) in terms
infD (jx ) Î $ s max (D(jx )G(jx )D- 1(jx )) using standard LMI techniques (Gahinet and
Nemirovskii 1993). The nominal performance and the two upper bounds are shown
in ® gure 5.

9. Conclusion

The goal of this paper has been to extend the notion of the structured singular
value and introduce lower and upper bounds for robust stability and performance
for structured uncertainty involving alternative spatial norms. In particular, we
considered a norm-bounded, block-structured uncertainty characterization wherein
the de® ning norm is not the maximum singular value. To this end we introduced the
notion of structured matrix norms as a generalization of the structured singular
value for characterizing the size of the nominal transfer function. Finally, we demon-
strated the usefulness of the proposed framework on several examples wherein the
plant uncertainty characterization was not amenable to singular value bounds.
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