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SUMMARY

This paper considers "xed-structure stableH
2
-optimal controller synthesis using a multiobjective optimiza-

tion technique which provides a trade-o! between closed-loop performance and the degree of controller
stability. The problem is presented in a decentralized static output feedback framework developed for
"xed-structure dynamic controller synthesis. A quasi-Newton/continuation algorithm is used to compute
solutions to the necessary conditions. To demonstrate the approach, two numerical examples are con-
sidered. The "rst example is a second-order spring}mass}damper system and the second example is a fourth-
order two-mass system, both of which are considered in the stable stabilization literature. The results are
then compared with other methods of stable compensator synthesis. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that LQG synthesis can produce unstable (albeit stabilizing) controllers,
especially at high authority levels. Of course, for certain plants, speci"cally those that do not
satisfy the parity interlacing property [1], only unstable controllers are stabilizing. However, even



for stable plants, LQG often produces unstable controllers, thus requiring Nyquist encirclements
of the critical point. However, these encirclements and the resulting multiple gain margins, which
must be maintained by the input actuators, can be jeopardized by actuator saturation and startup
dynamics [2]. Therefore, whenever possible, it is desirable to implement only stable controllers.

Several modi"cations of LQG theory have been proposed to obtain stable compensators.
Several of these techniques involve either modi"ed Riccati equations [3}5] or constrained
weights [6, 7]. Thus the resulting controllers may sacri"ce performance for controller stability. In
[8, 9], an augmented cost technique related to the one used in this paper was proposed to obtain
stable controllers without unnecessarily sacri"cing performance. However, these papers focus on
multiple-model control, and therefore the cost function to be optimized is a weighted average of
a number of system costs and does not give any insight into the trade-o! between system
performance and controller stability margin.

The purpose of this paper is to provide a control-system design framework for H
2
-optimal

strong stabilization. To achieve this goal we formulate the stable LQG problem within the
context of decentralized static output feedback control which provides a general framework for
"xed-structure dynamic controller synthesis [10, 11]. In particular, in order to guarantee stable
stabilization, a multiobjective problem, reminiscent of scalarization techniques for Pareto optim-
ization, is treated by forming a convex combination of the H

2
norm of the closed-loop system

and a weighted H
2

norm of the controller. It is shown that as the trade-o! parameter is varied to
obtain better H

2
system performance, the controller eigenvalues approach the imaginary axis.

Thus, the control engineer can decide if additional performance improvements warrant the
resulting reduction in the stability margin of the controller.

Two examples from the stable stabilization literature are considered in this paper. The "rst
example is a second-order, spring}mass}damper system and the second example is a fourth-
order, two-mass system involving two #exible modes. The H

2
cost of the stable controllers

developed for the "rst example, though larger than that of the LQG controller, was comparable
to the lowest cost possible by a stable controller. For the second example, the di!erence between
the H

2
cost of the stable controller and the unstable LQG controller is negligible.

Finally, in this paper we use the following standard notation. Let R denote the set of real
numbers, let RnCm denote the set of real n]m matrices, let E denote expectation, and let I

n
denote

the n]n identity matrix.

2. STABLE H
2
-OPTIMAL CONTROL

In this section we state the H
2
-optimal stable stabilization problem. Speci"cally, given the

nth-order plant

x5 (t)"Ax(t)#Bu(t)#D
1
w(t), t3[0, R) (1)

with noisy measurements

y(t)"Cx(t)#Du(t)#D
2
w(t) (2)
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and performance variables

z(t)"E
1
x(t)#E

2
u(t) (3)

where u(t)3Rm, y(t)3Rl, z(t)3Rp, and w(t)3Rd, and where w(t) is a unit-intensity, zero-mean,
Gaussian white noise signal, determine an n5)

#
-order strictly proper dynamic compensator

x5
#
(t)"A

#
x
#
(t)#B

#
y(t) (4)

u(t)"C
#
x
#
(t) (5)

such that the H
2

performance criterion

J(A
#
, B

#
, C

#
)Olim

t?=

1
t

EP
t

0
zT(s)z(s) ds (6)

is minimized and the compensator dynamics matrix A
#

is asymptotically stable.
The closed-loop system (1)} (5) is given by

x80 (t)"AI x8 (t)#DI w(t), t3[0, R) (7)

z(t)"EI x8 (t) (8)

where

x8 (t)O C
x(t)

x
#
(t)D, AI O C

A BC
#

B
#
C A

#
#B

#
DC

#
D, DI OC

D
1

B
#
D

2
D, EI O CE1

E
2
C

#D
and where the closed-loop disturbance DI w(t) has intensity

<I ODI DI T"C
<
1

0

0 B
#
<
2
BT

#
D (9)

where <
1OD

1
DT

1
, <

2OD
2
DT

2
, and <

12OD
1
DT

2
"0. The closed-loop transfer function from

disturbances w to performance variables z is given by

G
zw

(s)OEI (sI
n8
!AI )~1DI

where n8 O n#n
#
. Next, de"ne a weighted controller transfer function from plant output y to

plant input u by

GK
#
(s)OE

2
C

#
(sI

n#
!A

#
)~1B

#
D

2
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Hence, the "xed-structure stable H
2
-optimal control problem is de"ned as:

min
(A# ,B# ,C# )

EG
zw

(s)E2
2

subject to

EGK
#
(s)E2

2
(R

3. DECENTRALIZED STATIC OUTPUT FEEDBACK FRAMEWORK

In this section we use the "xed-structure control framework given in [10, 11] to transform the
H

2
-optimal stable stabilization problem to a decentralized static output feedback setting.

Consider the 4-vector input}4-vector output decentralized system shown in Figure 1, where GK (s)
represents the linear, time-invariant dynamical system

x8 0 (t)"Ax8 (t)#
3
+
i/1

B
u i

u
i
(t)#B

w
w(t), t3[0, R) (10)

y
i
(t)"C

y i
x8 (t)#D

ywi
w(t), i"1, 2, 3 (11)

z(t)"C
z
x8 (t)#

3
+
i/1

D
zui

u
i
(t) (12)

where

u
1
(t)"A

#
y
1
(t), u

2
(t)"B

#
y
2
(t), u

3
(t)"C

#
y
3
(t) (13)

and

AOC
A 0

0 0D, B
wOC

D
1

0 D, C
zO [E

1
0]

B
u1OC

0

I
n#
D, B

u2O C
0

I
n#
D, B

u3OC
B

0D
C

y1O [0 I
n#

], C
y2O [C 0], C

y3O [0 I
n#

]

D
yw1O 0, D

yw2OD
2
, D

yw3O 0

D
zu1O 0, D

zu2O 0, D
zu3OE

2
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Figure 1. Decentralized static output feedback framework.

Next, de"ning

u( (t)O C
u
1
(t)

u
2
(t)

u
3
(t)D, y( (t)O C

y
1
(t)

y
2
(t)

y
3
(t)D

B
uO [B

u1
B

u2
B

u3
], D

zuO [D
zu1

D
zu2

D
zu3

]

C
yO C

C
y1

C
y2

C
y3
D, D

ywO C
D

yw1

D
yw2

D
yw3
D

and rewriting the decentralized control signals (13) in the compact form

u( (t)"Ky( (t) (14)

where

KO C
A

#
0 0

0 B
#

0

0 0 C
#
D
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the closed-loop dynamics

x80 (t)"AI x8 (t)#DI w(t), t3[0, R) (15)

z(t)"EI x8 (t) (16)

are identical to (7) and (8), but now AI , DI , and EI can be written as

AI "A#B
u
KC

y
, DI "B

w
#B

u
KD

yw
, EI "C

z
#D

zu
KC

y
.

The H
2

norm of G
zw

(s) is given by

EG
zw

(s)E2
2
"tr QI RI (17)

where QI is the unique, n8 ]n8 non-negative-de"nite solution to the algebraic Lyapunov equation

0"AI QI #QI AI T#DI DI T (18)

and where

RI OEI TEI "C
R

1
0

0 CT
#
R

2
C

#
D (19)

where R
1OET

1
E

1
, R

2OET
2
E
2
, and R

12OET
1
E
2
"0. Furthermore, if A

#
is stable, then the

H
2

norm of the weighted transfer function of the controller GK
#
(s)"E

2
C

#
(sI

n#
!A

#
)~1B

#
D

2
is

given by

EGK
#
(s)E2

2
"tr Q

#
CT

#
R

2
C

#
(20)

where Q
#
is the unique, n

#
]n

#
nonnegative-de"nite solution to the algebraic Lyapunov equation

0"A
#
Q

#
#Q

#
AT

#
#B

#
<
2
BT
#

(21)

To obtain (20) and (21) in terms of K, we de"ne the matrices

¸
A#O[I

n#
0 0], R

A#OC
I
n#
0

0 D
¸
B#O[0 I

n#
0], R

B#OC
0

I
l
0D
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¸
C#O[0 0 I

m
], R

C#OC
0

0

I
n#
D

so that ¸
A#
KR

A#
"A

#
, ¸

B#
KR

B#
"B

#
, and ¸

C#
KR

C#
"C

#
. Thus, (20) and (21) become

EGK
#
(s)E2

2
"tr Q

#
RT

C#
KT¸T

C#
R

2
¸

C#
KR

C#
(22)

and

0"¸
A#
KR

A#
Q

#
#Q

#
RT

A#
KT¸T

A#
#¸

B#
KR

B#
<
2
RT

B#
KT¸T

B#
(23)

respectively.
In order to design stable H

2
-optimal controllers we pose the following multiobjective optim-

ization problem: For o3[0, 1], determine K that minimizes:

J(K)"(1!o) tr QI RI #o tr Q
#
RT

C#
KT¸T

C#
R

2
¸
C#
KR

C#
(24)

where QI , Q
#
50 satisfy (18) and (23), respectively. Note that (24) involves a convex combination

of the H
2

closed-loop system norm and the weighted H
2

norm of the controller, varied with the
trade-o! parameter o. By including the H

2
cost of the controller in the objective function, we can

guarantee that the controller is stable as long as the objective function is "nite. By varying
o3[0, 1], (24) can be viewed as the scalar representation of a multiobjective cost. To achieve the
best closed-loop performance with a stable controller, we only want to use the H

2
cost of the

controller as a constraint, and thus we set o'0 to be small so that theH
2

cost of the controller is
negligible compared to the H

2
cost of the closed-loop system. By doing this, the optimization

routine will minimize the cost of the closed-loop system, and not attempt to minimize the H
2

cost
of the compensator. However, increasing the size of the trade-o! parameter o will increase the
controller stability margin. Finally, note that by letting oP0, we recover the H

2
-optimal control

problem.
The necessary conditions for optimality can be derived by forming the Lagrangian

L(PI , QI , P
#
,Q

#
,K)"(1!o) tr QI RI #tr PI [AI QI #QI AI T#<I ]

#o tr Q
#
RT

C#
KT¸T

C#
R

2
¸
C#
KR

C#
#tr P

#
[¸

A#
KR

A#
Q

#
#Q

#
RT

A#
KT¸T

A#

#¸
B#
KR

B#
<
2
RT

B#
KT¸T

B#
] (25)

where PI 3RnJ ]nJ and P
#
3Rn

#
]n

# are Lagrange multipliers. The partial derivatives with respect to
the free parameters in (25) are given by

LL
LQI

"AI TPI #PI AI #(1!o)RI
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LL
LPI

"AI QI #QI AI T#<I

LL
LQ

#

"AT
#
P
#
#P

#
A

#
#oCT

#
R

2
C

#

LL
LP

#

"A
#
Q

#
#Q

#
AT

#
#B

#
<

2
BT
#

LL
LA

#

"¸
A#

LL
LK

R
A#

,
LL
LB

#

"¸
B#

LL
LK

R
B#

,
LL
LC

#

"¸
C#

LL
LK

R
C#

where

LL
LK

"BT
u
PI QI CT

y
#BT

u
PI <I DT

yw
#(1!o)DT

zu
EI QI CT

y

#o¸T
C#

R
2
¸

C#
KR

C#
Q

#
RT

C#
#¸T

A#
P
#
Q

#
RT

A#
#¸T

B#
¸
B#
KR

B#
<
2
RT

B#

4. QUASI-NEWTON/CONTINUATION ALGORITHM

To solve the non-linear optimization problem posed in Section 3, a general-purpose BFGS
quasi-Newton algorithm [12] is used. The line-search portions of the algorithm were modi"ed to
include a constraint-checking subroutine to verify the search direction vector lies entirely within
the set of parameters that yield a stable closed-loop system. This modi"cation ensures that the
cost function J remains de"ned at every point in the line-search process.

One requirement of gradient-based optimization algorithms is an initial stabilizing design. For
plants satisfying the parity interlacing property, initialization can be accomplished by using
su$ciently low authority compensators [13]. This was accomplished here by multiplying the
control weight E

2
by a scalar g'1. At su$ciently low authority, the LQG controllers were

stable. These low authority, stable, full-order controllers can generally be truncated using an
appropriate model reduction technique without destroying closed-loop stability. For decentra-
lized control, this technique can be implemented in a sequential manner for each channel to
obtain initializing gains with the given structure. These low authority LQG designs are used to
initialize a low authority optimization algorithm. The optimized controller gains are then used to
sequentially initialize higher authority problems until eventually the desired high authority
design is obtained. When the required authority is regained, the trade-o! parameter o is varied
until the best H

2
performance is attained in the face of a desired controller stability margin.

Finally, we note that the optimization problem described above is non-convex. This makes
complexity analysis extremely di$cult since complexity results are developed almost exclusively
for convex optimization problems. However, the lack of convexity here is not simply a limitation
of the stable stabilization formulation since the reduced-order control design problem is an
inherently non-convex optimization problem.
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Figure 2. Bode plots of LQG and stable H
2

controllers (o"0.0288).

5. SPRING}MASS}DAMPER EXAMPLE

Consider the spring}mass}damper system given by the state-space realization [6, 14]

xR (t)"C
0 1

!3 !4D x(t)#C
0

1D u(t)

y(t)"[2 1]x(t)

The matrices D
1
, D

2
, E

1
, and E

2
are chosen to be

D
1
"C

35 0

!61 0D, D
2
"[0 1], E

1
"C

52.9150 8.9443

0 0 D, E
2
"C

0

1D
For the given data, the LQG controller is unstable. To initialize the stable H

2
-optimal control

problem, the control weighting was increased by multiplying E
2

by g"16, as described in
Section 4. This stable LQG design was used as a starting point for the quasi-Newton algorithm
which found optimal stable compensators as g was decremented back to unity, returning the
control authority to its original value.
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Figure 3. Nyquist plots of the loop gain for LQG and stable H
2

controllers (o"0.0288).

As can be seen in Figure 2, increasing the authority toward a critical level (g"8.58) causes the
gain of the LQG controller to approach in"nity, at which point the low-frequency phase jumps
!1803 and the gain begins to decrease, though the controller must now be unstable to maintain
closed-loop stability. At this point, it can be seen that the magnitude of the stable H

2
-optimal

controllers increase as well, though not as drastically as the LQG design, and the stable
H

2
-optimal controllers always have a phase of 03 at low frequencies. The Nyquist plots of the

LQG controller and the stable controller at full control authority, as seen in Figure 3, show the
poor gain margins of the unstable LQG controller.

Since the loop gain with the H
2
-optimal stable controller in feedback is much larger than that

with the LQG controller at full authority, the impulse responses of the LQG and the stable
controllers were simulated to compare the actual controller e!orts needed to bring the closed-
loop system back to the equilibrium. These comparisons are shown in Figure 4. As expected, the
performance of the system with the LQG controller is better than the performance of the system
with the stableH

2
-optimal controller. However, note that even though the loop gain of the stable

controller is much larger than that of the LQG controller, the control e!ort used by the stable
controller is signi"cantly less than that used by the LQG controller and hence is less likely to
saturate the system actuators, which could cause closed-loop instabilities to occur when an
unstable controller is used.

Once the control authority was increased to the desired level, the value of the parameter o was
varied to study the trade-o! between the H

2
cost of the system and the stability level of the

compensator. Figure 5 shows the position of the controller (n
#
"2) eigenvalues as a function of

o as well as the H
2

cost of the closed-loop system as a function of o. By studying the resulting
trade-o!, the control engineer can decide if subsequent cost reductions justify bringing the
controller eigenvalues closer to the stability boundary.
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Figure 4. Impulse response of closed-loop system with LQG and stable H
2

controllers
(g"1, o"2.88]10~8).

For o"0.5, the controller transfer function is given by

G
#
(s)"

!274.21s!4183.8
s2#38.324s#43.539

(26)

which has eigenvalues at j
1
"!37.152 and j

2
"!1.1719, while, for o"5]10~7, the controller

transfer function is given by

G
#
(s)"

!504.93s!9744.5
s2#60.543s#0.086523

(27)

which has eigenvalues at j
1
"!60.541 and j

2
"!0.0014292.
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Figure 5. Location of controller eigenvalues and H
2

cost versus o.

Since, as stated in [14], the lowest possible cost via stable stabilization for this example is given
by a fourth-order controller we used the present framework to obtain stable fourth-, sixth-, and
eighth-order controllers to quantify the bene"ts of expanded-order control. Speci"cally, these
expanded-order stable H

2
-optimal controllers were initialized by adding one, two, and three

stable modes to a full-order stable LQG controller, at which point the optimization algorithm
was applied. The corresponding closed-loop costs, computed at various levels of control author-
ity, are shown in Figure 6. At lower levels of controller authority, the stable controllers have
nearly identical costs to the LQG controllers. As the authority is increased, the closed-loop cost
associated with the stable controllers becomes noticeably worse than the LQG controllers,
however it is noticeably better than the best LQG design with a stable controller (i.e., the LQG
design with g"8.58). At the speci"ed control authority (g"1), the dependence of the augmented
cost function on the controller cost was decreased by decreasing the variable o.

As seen in Figure 7, the full-order controller has the highest H
2

cost, followed by the controller
with one extra mode. The other two controllers, however, have nearly identical closed-loop costs,
suggesting that arbitrarily high-order controllers may not achieve signi"cant performance im-
provements. Since decreasing o decreases the dependence of the cost function J on the weighted
H

2
cost of the controller, the controller loop gain increases greatly as o becomes smaller, as

shown in Figure 8.
Table I shows that the stable H

2
-optimal controllers obtained here compare favourably to

earlier results. In [6], the design weights were constrained in such a way as to yield stable
controllers. Even with a tuning procedure, however, those costs are larger than what was
obtained using the present framework. In [14], a non-linear programming approach was
used to obtain H

2
-optimal controllers, but only for SISO systems. However, as can be seen,
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Figure 6. H
2

cost versus control weighting for various-order stable H
2

controllers (o"0.0288).

Figure 7. Stable H
2

controller cost versus o.
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Figure 8. Bode plots of stable H
2

controllers versus o.

the H
2

cost is slightly larger than the fourth-order controllers designed here. In fact, the optimal
controllers obtained in [14] had two poles located at the origin, and thus the controller was
merely conditionally stable. The stability boundary was then pushed back to s"!0.5 to yield
a stable controller. It should be noted that the cost obtained by the second-order controller
synthesized using our method was 627.1, whereas in [9], it is stated that the minimum cost
possible by a second-order stable compensator is 628, though this may be simply a numerical
artifact. Also, listed is the H

2
cost of an LQG design with g chosen as low as possible while still

yielding a stable controller, which is signi"cantly larger than all other methods considered.
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Table I. H
2

costs for various stable stabilization techniques.

Second order Fourth order Sixth order Eighth order

Fixed structure 627.11 622.20 621.73 621.67
Ganesh [14] (optimal) N/A 622.73 N/A N/A
Ganesh (sub-ptimal) N/A 628.40 N/A N/A
Halevi [6] ("rst result) 678.97 N/A N/A N/A
Halevi (after tuning) 637.18 N/A N/A N/A
Stable LQG (g"8.58) 713.02 N/A N/A N/A

6. TWO-MASS EXAMPLE

Consider the dynamic system [4] shown in Figure 9. The equations of motion for this system are
given by

m
1
xK
1
(t)#k(x

1
(t)!x

2
(t))"u(t)

m
2
xK
2
(t)#k(x

2
(t)!x

1
(t))"0

Here we consider the case of a colocated sensor and actuator pair, where the output is given by
y"x

1
. Letting m

1
"m

2
"k yields the plant state-space realization

xR (t)"C
0 0 1 0

0 0 0 1

!1 1 0 0

1 !1 0 0Dx(t)#C
0

0

1

0D u(t)

y(t)"[1 0 0 0]x(t).

As in [4], the matrices D
1
, D

2
, E

1
, and E

2
are chosen to be

D
1
"C

0 0

0 0

0 0

68 0D, D
2
"[0 1], E

1
"C

1 0 1 0

0 0 0 0D, E
2
"C

0

0.01D.

For this example, a full-order and a reduced-order stable H
2
-optimal controller were developed.

The control authority was chosen to be su$ciently low so that the LQG controller was stable.
This controller was then used to initialize the optimization algorithm.

The same general trends can be observed here as in the "rst example, though in this case, even
when full authority is achieved, the H

2
cost of the full-order stable controller rivals the

performance of the unstable H
2
-optimal LQG controller, which would be apparent in Figure 10

if the curves were not directly on each other. In fact, the relative di!erence in the H
2

costs is
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Figure 9. Two-mass system.

Figure 10. H
2

cost versus control weighting (o"0.04752).

merely 9.7114]10~4 per cent. For this reason, expanded-order controllers could not give further
cost improvements to justify their increased complexity, and thus were not designed for this
example. Also, the initial value of o was su$ciently small that further reductions did not improve
the H

2
cost of the closed-loop system. Table II compares the performance of the stable

H
2
-optimal controller designs with LQG, stable LQG (LQG controller with g chosen as

low as possible while still yielding a stable controller), and the full-order controller designed in
[4], which used an over bounding approach along with parameter tunings to obtain stable
controllers.

The ability of this stable controller to achieve an H
2

performance nearly identical to that of the
LQG controller was then explored. After running numerous examples, it appears that a
minimum phase open-loop stable plant (such as the "rst example) will yield a signi"cant
performance degradation when the controller is constrained to be stable. However, a
minimum phase, open-loop unstable plant does not seem to exhibit this lack of performance, as
demonstrated by this example. Further investigation seems to show that stable H

2
-optimal
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Table II. H
2

costs for various stable stabilization techniques.

Second order Fourth order

LQG N/A 16.175703
Fixed structure 27.9340 16.175782
Wang [4] N/A 16.261138
Stable LQG (g"12.21) N/A 34.334324

controllers designed for non-minimum phase, open-loop unstable plants will also show perfor-
mance degradation over an LQG controller, whereas no appreciable loss of performance
occurred when a stable H

2
-optimal controller was designed for a non-minimum phase, open-

loop stable plant.

7. DISCUSSION AND CONCLUSION

In this paper we investigated a scheme to synthesize H
2
-optimal controllers by including the

H
2

cost of the controller in the Lagrangian and using a multiobjective optimization technique.
The problem was formulated in a decentralized static output feedback framework, which
facilitated use of a quasi-Newton optimization algorithm. This technique was applied to two
numerical examples. It was numerically shown that for some systems, namely minimum phase,
open-loop unstable or non-minimum phase, open-loop stable plants, a stable controller can rival
the performance of an unstable H

2
-optimal LQG controller and yet not be constrained by the

loop margins of unstable controllers. For other systems, however, there could be a signi"cant
degradation in performance by requiring the controller to remain stable, although this technique
provided controllers yielding the minimal H

2
closed-loop cost for all stable linear controllers.
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