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Structured matrix norms for robust stability and performance with
block-structured uncertainty

VIJAYA-SEKHAR CHELLABOINAT, WASSIM M. HADDAD7§ and
DENNIS S. BERNSTEIN;

In this paper we introduce new lower and upper robust stability bounds for struc-
tured uncertainty involving arbitrary spatial norms. Specifically, we consider a
norm-bounded block-structured uncertainty characterization wherein the defining
spatial norm is not necessarily the maximum singular value. This new uncertainty
characterization leads to the notion of structured matrix norms for characterizing
the allowable size of the nominal transfer function for robust stability. The lower
and upper bounds are specialized to specific matrix norms including Holder, uni-
tarily invariant, and induced norms to provide conditions for robust stability with
several different characterizations of plant uncertainty. One of the key advantages
of the proposed approach over the structured singular value is the reduction is
computational complexity gained by directly addressing a given uncertainty char-
acterization without having to transform it to a spectral-norm type characteriza-
tion. Finally, we introduce a performance block within the structured matrix norm
framework to address robust performance in the face of structured uncertainty.

Nomenclature

R,C real numbers, complex numbers

Ram g n x m real matrices, n x m complex matrices

X; ith entry of x
: | . |H : |H vector or matrix norm, vector or matrix operator norm
x| ) Euclidian norm of vector x (= VA*x)

A* Complex conjugate transpose of 4

det A, tr 4 determinant of A, trace of 4

ci(A) ith singular value of A4

Gmax (A) maximum singular value of 4

”A”F Frobenius norm of 4 (= (tr 44*)'7)

spec (A) spectrum of A

p(4),rr(4) spectral radius of A, real spectral radius of 4

Agij)

(i,/)th entry of A

row;(4),col;(4) ith row of A4, ith column of 4

E‘l..

Il

elementary matrix with unity in the (i,/) position and zeros else-

where |
[Z?;l Y= |A(t,i)|p] Pi<p<oo
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Al|o max; |A(5J)L y
Allop [Zlecf(A]pjlsp<oo,r:rankA
A G00 Gmax(A)

A<< B(<<B) Ay < Bij(Ai) < Bi,) for all i and j, where 4 and B are real
matrices of the same size

A®B Kronecker product of 4 and B

He Hardy space of nx 1 functions bounded on the imaginary axis
with analytic continuation into the right half plane

1. Introduction

The ability to address block-structured uncertainty is essential for reducing con-
servatism in the analysis and synthesis of control systems involving robust stability
and performance objectives. Accordingly, the structured singular value provides a
generalization of the spectral (maximum singular value) norm to permit small-gain-
type analysis of systems involving block-structured uncertainty (Fan et al. 1991,
Packard and Doyle 1993). The role of the structured singular value in robust analysis
can readily be understood by observing that bounds on the structured singular value
prevent the multivariable Nyquist plot of the loop gain from encircling the critical
point when the uncertainty has a norm-bounded block-diagonal structure (Bernstein
et al. 1995, Haddad ez al. 1996).

For block-structured uncertainty with non-spectral norm characterization, a
robustness theory has been developed by Chen and Nett (1992) wherein the uncer-
tainty is bounded by equi-induced Hoélder norms and robust stability bounds are
developed in terms of the Perron root of matrix majorants and interaction par-
ameters. Robustness theory for block-structured uncertainty has also been developed
in the context of operator norms. In particular, block-structured extensions of small-
gain theory have been developed in ¢, theory (Khammash and Pearson 1993, Y oung
and Dahleh 1995).

In the present paper we derive structured-singular-value-type robustness con-
ditions involving arbitrary spatial norms. In particular, we consider norm-bounded,
block-structured uncertainty for which the defining norm is not necessarily the maxi-
mum singular value. This generalization of the structured singular value leads to the
notion of structured matrix norms for characterizing the size of the nominal transfer
function. Structured matrix norms thus include the structured singular value as a
special case.

The usefulness of structured matrix norms lies in their ability to characterize
plant uncertainty that is not consistent with the geometry of singular value bounds.
For example, an uncertain matrix block whose entries have independently bounded
magnitudes or whose entries satisfy a bound on the sum of their absolute values can
be directly characterized by an appropriate matrix norm, but can only be conserva-
tively bounded by the spectral norm. For block-structured uncertainty with non-
spectral norm characterization, structured matrix norms thus provide a useful exten-
sion of the structured singular value.

Since all norms defined on finite-dimensional spaces are equivalent (Horn and
Johnson 1985, Stewart and Sun 1990), it follows that robust stability guarantees
obtained via the standard small-#4 theorem for system uncertainties bounded by
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the spectral norm can be used to obtain robust stability guarantees for system
uncertainties bounded by arbitrary norms. However, these bounds are conservative
for the given uncertainty characterization, and thus the resulting robust stability
guarantees are sufficient but not necessary. Hence, this framework is useful for
reducing the conservatism of robust stability predictions for systems involving uncer-
tainties bounded by arbitrary norms.

A practical advantage of structured matrix norms over the structured singular
value is the reduction in computational complexity gained by directly addressing a
given uncertainty characterization without having to transform it to a spectral-norm
type characterization. In particular, to apply structured singular value analysis to
systems with multiple sources of uncertainty, system uncertainty is typically recast
into a block-diagonal structure and robust stability guarantees are computed with
respect to this uncertainty structure. However, as pointed out by Chen et al
(1996a,b) the conversion of a given uncertainty characterization into a block-diag-
onal characterization amenable to structured singular value analysis can increase the
problem size and thus the computational complexity. Alternatively, structured
matrix norms do not require that system uncertainty be recast into a block-diagonal
structure. Specifically, structured matrix norms permit nonzero off-diagonal sub-
blocks with each subblock perturbed independently. This feature is demonstrated
in Example 1.

The paper begins with several definitions concerning submultiplicative matrix
norms, induced norms, and equi-induced norms. A useful reference on this topic
is Stewart and Sun (1990), which provides numerous relevant results. Next, we turn
our attention in §3 to the definition of the structured matrix norm. This definition is
then used in Theorem 1 where necessary and sufficient conditions for robust stability
are given in terms of the structured matrix norm. This result is then followed by the
development of lower and upper bounds for the structured matrix norm. In §5 these
bounds are specialized to specific matrix norms to provide conditions for robust
stability in terms of several different characterizations of plant uncertainty. In §6
we extend the results of the previous sections to block-norm uncertainty where the
size of the uncertain blocks is characterized by different spatial norms. In §7, as in
the structured singular value framework, we introduce a performance block within
the structured matrix norm framework to address robust performance in the face of
structured uncertainty. Section 8 considers several numerical examples and compares
the proposed bounds to the structured singular value bounds. Finally, we draw some
conclusions in §9.

2. Mathematical preliminaries

In this section we give several definitions and lemmas concerning matrix norms
(Stewart and Sun 1990). Let || : ||” || : U" 1 denote matrix norms on € C>,
and €™, respectively. We sa || ,1 : ,” JL) is a submultiplicative triple of
matrix norms if ||4AB||” < ||A 'q, , for all 4 € € and B € €™, Furthermore,
if I=m=nand || : | R || : || ,” “|[) is a submultiplicative triple of matrix norms, then
| -|| is said to be submultiplicative. A matrix norm || - || on €"*" is unitarily invariant
if [|UA V” = ||A|| for all 4 € C™" and for all unitary matrices U € €™ and
V e €™ Furthermore, a unitarily invariant matrix norm || . || on C™" is normal-
ized if ||A|| = omax(A4) for all rank-one matrices 4 ¢ €™,
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Next let || I]ll and || || denote vector norms of € and €, respectively. Then
(E”Xm defined by ||A || /=t ||Ax|| 1s the matrix norm induced by
and || || If m=n and “ hen || is an equi-induced norm. 1If

= || ||,, and U ||’— || ||q where p,q e[ oo] then the resulting induced

matrix norm on €™ is denoted by ||

Flnally consider a partltloned rnatrlx Ae ™™ such that A=
[A, i,j=1,...,r,where 4; € €™ and ¥ m; = m. Then the block-norm matrix
of A is the matrix [”Au”(u TE R™" whose (7, j)th entry is ”A’/”(u where || iy isa
specified matrix norm on (Em me For convenience we wr1te |(, for l ||(, ;,
Furthermore, if || ||(
C™*M  then [”A’/”(u is denoted y(!”

The following lemmas are neede
sections.

for Jeveloping robustness bounds in later

Lemma 1: [er 1<p< o0 and 1< q< o0 be such that 1[p+1[/q=1 and let
A e C"™" Then

4l < [l4ll, (M

Proof:  First, suppose p = coand ¢ = 1. Then for all x € €" it follows that

ZA<,,,

Next, suppose 1 < p < oo Then for all x € € it follows from Holder’s inequality
that

||Ax||OO = rnax

i=l,..n

n
< s, > Mol <[l

m l/p m 1/[’
i = [ 3o powtant] <[ romtali]
1/p

(S Sohaot] = i,

which implies that ||A||p’q < ||A||p (]

Remark 1: In several special cases (1) is an equality. For example, if p = 00 and

= 1 then ||A||Ool ||A for all 4 ¢ €™ (Kahan 1966). Alternatively, if p = 1,
q = oq and A has all nonnegative entries, then ||A||1 = ||Ax|| /”xﬁ,OO where
x= [1,1 1] and hence ||A||1OO = || ||1

Lemma 2: [¢f || : u be a unitarily invariant matrix norm on T"™" and let
A e C™" Then omax ||E11|| < ”A”

Proof: If 4= 0 the result is immediate. Next, let A # 0 and note that Ej; is a
rank-one matrix. Hence omax(omax(4)Ei1) = omax(A4) is the only non-zero singular

value of omax(4)E11. The result is now a direct consequence of Theorem I1.3.7 of
Stewart and Sun (1990). [



Structured matrix norms 539

Corollary 1 (Stewart and Sun 1990, p. 80): Let || || be a normalized untarily in-
variant matrix norm on C€"" and let A € €"™". Then omax(A4) < ||A||.

Lemma 3 (Stewart and Sun 1990, p. 68): ” | ”
norms on C" Let || ||”’” be induced by || || [
u 17, |17 2e mduced by || |

J” || 7 || ) is a submullzplzcalzve triple.
COTOllary 2:  Every equi-induced matrix norm is submultiplicative.

Remark 2: If we set || || = || ||”: || ||q and p : ||I,, where 1< p< o0
and 1<¢g<oo0 in Lemma 3 then it follows from Lemma 3 that
Tl s || ||I, is a submultiplicative triple. Furthermore, if (1/p) + (1/g) =

(1 flo I

1 it follows from Lﬁmma 1 that

4Bl <4l Blos < 141121l

| J denote vector
| || be mduced by
and

V4

which implies that ( || ||q,q,|| ||q,|| ”p is a submultiplicative triple.

Lemma 4: Let | be a matrix norm on €™ and define the matrix norm || ||
I e iy Se i PR

||B|| } hen || || is submultiplicative on €™

Proof: Since
2 max {48 4,5 € €, ] < 18] < 1

max{ﬁjwlggl—l A,BeCT™" A, B# O}

it follows that if A,BeC™", then ||AB|| < k”A””B” and hence
k”AB” < k2||A||||B|| which shows that k” || is submultiplicative on €, ]

Remark 3: Note tha || || is submultiplicative on €™  then
rnax{”AB” A, B mem ||A|| <1, ||B|| < 1} < 1. Hence, kl | is submultiplica-
tive for all k > 1. Furthermore it can be shown that max {|(4 | :A,Be T,

LLAUOO <1, ||A||OO <1, ||B||OO< 1} m and hence m” ||OO 18 submultlphcatlve on

Lemma 5 (Horn and Johnson 1985, p. 491 Ler A,BeR™". [f0<< A<< B,
then p(A4) < p(B).

Lemma 6 (@trowskl 1975 Let Ae mem be  partitioned  such  that
A= [A4y|,i,j = ,r, where Ay € €™ and i m; = m, and let || -|| be a sub-
multiplicative matrlx norm on " M Then p(A4) < p [”A,,”]

The following well-known specialization of Lemma 2.6 is given by Stewart and
Sun (1990).

COTOllary 3 Let ||| be a submultiplicative matrix norm on C"™". If 4 € C™"
then p(4) < ||A||

3. Necessary and sufficient condition for robust stability

In this section, we give a generalization of the structured singular value (Packard
and Doyle 1993) and provide necessary and sufficient conditions for robust stability.
First, we consider a nominal square transfer function G(s) € €™ in a negative
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A

A

)
D5 6

Figure 1. Interconnection of transfer function G(s) with uncertain matrix A.

feedback interconnection with an uncertain complex square matrix A ¢ €™ as
shown in figure 1. The matrix A belongs to the set A= C"™" of block-diagonal
matrices defined by

AL {A g €™ A= block-diag(l, ® A1, I, @M. I, ®Arc),
A e R G= 1A e T = 1,...,r+ c}

where the dimension 7; and the number of repetitions /; of each block are given, and
r+ ¢ > 1. We refer to the case r = 0 as complex, r,c > 0 as mixed, andr = 0, c = 1,
Iy = 1 as single full complex block.

Now, let || : || denote a matrix norm on €™ and for G ¢ €™ define the
structured matrix norm v(G) by

-1

v(G) = | min {|A : det[7 + GA| = (2)

and if det|I + G. ] A # 0 for all A ¢ A then v(G) £ 0. To show that ‘min’ in (2) is
attained let B>0 and define the closed set % 2 {A eA: ||A|| < B
deG]I + GA‘J O Note that if, for all >0, % is empty then, by definition,
v(G) Iternatively, if % is non-empty then if follows that % 1s compact.
Hence it follows from the continuity of ﬁ || that the nnn{

which implies that v(G) is well defined. Furthermore, for Y > 0, deﬁne the set of
norm-bounded, block-diagonal uncertain matrices 4, by

A= {ach: <)

Henceforth throughout the paper the notation || || denotes the matrix norm appear-
ing in the definitions of v(G) and A,.

Next we present a necessary and sufficient condition for robust stability of the
feedback interconnection of G(s) and A forall A ¢ A{. ‘We assume that the feedback
interconnection of G(s) and A is well posed (Zhou et al. 1996, p. 119), that is,
det[I+G A]:If 0 for all A € A,
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Theorem 1: et Y > 0 and suppose G(s) is asymptotically stable. Then the negative
feedback interconnection of G(s) and A is asymptotically stable for all A e by if
and only if v(G(j®)) <Y for all® ¢ R,

Proof: et
~ A |B
C\|D

where A is Hurwitz, and suppose the negative feedback interconnection of G(s) and

A given by

A- BA(I+DA)'C| B- BA(I+ DA 'D
t+pA)'c | U+DA D

(I + GAT ' Gls) ~ [

is asymptotically stable for all A ¢ A{. Next, note that, for all A € A{ and ¢ R,
det[I + G(@)A] = det[I + (C(jeol - A)° 'B+ D)A]
= det (1 + DA) det [1 + (joI - A)"'BA(I + DA) 1C]
= det (I + DA) det (joI - A)™' det [jo1 - (4= BA(I+ DAY 1C)]
#0
Hence, mlnAeA{”A” det|I + G(jo) ] } > 1/y for all @ ¢ R which implies that

v(G(jw)) <7 for all® g
Conversely, suppose v G(]w)) <Y for all® ¢ R and assume that

i’i

C|D

is minimal. Then, by assumption, det|/ + G(cO)A|= det [1 + DAJ #0 for all
A e A. Now, suppose there exists A g4, such that (I+G(s)A)*'G(s) is not
asymptotlcally stable and hence 4 - BA(I + DA) C is not Hurwitz. Since G(s) is

assumed to be asymptotically stable it f ollows that 4 is Hurwitz and thus there exists
€ € (0,1) such that 4 - ¢éBA(I + ¢DA)” ' C has an imaginary eigenvalue j@. Hence,

Gls) ~

det [1 + eG(;‘dB)A] = det (I + eDA) det (&I - A)™ ' det []'431- (A- eBA(I + eDA)™! C)]
=0

However, since ¢A e and v(G(j®)) <y or, equivalently, mina, A{ ||A||
det [1 + GA| = } > 1/y for all o ¢ R, it follows that det [1 + eG(jO) A] # 0, which
is a contradiction. [

Remark 4: If r= 0 and || : || is either a Holder norm (p-norm) or a normalized
unitarily invariant norm then, using a similar construction given in Theorem 11.8
of Zhou et al. (1996), Theorem 1 can be extended to the case in which A is a real
rational stable matrix transfer function. Extensions to more general norms is a
subject of current research.

Finally, the following proposition provides an ordering between different struc-
tured matrix norms
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Proposition 1: Lot G C™" and let ” : ”’ and | ”’ denote mairix norms on
C"™™ Assume that there exists A € A such that det{I + GA] = 0 and let ki,ka >0

satisfy
kA" < [la]” < &llAl (3)

for all A € Asuch that det[I + GA| = 0. Furthermore, let v'(G) and v”(G) denote the
structured matrix norms with defining norms || : ||’ and || : ||” respectively. Then

kiv"(G) < v(G) < kv (G) (4)

Proof: The existence of ki and k; satisfying (3) follows from the equivalence of
matrix norms (Stewart and Sun 1990, p. 65). Now, it follows from (3) that

i [ in[A]” < o in]}

where y = { A g A: det [1 + GA] = O}, which implies (4). [

Remark 5:  Proposition 1 can be used to construct upper bounds for structured
matrix norms in terms of alternative structured matrix norms.

The results of Theorem 1 cannot be obtained from the standard small-¢ theorem
by using the equivalence of matrix norms, that is, the fact that for an arbitrary pair
of matrix norms || - ||,|| : |’ on €™ such that || : || # || : ||' there exist k1,k> > 0 such
that lq”A” < ||A < k2| A” for all 4 € €™ (Stewart and Sun 1990). (Henceforth
we assume that k1, k» such that equality is achieved for some A4 € €"".) Specifically,
using the necessary and sufficient conditions of the standard small-# theorem for
robust stability we can obtain sufficient but nof necessary conditions for robust
stability for the same system with uncertainty bounded by an arbitrary matrix
norm || # omax(*). To see this, let || . || be an equi-induced Holder norm on
C™™ “such that || . || # 6max(*). In this case there exist k; ,k» >0 such that
ki<1l<k; and lq”A” < opax(A4) < k2||A| for all 4 €™, Now for | >0 it
can be shown that A,y CiA € At oy (A) < Y'l} cAy. Next, let G be such
that k11 (G) = v(G) where H(G) denotes the structured singular values. Then it fol-
lows from the standard small-# theorem that det[/+ GA]# 0 for all
A€ {A € At 5 (A) < Y7 1} which implies that detl]+ GA|# 0 for all A € A,,;.
Furthermore, it follows from Theorem 1 that det|/ + GA] 4 0 for all Ae Akl“{-
Hence, since &,y 4,y the robust stability predictions Via the equivalence of
matrix norms may be conservative.

As an illustration of the above discussion let 8 > 0, consider the constant matrix

_ 11 0

G=F1, o]
and let Y > 0 be the maximum allowable uncertainty such that det (I + GA) # 0 for
all Acg E_A e €2 ||A||OO < Y}, where ||A||OO < max;j= ) |A(,-J)[. Since
Smax(G) = 1, it follows from the small-# theorem or, e uivalentlz/, in this case the
small gain theorem, that det (/ + GA) # 0 for all A ¢ c{lA e €22 : g (A) < B
Using the equivalence of matrix norms we have ||A||OO < omax(A) < 2||A||OO.
Hence, the largest value of y that can be guaranteed by the small-# theorem

to satisfy det (7 + GA)# 0 for all A¢ {A c C¥>2: ||A||OO < Y; is B/2. How-
ever, a direct computation yields that det(/+ GA)#0 for all
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Ag { AeC¥2: ||A||OO < [3}. Thus the robust stability prediction of the structured
singular value is conservative by a factor of two.

Although, as shown by Proposition 1, one can use standard mixed-# upper
bounds (Fan et al. 1991, Haddad er al. 1996) to compute upper bounds for struc-
tured matrix norms involving mixed real and complex uncertainty, as noted above,
these upper bounds may be conservative. In the next section we construct alternative
lower and upper bounds for structured matrix norms.

4. Lower and upper bounds for the structured matrix norm

In this section we provide lower and upper bounds for the structured matrix norm.

4.1. A lower bound for the structured matrix norm

In order to develop a lower bound for v(G) define the real spectral radius pr(G)
by (Young et al. 1991)

. [max{]A|: A e spec(@) NR}, if spec(G) NR # &

Pr(G) = R otherwise
Theorem 2:  [et G e €™ Then
”ﬁﬁﬁ) < () (5)
Furthermore, if r = 0, then
Pr(G) _ P(G)
<71 < v(G) (6)
A= e

Proof:  The result (5) is immediate if Pr(G) = 0. Now, suppose Pr(G) > 0. In this
case, it follows that either pr(G) or - pr(G) is an eigenvalue of G. Hence either
det!] + 3 (G) G] = 0 or det [1 - PR (G) G] = 0. Next, since o' (G)I € A it follows
tha

1

Pr(G)
which implies (5). Next, (6) is immediate if o(G) = 0. Nowf suppose 2(G) > 0 and let
A ¢ spec(G) be such that |7\| = p(G). Then det[l- A G] =0 and, since r = 0,
Ay e A Now it follows that
. . _ |I |
mig{[| A : det[7+ GA] = 0f < oG
which implies (6). []

The following corollaries are immediate.

Corollary 4: Lot G e €™ and suppose ||I|| = 1. Then pr(G) < v(G). Further-
more, if r = 0 then p(G) < v(G).

Remark 6: Note that if || ' || is an equi-induced matrix norm then ||I || = 1. How-
ever, |I ||OO =1 although || : ||OO is not submultiplicative and thus 1s not equi-
induced.

mig{[|A] : det[7+ GA] = 0f <
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Corollary 5 (Young er al. 1991 Let G € €™ and suppose || : || = omax (). Then
Pr(G) < H(G). Furthermore, if r = 0 then p(G) < H(G).

4.2. Upper bounds for the structured matrix norm

In this subsection we provide several upper bounds for v(G). First, we present
sufficient conditions (which are also necessary if = 0) for a constant } >0 to
provide an upper bound for the structured matrix norm. The following lemmas
are needed.

Lemma 7: Let GeC™" and 1 >0. If p(GA) <Y||Al| for all AeA then
v(G) < 7.

Proof: Note that if ¥ = 0 then p(GA) =0 for all A ¢ A which implies that

det [1 + GA] # 0 for all A € A and hence v(G) = 0. Next, assume 7 > 0. Suppose
p(YA) < Y”Au for all A ¢ Aand assume } < v(G). Then it follows from the defi-

nition of v(G) that there exists A e A such that ||A|| B! and det‘ll + GA =0

where B=v(G). Since p(GA) < Y”A| for all AeA it follows "that
(GA) <7 /B <1 and hence det [1 + GA] 0 which is a contradiction.

Lemma 8: Lot Ge €™ v >0, and assume r = 0. Then p(GA) < Y”A” for all
A e Aif and only if v(G) < V. Furthermore, v(G) = maxaea P(GA).

Proof: Tt follows from Lemma 7 that if p(GA) < y”A” for all AeA then
v(G) LY. Conv;grsely, assume v(G) <7 and suppose there exists A ¢ A such that
p(GA) > u ||AJ| If v(G) = 0 then det[I+ GA]# 0 for all AeA However,

since P(GA) >0 G)|L || = () there exists = A ¢ sBec(GA) such that |A| = P(GA)

Hence, since r =0, A= AA € A and det I + GA| = 0 which is a contradiction.

Next, assume v(G) > O and let - A ¢ spec (GA) such that K\ = p( GA In this case

det’(I+A'1GA][ 0 and, since r= 0, A 1AEA and || 1A” = /3'1 GA ||A||

1 /v(G). Now, it follows by definition that det |7 + GA% # 0 forall A e A such that

||Al| < 1/0(G) which is a contradiction. Hence, p(GA) < v( AA” <7||A| for an

A cA Next, note that p(GA)< U(G)”A” for all A e if and only if

MAaXAcA P(GA) < uv(G). Now suppose maxaea P(GA) < v(G) and let 1 satisfy

maxaea P(GA) <1 < v(G). In this case P(GA) < 1]||A|| for all A ¢ Aand hence it

follows from Lemma 7 that v(G) <1 which is a contradiction. Hence,

maxaca P(GA) = v(G).

The following theorem uses Lemma 7 to construct upper bounds for the struc-
tured matrix norm in terms of a function ¢(-). In order to account for the structure
of Awe introduce the set of scaling matrices A defined by

Y= {D cC™":det D# 0and DA= AD, for all A ¢ 4} (7)

Now the following theorem is immediate.

Theorem 3: Lot G e €™ and let ¢ : ™" R pe such that p(AA) < ¢(A ||A||
forall A e Aand A € ©™™. Then

v(G) < inf ¢ (DGD™ ) (8)
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Proof: Note that vu(G)=v(DGD)™' for all De Hence, since
p(DGD™'A) < ¢$(DGD" 1)”A” for all A ¢ Aand D ¢ Yt follows from Lemma 7
that v(G) < ¢(GDG™ ') which implies (8). [

An immediate application of Lemma 7 is the following result involving G that
commute with uncertainties A.

Corollary 6:  Ler G €™ Jet || : || be a submultiplicative matrix norm such that
||I|| = 1, and assume GA = AG for all A ¢ A Then
Pr(G) < v(G) < P(G) )

Furthermore, if r = 0, then

v(G) = p(G) (10)

Proof: Since GA= AG for all A¢A it follows that p(GA)
P(G)”A” for all A € A Then it follows from Lemma 7 that v(G) <
(9) and (10) follow from (5) and (6).

The next result uses Theorem 3 to construct an upper bound for the structured
matrix norm.

Corollary 7: Jet GeC™" and k> rnax{”AB” t A,B g €™ ||A|| <1,
|8l < 1. Then

<p(G)p(A) <
p(G). Finallé,

v(G) <K inf ]| DGD™ | (11)

Proof: Tt follows from Lemma 4 that the matrix norm k” : || 1s submultiplicative.
Next, using Corollary 3 we obtain

o1 < s < €]
for all A € Aand 4 € €™, The result is now a direct consequence of Theorem 3
with #(4) = i°||4]| for all 4 € ™.

Note that if || : || is submultiplicative then the assumptions of Corollary 7 are
satisfied with k = 1 and hence the following result is immediate.

Corollary 8:  Ler G e C™" and assume || : || is  submultiplicative. ~ Then
v(G) < infpegg|| DGD™||.

Finally we provide upper bounds for the structured matrix norm for the case in
which || ﬁ is an induced matrix norm on €

Corollary 9:  Let G ¢ €™ and assumeﬂ : || is induced by vector norms || : |’ and

|| : ||” Then v(G) < infpeg”DGD'1 7 where || : ||”’ is induced by || . ||” and| 1.
Proof: Tet]||:

|’”’ be equi-induced by || “||”. Then it follows from Corollary 1 that
(” : ||’”’, || : || ,| : ||) is a submultiplicative triple. Hence,

(a8 < aal” < [

4

for all A € Aand 4 € €™, Now the result is a direct consequence of Theorem 3
with #(4) = ||4]|” for all 4 € T,
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5. Specializations to Holder, unitarily invariant, and induced matrix norms

In this section we specialize the results of §4 to the cases in which || : || represents
Holder norms (p-norms), unitarily invariant norms, and induced norms. First we
consider the case in which || : || is a p-norm.

Proposition 2:  [er Ge €™ and let 1< p< 00 and 1< gq< 00 be such that
s Vg = 1 7 =Tl s

D < 6 < jogfloen™ |l (12

Proof: The lower bound is a direct consequence of Theorem 2 and the fact that
||I | | ) = m'P. Next, it follows from Lemmas 1, 3, and Corollaries 2, 3 that

P(AN) < [[ 44|y < (|4l 1Ay < [l 1A,

for all A ¢ Aand 4 € €. The result now follows immediately from Theorem 3

with #(4) = ||]|, for all 4 € ™. ]
Next, we consider the case in which || : || is unitarily invariant matrix norm.
Proposition 3:  Ler G € €™ and assume || : || is a unitarily invariant matrix norm

on C™" Then
1
£

PrlG) ) <
i ="9=

inlomx (DGD” h (13)

Proof: The lower bound is a restatement of Theorem 2. Next, it follows from
Lemma 2 that

for all A € Aand 4 € €™, The result is now a direct consequence of Theorem 3
with #(A4) = omax(4) /|| Evi|| for all 4 € T,

The following corollary is a direct consequence of Proposition 3 by noting that
||E11 || = 1 for all normalized unitarily invariant matrix norms.

Corollary 10:  Let G e €™ and assume || : || is a normalized unitarily invariant
matrix norm on €. Then
Pr(G) - -1
”I” <v(G) < gelfgﬁmax(DGD ) (14)
For || : || = || : ||Gp, where 1 < p < oo, the following corollary is an immediate
consequence of Corollary 10 since ||I ||Gp = m'’? and || ﬁlcp is a normalized unitarily

invariant matrix norm.

Corollary 11:  Ler G € €™, 1 < p < oQ and assume || : || = || : ||q,,. Then
20D < 0(G) < jof o (DGD") (19
Furthermore, zf” . || = || . ||GOO = omax (*) then

PR(G) < H(G) < If omax(DGD™) (16)
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Finally, we consider two special cases in which || : || is an induced norm.
Proposition 4 Let G € T If || || = || - ||1.1 then
Pr(G) < (G) < jnf][DGD™ |y, (17)
Furthermore, if || : || = || : ||OO’OO then
Pr(G) < v(G) < Ii)relfg“DGD' YSoooo (18)

Proof: The lower bounds are a direct consequence of Theorem 2. Next, it
follows from Corollary 2 that || ||11 and || ||OOOO are submultiplicative on €™
The result now follows from Corollary 8.

Remark 7: Note that the cases in which || || = || ||001 = || ||OO and
|| || = || ||22 = omax(*) correspond to particular p-norms and op-norms already
discussed 1n the previous subsections.

6. Extensions to block-norm uncertainty characterization with mixed spatial norms

In this section we specialize the structured matrix norm to the case in which the
uncertainty is characterized by mixed spatial norms which allows the size of the
uncertain blocks to be characterized by different spatial norms. Now let || || be
given by

1= M1l o (19)

for all 4 € €™ where A is partitioned as 4 = [A,;,-, ij=1,...,¢ Aj € T,
Y= m; = m where || : ”(,- ;) 1s a specified matrix norm on C"*". Next, let r = 0,
and let ;= 1,i=1...,¢c, so that

A= {A c Cmxm A = b]ock—diag(Alj, .. ’AC)’A[ € q:m,-xmj’l- — 1’. . ’C} (20)

where the dimension m; of each block is given such that S/ m; = m. We assume
that G is conforrnally partitioned with the elements of A as JG,, , where
Gy e €™ jj=1,...,c. Now the structured matrix norm v( efined with
respect to the norm glven by (19) and uncertainty set A can be wr1tten as

-1
v(G) = rAnEi { rnax ||A||(, det [I+ GA] ) , (21)
where || || is a given matrix norm on €"”" for i = 1,...,¢, and if there does not
exist A g A such that det [ + GA| = 0 then v(G) = 0. Furthermore in this case A

can be equivalently characterized by
A ={AchA:|Ally <1 ,i= 1, (22)

Note that Theorems 1, 2, 3, and Corollary 7 hold for the block-norm uncertainty
characterization given by (22). This uncertainty characterization allows for different
spatial norms in capturing the size of the respective uncertainty blocks.

Next we consider several cases of the above uncertainty characterization and
develop upper bounds for the structured matrix norm v(G). As in §3 we can intro-
duce scaling matrices to account for structure of the uncertainty and hence reduce
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conservatism. However, in order to facilitate the presentation we shall not do so in
this section. First, we consider the case in which | : ||(,-) = || 5 i=1,...,c

Proposition 5:  Ler G € €™ and let ” . ”(l.) = l
ists a submultiplicative triple of matrix norms
is submultiplicative. Then v(G) < P([Gg]'””]).

Proof: Tt follows from Lemma 6 that
p(AA) < p([[|(42)4{|7) (23)
for all A ¢ Aand 4 ¢ €™, Next since by definition ||A,-||' < ||A|| note that
[llCansfl ] << [ll4sll Tl ] << sl Al
for all A ¢ Aand 4 € €™, Hence, it follows from Lemma 5 that
PllCar); 7] < p(ll4il| “Pll Al (24

for all A € Aand 4 € €™, The result now follows from (23), (24), and Theorem 3
with ¢(4) = p(||45]|") for all 4 € T™". O

Next we specialize Proposition 5 to the case in which || : ||(,-) = || : ||', i=1,...,¢
is submultiplicative.

/

1,...,c. Suppose there ex-
WM s thar |-~

, 1
4
b

Corollary 12:  Let G ¢ €™ and let || : ||(,-) = || . ||’ i=1,...,c be a submultiplica-
tive matrix norm. Then

w6 < (|G| 23

Remark 8: Note that if || ‘|I” = omax(*) then ||A|| = Max; omax(Ai) = omax(A),
i=1,...,¢c and hence v(G) becomes the structured singular value. In this case the
upper bound given by (25) specializes to the upper bound given by Corollary 4.3
of Hyland and Collins (1989) and Equation (15) of Safonov (1982) for the case of
diagonal  uncertainty. If, alternatively, || = ” : ||OQOO then ||A|| =
max; ||A||OQOO = ||A||OOOO, i=1,...,c, so that Corollary 12 specializes to the results

of Khammash and Pearson (1993) for the case where A; € €™ i=1,...,c.

Remark 9:  In order to connect the robust stability bounds for structured uncer-
tainty involving structured matrix norms and the robust stability bounds given by
Hyland and Collins (1989) via majorant analysis consider the block-structured un-
certainty characterized by majorant bounds given by

A= {Aae ™l <<y M,

where || . ||' is a given submultiplicative norm on C"*" and M e R, M > 0.
Now, note that & can be equivalently written as

{aee:lladl]e m¥lo<v

where M™ denotes the Hadamard inverse of M and ||A,,|H > M denotes the
Hadamard product of [”A,,m and M. Next using Lemmas 5 and 6 it follows
that

p(GjeA) < e[GOl Tllad D < e(llGa Gl aolflad]] = 227,




Structured matrix norms 549

for all A € €™ and hence Lemma 7 yields v(G(j®)) < P(“ng,-(j@MM), where
v(G(j®)) denotes the structured matrix norm with the defining norm
||A| = ”ﬂ)LA,U‘J; MHI”OO. Furthermore, it follows from Theorem 1 that if
P(“ Gy M <7 for all G e €™ then the feedback interconnection of G(s)
and A is asymptotically stable for all A ¢ A which yields Theorem 4.1 of Hyland
and Collins (1989) with || *||” = oma(*) and ¥ = 1.

Next we let || : ||(,-) = || : ||(M,, wherep>landg > 1,i=1,...,c

Proposition 6: Letr G e €™ and let || : ||(,-) = || : ”w’ where p>1 and ¢ > 1,
i= 1,. .o sC Then U(G) < P([”Gy (,p,q/)])'

Proof:  Since || : || 18 submultiplicative it follows from Lemma 6 that
P(AA) < p([[|(44) ], ] (26)
for all A ¢ Aand 4 € €™ Next note that
(Al ) << [llsllia ][l Ailln] << [l 4allinJI Al (27)

for all A e Aand 4 € T™". Now v(G) < P([”G,;,- (’p,qj)l) follows as a direct con-
sequence of (26), (27), Lemma 5, and Theorem 3 with #(4) = P([”A,;,- G J)]) for aDll
A E mem.

Next, we specialize the above results to the case in which || : ||(,-), i=1,...,¢1s
either a Holder norm or a unitarily invariant norm. The following result considers

the case where || : ||(,-) = || : ||p, i=1,...,c

Corollary 13: Let Ge €™ and let 1 <p<o0 and 1< q< o0 be such that
o 1a= 1A= - 7= e e o) < I

Proof:  Since || : ||q,q is submultiplicative the result follows from Remark 2 and

Proposition 5. [
Now we consider the case in which || : ||(,-) = || A% i=1 ,-..5C 1s a normalized

unitarily invariant matrix norm.

Corollary 14:  Let Ge €™ and let ||-||” be a normalized unitarily invariant

/, i= 1" .. ’C, then U(G) < P([Gmax(Gl/)])
Proof: It follows from Corollary 1 that for all A,Be Crmixm;

s0 that (omax ("), Gmax (*) ,” : ”’) is a submultiplicative triple of matrix norms. Now,
sinceé  oma () 1s submultiplicative, the result follows immediately from
Proposition 5.

matrix norm. If” : ”(i) = ” '

/

Remark 10: Note that the cases || : ||(,-) = || : ||1,1 and || : ||(,-) = || : ||OO’OO are special
cases of Corollary 12.

7. Robust performance

In this section we consider the problem of robust performance within the struc-
tured matrix norm framework. In order to do this consider the nominal square
transfer function matrix G(s) € €™ in a negative feedback interconnection with
structured uncertainty A € A< €™ and external disturbance inputs w(s) and per-
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A -

GQl (S) GQQ(S)

w(s) ——] L 2(s)

Gu(s) Gra(s)
| |

Figure 2. Nominal closed-loop system with feedback uncertainty.

formance outputs z(s) shown in figure 2. Here we assume that w(s) € Hod so that
every element of the input vector w(s) in a stable function. Note that since the
Laplace transform of L, signals, 1 < p < oq is in Hy, the above assumption allows
for a general class of disturbance inputs. Furthermore, we partition G(s) € € as

Guls)  Guls)
Gauls)  Gxnls)
where GII(S) € q:mxm’ €)) (S) € q:mxmp’ Gy (S) € q:mpxm’ and GZZ(S) S C"™>™> guch

that m + my, = . Here G(s) may denote a nommal closed loop system. Next, the
output z(s) is related to the input w(s) by z(s) = Gs)w(s) where

As) & Guls) - Gyls)A (1 + G11(S)A)- Gia(s) (28)

Next we g1ve several definitions for a class of subharmonic functions which prove
useful in assigning signal norms on H"oo Let €* denote the open right half complex
plane. Recall that a function f: €* —)[ 00,00) is subharmonic (Boyd and Desoer
1985) if f(*) is continuous and

1 2n "
1ls) < —j s+ o) do

Gl(s) =

2]y

foralls € € and o, e R such that 0 < o< Res. Furthermore, define a subset SH of
subharmonic functions by (Boyd and Desoer 1985).

SH £ é f:C" >[-00,00:f(-) is subharmonic, f(-) is bounded from above,
andlu_)%fc+]w f(]ije[R}
Now it follows from Boyd and Desoer (1985) that

g}elgf (jo) = sup f (s), f()eSH (29)

In order to address worst-case robust performance, i.e. the magnitude of the
output corresponding to the worst case 1nput deﬁne the 51gnal norms
and ||| ||J/ on H such that |U1 ||| ||| ||
SUPweR ||z || for all w(s), z(s % wh ere an || are girven vector
norms on (E" Note that it follows from Theorem 2 1 of Boyd and Desoer (1985)
that ||f( ||” € SH for all f(-) € Ho¢ and hence it follows form (29) that
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Y. In this case we can define the worst
" is

IU

case robust performance as maxaeA |||‘f

defined as
7=  max |[z)[||” 30
Il = sl 0
The following results are needed in obtaining robust performance bounds.
Theorem 4: [t || ” be the matrix norm induced by the vector norms || || and

{17 Then [|AN = supocr [Sje)]|

Proof: Note that for all w(s) € H
=M™ = supllGl|” < sup[[Fe]| “w )|

and hence || As)

4 e

A
< Supa) c R

€ R such that supe %
such that || L%d) W(]@ || = ||

w(jo) = (D forallwemsothat”

" = [[|ZAw(s |||”-§,ggll%w wvwll”zll%@ (o)
= II%@

thch 1mphes that ||| “
(6]

Remark 11: Tt follows from Theorem 4 that it suffices to compute upper bounds
for maxaea, ||%wé( for all ® ¢ R in order to obtain the robust performance
measure mMaxacA ||| ||| Hence the followmg results are focused on obtaining
upper bounds for maxaea ||Gj)||”
work.

0) Next note that for all ¢ > 0 there exists
< e, Furthermore let W 43) C" be
Now deﬁne w(s (s) € Hog such that

b4

s’
b

27| A

- | s

p e ” “ - ¢ for all €>0. Now, since
supwem %w ||'” for all €¢> 0 it follows thﬁt

using the structured matrix norm frame-

Lemma 9: Lot G e €™ and let L be a matrix norm on cram suth that for all
A e C™" there exists B e €™ suc that p(AB) = | and v(A f
r=0,c=1 andl = 1 then v(G) = :

Proof: Note that there exists A E mem such that p(GA) =
maxaea P(G) > HG” However, v( ” and hence it follows from Lemma
that v(G) = ||G| O]

Now we introduce a key definition which is used in the following lemmas. Let
| denote a vector norm on C€" and define the dual norm || E of || || as

£ rnax|x||—1 |y*x| where y € €" (Stewart and Sun 1990). Note that
F DD = || | Stewart and Sun 1990, p. 56). The following key lemmas are needed
for the main results of this section.

)]

Lemma 10: et || JJ denote the matrix norm on C"™™ induced by vector norms
on C" and let x,y € €. Then ||xy || ||x|| ||y||D

Proof: Tt need onl be noted that ||xy || = maX||Z||f=1||xy*z||”:
may = || 7y = -




552 V.-S. Chellaboina et al.

Lemma 11: et G e €™ and let J . || be a matrix norm on €™ induced vector

norms || : ||’ and |l ||” and let || : || denote the matrix norm on €™ induced by
vector norms || : || and”- Ifr=0,c=1 andl = 1 then v(G) = ||G| 7,

Proof:  First note that Corollary 9 implies v(G) < ||q 7. Now let x € €" be such
that ||GN|” = ||G||”]||” and let y € € be such that [y*Gx| = ||||5||Gx||” (note
that the existence of such a y follows from the fact that || D = || . Next
choose A= xy*. In this case it follows from Lemma 10 that ﬂA” = ||x| ””y b

Hence,
p(GA) = G| = [{[ol|6ll I ” = [ld

The result now follows from Lemma 9. 0

/!

/

D

V4

Al

In order to address robust performance within the structured matrix norm frame-
work we introduce an additional uncertainty block A, between w(s) and z(s) so that
w(s) = Apz(s) and requite stability robustness in the face of all perturbations, includ-
ing the block A,. Now, define the set

AL {Z = block-diag(A,Ap) : A € AjAp c q:mp><mp}’

and define the associated structured matrix norm by

)+ det[T+ G(j©)A] = 0f B

viGtjo)) = ( gl a1,

and if there does not exist A e Asuch that det)[] + G(]'w)ZJ = 0, then B(G(jw)) = 0
where || : ||, || : ||' are given matrix norms on €"*" and C"™** respectively. Further-
more, define

-1

vp(%w),A)é(Agmqn {||Ap||'=det[l+%w)Ap]:O}) ,

ip Xy

and if there does not exist A, € €™ such that det [1 + %w)Ap] =0, then
up(f?(]'w)’ A) £ 0.

Lemma 12: Ler oy ¢ R, ¥ > 0. Then ¥(G(j®)) <Y if and only if v(Gi1(jo)) <Yy
and Up(%w)’A) <V forall Aeh.

Proof: Note that it follows from the definition that if B(G(jw)) <y then

det |l + G(]w)z #0 for al A= block-diag(A,0), A €A,  Hence,
det [l + Gu(jw)A] # 0, A e A, and hence v(Gy(j®)) <. Next, since

det [1 + G(jw)Z] = det [1 + Gy (jw)A] det [1 + %w)Ap]

it follows that maxaea, Up (Ajm),A) < 7. The converse follows by reversing these
steps.

The following corollary is immediate.
Corollary 15:  Let o,y e Ry > 0. If B(G(jw)) <V then
max {0(Gr (), g 1y (o), A)} < DG (31)

Now we present the main result of this section involving robust stability and
performance.
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Theorem 5 Let @7 ¢ R,y >0 and let || 'U’ denote the matrix norm on C""
(corresponding to the defining norm on A, ) induced by vector norms || . ||” and
|| M. If supwer B(G(j®)) <V then the negative feedback intercomection of G (s)
and A is asymptotically stable for all A ¢ . Furthermore,

[lzGe)||” < B(GGeo))||wige)|| (32)

forall A e A,

Proof: Tt follows from Lemma 12 that if B(G(j®)) <y then v(Gii(j®)) <7 for
all ® ¢ R, Hence, it follows from Theorem 1 that the negative feedback intercon-
nection of Gii(s) and A is asymptotically stable for all A e &, Next, let || . ||””
denote the matrix norm on € induced by || : ||’” and || : ||” Then, it follows
from Lemma 11 and Corollary 15 that

g v, (Ajo),A) = rAne%H‘f(j@H”” < ¥(G(j))
which implies (32). []

Remark 12:  Note that it follows from Theorems 4 and 5 that B(G(j®)) provides
an upper bound on the worst case performance. For example, if ﬁﬂ = Jil : UM
where 1 < p< 00 and 1< ¢ < 00 then |||f?(s)||| < supwer V(G(j®)). Specifically,
if || = Gmax(*) then |||f?(s) "= SUpwR Gmax% ®)) < B(G(jw)) addresses Hoo
performance. In general supocr U(Gj®@)) characterizes the allowable size on the
nominal transfer function for both robust stability and performance for specified
spatial norms.

8. Illustrative examples

In this section we consider three examples to demonstrate the usefulness of
structured matrix norms.

Example 1:  Consider the block diagonal matrix G = block-diag(1,09x9) and let
Y >0 be the maximum allowable uncertainty level such that det (7 + GA) #0
for all A e {A € C10x10, ||A||OO < Y}. In this case it follows from Lemma 11 and
Remark 1 that the structured matrix norm v(G) = ||G||1,OO = “G”l = 1. Hence,
using Theorem 1, the maximum allowable uncertainty level | is equal to 1. Al-
ternatively, this problem can be equivalently formulated as a 4 _problem. In par-
ticular, let X, Y ¢ (13105100 be such that A= XAY* where A ¢ C!OxI® i 4
diagonal matrix with A = (vec(A))(, where i = 1,...,100 and vec() denotes
the column stacking operator. Next, note that A”OO <7 1is equivalent to
omax(A) < 7. Since det (/ + GA) = det (I + GXAY*) = det (I + Y*GXA) it fol-
lows that_det (7 + GA) # 0 for all A e{AeC"™":||A||, <7y} if and only if
det (7 + GA) # 0 for all A {A eA: 5o (A) < Y}, where G £ Y*GX and
AL {A g C100x100 . A — diag(51,...,5100), de C, i= 1,...,100}. Now, it follows
from_the small-# theorem that the maximum allowable uncertainty is given by
1 /u(G) where H(*) is evaluated with respect to the uncertainty structure given by

Since H(G) cannot be computed exactly for the given block-structured uncer-
tainty, using the H-toolbox (Balas et al. 1991) we compute the upper bound
inf peFomax (DGD™ ') where Dis the set of scaling matrices compatible with the
elements of A For this example the upper bound coincides with #(G), and hence

~.

v(G) and K(G) give the same robust stability predictions. However, the number of
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floating point operations (flops) required for computing v(G) is 100 while number
of flops required for computing #(G) is 58269912. It can be shown that the num-
ber of flops for computlng v(Q) is proportlonal to m” while the number of flops
for computing u(G) is proportional to m®, where m is the size of uncertainty A.
To reduce the computational complexity of the structured singular value one can
cons1der a subset of 9 in the optimization of u(G). Specifically, choosing

2 (D e €' p = block-diag(di b, ..., dskn), di >0, i= 1,...,5) «Pand
using the H-toolbox it follows that (G) < 4 4721 so that the maximum allowable
uncertainty predicted is 0.2236. In this case the number of flops required for com-
puting #(G) is reduced to 16711487, however, at the significant expense of robust
stability predictions.

Example 2:  Let 1(G(j®)) and v (G(j®)) denote the structured matrix norms with
defining norms omax (1) and %1, respectively, and assume structured uncertainty
A= {A C>?: A= diag( ), 4,0 € C}. Furthermore, let

-0.25 1.3 (10
-1.3 -025/0 1
S ~

@) 1 0 00

0 1 00
Since the exact computatlon of H(G(j®)) and v(G(j®)) is difficult we compute the
upper  bounds  given by  infp(jw)cFomx (D (@) G(;0) D(]w and
inf p(jo)e gﬂ)D (jo) G(jo) D (jo)” | o» Tespectively, where iD=

diag (d,db), dy # 0, dh # O} e upper bound inf  (jw) c Fomax D(]w G(]w D(]w

is evaluated using LMI techniques (Gahinet and Nemirovskii 1993) while it can be
shown that

den)fegllD (j©) G(j0) D™ (j)|| o = max {|Gr,y (]'0))|,\/‘/G(1,2) (j) G, ()|, | Gio () |}

These upper bounds are shown in figure 3 and the predictions of robust stability for
the two uncertainty characterizations are shown in figure 4. This example demon-

4.5 T T T T T -7

4r —nu_1 .~

N L N L L ) s L L
4] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (rad/s)

Figure 3. Upper bounds to the structured matrix norm for Example 2.
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0.2 0.4

0.6

Figure 4. Robust stability predictions for Example 2.
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strates that bounding uncertainties by alternative spatial norms not consistent with

the geometry of singular value bounds can increase robust stability predictions.

Example 3:

In this example, we demonstrate the utility of the proposed frame-

work for robust performance. Let v(G(j®)) denote the structured matrix norm
with defining norm || : ||1 Furthermore, let

Gii(s) ~

G (s) ~

[-0.25 1.3 |1 0]
-13 -025(0 1
1 0 00

L 0 1 0 0.
[-0.25 13 |1 0]
-13 -025(0 1
1 0 00

G (s) ~

Gnl(s) ~

[-0.25 1.3 | 0]
-1.3 -025|1
1 0 1
L 0 1 0]
[-0.25 1.3 | 0]
-1.3 -025]1
1 0 0

and A= {A e €2 A= diag(6,6,), 6,6 ¢ C}. Note that ||A||1 = ||A||1,OO for all
A € A Now, introducing a performance block it follows from Theorem 5 that
G = GGt € B, wher

Gls) ~

-0.25 13 11 0

-1.3 =-025(0 1 1
1 1 00 O
0 0 00 O
1 1 00 O
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7 -

— nu
mu

— — nominal performance

Performance Bounds

[} 02 04 0.6 0.8 1 1.2 14 1.6 18 2
Frequency (rad/s)

Figure 5. Robust performance bound for Example 3.

and where T(G(jw)) is defined with respect to the uncertainty set
A= [AcC>: A= block-diag(A, 8,), A e A’ & e C}, with defining norm given
by ||A|| = max{||A||1,|5p|}. Next it follows from Proposition 6 with || 'ﬁl([) = || : ||1,OO

and || [l = [[*{loa = I loor i/ = 1,2. that ¥(G(j)) < p(G(je)) where
~ . _[I[Gu(GO)|se  ||G12(9)||0o
Gijeo) = HGM (j) Lo G j) Lo

Hence, we obtain a computable upper bound on robust performance given by
=G |oe < p(GGD w1, @ e R

Alternatively, we can provide an upper bound for robust performance using Prop-
osition 1. Specifically, it can be shown that O.5”A| < omax(A) < ||A||, A e A and
hence it follows from Proposition 1 that 0.5¢ (G(j®)) < v(G(j®)) < H(G(jw)), @ € R,
Hence, we can compute an upper bound to H(G(j®) in terms
inf () Fomax (D (j©) G(j@) D™ ' (jo)) using standard LMI techniques (Gahinet and
Nemirovskii 1993). The nominal performance and the two upper bounds are shown
in figure 5.

9. Conclusion

The goal of this paper has been to extend the notion of the structured singular
value and introduce lower and upper bounds for robust stability and performance
for structured uncertainty involving alternative spatial norms. In particular, we
considered a norm-bounded, block-structured uncertainty characterization wherein
the defining norm is not the maximum singular value. To this end we introduced the
notion of structured matrix norms as a generalization of the structured singular
value for characterizing the size of the nominal transfer function. Finally, we demon-
strated the usefulness of the proposed framework on several examples wherein the
plant uncertainty characterization was not amenable to singular value bounds.
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