
Real robustness bounds using generalized stability multipliers

ANDREW G. SPARKS² and DENNIS S. BERNSTEIN³

Su� cient conditions for robust stability using generalized stability multipliers are
presented for systems with sector- and norm-bounded, block-structured real uncer-
tainty. Two parametrizations of the multiplier are considered and the robustness
criteria are written as linear matrix inequalities. Upper bounds for the peak struc-
tured singular value over frequency, which eliminate frequency gridding, are then
derived. Numerical examples provide a comparison of the peak upper bounds
obtained using the two multiplier parametrizations. These examples show that
the conservatism of the peak upper bounds is reduced by increasing the dynamic
order of the multiplier.

1. Introduction

Computation of the structured singular value for robust stability analysis is an
intractable problem and upper bounds are used in practice. In particular, the upper
bound of Fan et al. (1991) for real uncertainty is stated in terms of the frequency
response of the nominal plant transfer function, and hence is evaluated using
frequency gridding. In practice, however, it is often di� cult to compute reliably
the peak value of the upper bound of Fan et al. (1991) over frequency since the
upper bound may have sharp peaks or may even be discontinuous (Sparks and
Bernstein 1998).

An alternative to frequency gridding for computing robustness bounds was pro-
posed by Sparks and Bernstein (1998). The approach of Sparks and Bernstein (1998)
is based on a generalization of the Popov criterion and provides a more reliable test
of robust stability than the frequency-domain bound by eliminating frequency gridd-
ing. This peak upper bound involves a multiplier that is an a� ne function of
frequency and a scaling that is independent of frequency. However, the peak
upper bound is generally conservative since the frequency dependence of the multi-
plier and scaling is restricted.

In this paper, we reduce the conservatism of the peak upper bound for the
structured singular value given by Sparks and Bernstein (1998) by using multipliers
and scalings that are more general functions of frequency. The new stability criteria
are used to compute peak bounds for the structured singular value for several
numerical examples. The reduced conservatism achieved by including additional
terms in the multiplier and scaling is demonstrated.
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2. Preliminaries

For convenience, we recall the following mathematical preliminaries. De® ne the
paraconjugate transpose of a real-rational function Z(s) = C(sI - A)- 1B + D by
Z~ (s) 7 ZT(- s) = BT(- sI - AT)- 1CT + DT. Let X* be the complex conjugate
transpose of a complex matrix X, let the Hermitian part of a square matrix X be
denoted by He X7 1

2(X+ X*) , and note that He Z(s) = 1
2(Z(s) + Z~ (s)) for all

s = jx . Finally, X>0 (X ³ 0) indicates that the Hermitian matrix X is positive
de® nite (non-negative de® nite).

A square real-rational function Z(s) is generalized positive real (Anderson and
Moore 1968) if He Z(s) ³ 0 for all s = jx such that jx is not a pole of Z(s) , while
Z(s) is strictly generalized positive real if Z(s) has no imaginary axis poles and
He Z(s) >0 for all s = jx .

3. Sector-bounded uncertainty

De® ne the set FM of real, sector-bounded matrices F by

FM 7 {F Î F : 0 £ F £ M}
where M Î F is positive de® nite, and F is the set of real symmetric, block-structured
matrices de® ned by

F7 {F : F = block-diag(Il1 Ä F1,. . . ,Ilr Ä Fr), Fi = FT
i Î R mi ´ mi, i = 1,. . . ,r}

where Ä denotes a Kronecker product. Now, let G(s) = C(sI - A)- 1B, where A is
asymptotically stable, and consider the negative feedback interconnection of G(s)
and F. Noting that this interconnection has the dynamics Çx = (A - BFC)x, it
follows that the asymptotic stability of the interconnection is equivalent to the
asymptotic stability of

Çx = (A + d A)x (1)

where d A = - BFC. To prove our robust stability criterion for the uncertain system
(1), we ® rst recall the following lemma (Haddad and Bernstein 1991).

Lemma 1: If X Î C ń n satis® es He X ³ 0 and Y Î C ń n satis® es He Y >0, then
det (I + XY ) /= 0.

Now, we introduce a robust stability criterion involving a multiplier N(s) and a
scaling Q(s) that account for the structure of the sector-bounded matrices in FM.

Theorem 1: Let G(s) be asymptotically stable and suppose there exist m ´ m real-
rational functions N(s) and Q(s) such that the following conditions are satis® ed.

(i) N(s) and Q(s) have no imaginary poles.

(ii) Q(s) = Q*(s) for all s = jx .

(iii) FN(s) = N(s)F and FQ(s) = Q(s)F for all F Î F and for all s = jx .

(iv) He N(s) ³ Q(s) >0 for all s = jx .

(v) Q(s)M- 1 + N(s)G(s) is strictly generalized positive real.

Then the negative feedback interconnection of G(s) and F is asymptotically stable for
all F Î FM.
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Proof: Let F Î FM and x Î R and note from Lemma 2.1 of Bernstein et al.
(1995) that 0 £ F £ M if and only if F ³ FM- 1F. Since, by (iv), Q(jx ) >0, it fol-
lows that (F - FM- 1F)1 /2Q(jx )(F - FM- 1F)1 /2 ³ 0. Now, since F Î F and
M Î F, it follows that FM- 1F Î F and (F - FM- 1F)1 /2 Î F, so that, by (iii),
(F - FM- 1F)Q(jx ) ³ 0 and thus FQ(jx ) ³ FQ(jx )M- 1F. Next, since, by (iv),
He N(jx ) ³ Q(jx ) , it follows that He F1/2N(jx )F1 /2 ³ F1/2Q(jx )F1 /2, so that,
by (iii), He FN(jx ) ³ FQ(jx ) ³ FQ(jx )M- 1F. Hence, N~ (jx )F+ FN(jx ) ³
2FQ(jx )M- 1F, so that

He N~ (jx )F - FQ(jx )M- 1F[ ] ³ 0
and

He FN- 1(jx ) - N- ~ (jx )FQ(jx )M- 1FN- 1(jx )[ ] ³ 0

Finally, it follows that

He FN- 1(jx )[I - Q(jx )M- 1FN- 1(jx )]- 1[ ] ³ 0

Next, since Q(s)M- 1 + N(s)G(s) is strictly generalized positive real, it follows
that He [Q(s)M- 1 + N(s)G(s)] >0 for all s = jx . Applying Lemma 1 with
X = FN- 1(s)[I - Q(s)M- 1FN- 1(s)]- 1 and Y = Q(s)M- 1 + N(s)G(s) for all s = jx
yields

0 /= det [I + FN- 1(s)[I - Q(s)M- 1FN- 1(s)]- 1[Q(s)M- 1 + N(s)G(s)]]
= det [I + FN- 1(s)Q(s)M- 1[I - FN- 1(s)Q(s)M- 1]- 1.

+ [I - FN- 1(s)Q(s)M- 1]- 1FG(s)]
= det [[I - FN- 1(s)Q(s)M- 1]- 1 + [I - FN- 1(s)Q(s)M- 1]- 1FG(s)]
= det [I - FN- 1(s)Q(s)M- 1]- 1det [I + FG(s)]

for all s = jx and for all F Î FM, so that det(I + FG(s)) /= 0 for all s = jx and for all
F Î FM.

Next, note that [I + G(s)F]- 1G(s) = C(sI - (A - BFC))- 1B. Suppose that there
exists F Î FM such that [I + G(s)F]- 1G(s) is not asymptotically stable. Since A is
Hurwitz, there exists e Î (0,1] such that A - e BFC has an eigenvalue j^x on the
imaginary axis. Thus, setting s = j^x in the identity

det (I + e G(s)F) = det (I + e C(sI - A)- 1BF)

= det (I + e (sI - A)- 1BFC)

= det (sI - A)- 1det (sI - (A - e BFC))

implies det (I + e G(j^x )F) = 0. However, since e F Î FM, it follows that
det(I + e G(j^x )F) /= 0, which is a contradiction. Hence, the negative feedback inter-
connection of G(s) and F is asymptotically stable for all F Î FM. h

4. Norm-bounded uncertainty

De® ne the set D g of real, norm-bounded uncertain matrices D by

D g 7 { D Î D : s max( D ) £ g - 1}
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where g >0 and D is the set of symmetric, block-structured matrices de® ned by

D 7 { D : D = block-diag (Il1 Ä D 1, . . . ,Ilr Ä D r), D i = D T
i Î R mi ´ mi, i = 1,. . . ,r}

Note that D = F and that if D Î D g , then s max( D ) £ g - 1, so that - g - 1I £ D £ g - 1I
and thus 0 £ D + g - 1I £ 2g - 1I. Hence D + g - 1I Î FM for M = 2g - 1I. Conversely,
if F Î FM, where M= 2g - 1I, then F - g - 1I Î D g . Hence, D g + g - 1I = F2g - 1I. Ana-
logous to the previous section, we de® ne d A = BD C in (1) so that the asymptotic
stability of the feedback interconnection of G(s) and D is equivalent to the asymp-
totic stability of (1). Finally, de® ne the shifted transfer function Gg (s) by

Gg (s) 7 I - g - 1G(s)( ) - 1
G(s)

Now, to make connections with structured singular value theory, we state a
robust stability criterion involving a frequency-dependent multiplier and a fre-
quency-dependent scaling that account for the structure of the norm-bounded
matrices in D g .

Theorem 2: Let Gg (s) be asymptotically stable and suppose there exist m ´ m real-
rational functions N(s) and Q(s) such that the following conditions are satis® ed.

(i) N(s) and Q(s) have no imaginary poles.

(ii) Q(s) = Q*(s) for all s = jx .

(iii) D N(s) = N(s) D and D Q(s) = Q(s) D for all D Î D and for all s = jx .

(iv) He N(s) ³ Q(s) >0 for all s = jx .

(v) 1
2g Q(s) + N(s)Gg (s) is strictly generalized positive real.

Then the negative feedback interconnection of G(s) and D is asymptotically stable for
all D Î D g .

Proof: The result follows from Theorem 1 by letting M = 2g - 1I and by noting
from ® gure 1 that asymptotic stability of the negative feedback interconnection of
Gg (s) and F for all F Î FM is equivalent to asymptotic stability of the feedback
interconnection of G(s) and D for all D Î D g . h

5. Convex robust stability tests

In this section, we consider two parametrizations of the multiplier N(s) and the
scaling Q(s) which allow the robust stability test given by Theorem 2 to be written as
LMIs and evaluated as convex feasibility problems. Speci® cally, we parametrize the
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multiplier and scaling as rational functions by considering matrix polynomials and
sums of rational functions. For convenience, de® ne the set X of symmetric matrices
X that commute with every element in D as

X7 {X : X = block-diag (X1 Ä Im1,. . . ,Xr Ä Imr
), Xi = XT

i Î R li ´ li, i = 1,. . . ,r}
Hence, if D Î D and X Î X, then D X = XD = block-diag (X1 Ä D 1, . . . ,Xr Ä D r) .

The following lemma relates the generalized positive realness of a real-rational
function to the feasibility of an LMI.

Lemma 2: Let Z(s) = C(sI - A)- 1B + D, where (A,B) is controllable and (A,C)
is observable. Then the following statements are equivalent.

(i) Z(s) is generalized positive real.

(ii) There exist P = PT Î R ń n, det P /= 0, L , and W such that

ATP+ PA + LTL = 0 (2)

BTP+ WTL = C (3)

DT + D = WTW (4)

(iii) There exists P = PT Î R ń n, det P /= 0, such that

ATP + PA PB - CT

BTP - C - (D + DT)[ ] £ 0 (5)

Proof: The equivalence of (i) and (ii) is a standard result, see Anderson and
Moore (1968), for example. Next, rewriting (2) ± (4) as

ATP + PA PB - CT

BTP - C - (D + DT)[ ] = - LT

WT[ ] [L W ] (6)

implies (5). Conversely, if there exists P = PT, det P /= 0, such that (5) holds, then
there exist L and W such that (6) holds, which implies (ii), as required. h

The following lemma provides a state space realization for the proper series
connection of a matrix polynomial and a proper transfer function (Ly et al. 1994).

Lemma 3: Let G(s) = C(sI - A)- 1B+ D and X(s) = X0 + sX1 + s2X2 + ´´´+ srXr,
where Xi Î R ḿ m, i = 1,. . . ,r. If X(s)G(s) is proper, then

X(s)G(s) ~
A B

å
r

i=0
XiCAi X0D + å

r

i=1
XiCAi- 1B

é
êêêë

ùúúú
û

(7)

5.1. Matrix polynomial parametrization
We ® rst choose N(s) and Q(s) to be polynomial functions of s. Let n be a positive

integer, q be a positive even integer, Ni Î X, i = 0,1,2, . . . ,n, and Qj Î X,
j = 0,2,4, . . . ,q, and de® ne
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N(s) 7 N0 + sN1 + ´´´+ snNn = å
n

i=0
siNi

Q(s) 7 Q0 + s2Q2 + ´´´+ sqQq = å
q

j=0
j even

s jQj

Furthermore, de® ne Neven(s) 7 å n
i=0

i even
siNi.

Next, we rewrite the robust stability test of the previous section as a convex
feasibility problem by representing the strict generalized positivity of
1
2 g Q(s) + N(s)Gg (s) and the constraints Neven(s) ³ Q(s) >0 for all s = jx as
LMIs. For convenience, let

1
p~ (s)p(s)

I ~
Ap Bp

Cp 0
é
ë

ù
û

(8)

where p(s) is a polynomial with real coe� cients. Next, note that the shifted transfer
function Gg (s) = (I - g - 1G(s))- 1G(s) has the realization Gg (s) = C(sI - Ag )-

1B,
where Ag = A + g - 1BC and G(s) = C(sI - A)- 1B. Finally, de® ne

~A7

Ag 0 0

BpC Ap 0

0 0 Ap

é
êêë

ùúú
û
, ~B7

B

0

Bp

é
êêë

ùúú
û

~C7 å
n

i=1
å

i

k=1
NiCpA

i- k
p BpCAk- 1

g å
n

i=0
NiCpA

i
p

1
2 g å

q

j=0
j even

QjCpA
j
p

é
êë

ùú
û

~D 7 å
n

i=2
å

i

k=2
NiCpA

i- k
p BpCAk- 2

g B + 1
2 g å

q

j=2
j even

QjCpA
j- 1
p Bp

The following proposition is a reformulation of the robust stability test of
Theorem 2 using LMIs.

Proposition 1: Let g >0, G(s) = C(sI - A)- 1B, and p(s) be a Hurwitz polynomial
such that 1/p~ (s)p(s)(Neven(s) - Q(s)) and g /2p~ (s)p(s)Q(s) + 1/p~ (s)p(s)N(s)Gg (s)
are proper, and assume that Gg (s) is asymptotically stable. If there exist PQ = PT

Q,
PN = PT

N, P = PT, e Q >0, e >0, Ni Î X, i = 0,1,. . . ,n, and Qj Î X,
j = 0,2,4, . . . ,q, such that

AT
p PQ + PQAp PQBp - å

q

j=0
j even

ATj
p CT

p Qj

BT
p PQ - å

q

j=0
j even

QjCpA
j
p e QI - å

q

j=2
j even

QjCpA
( j- 1)
p Bp + BT

p AT( j- 1)
p CT

p Qj

é
êêêêêêë

ùúúúúúú
û

£ 0 (9)
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AT
p PN + PNAp

PNBp - å
n

i=0
i even

ATi
p CT

p Ni

+ å
q

j=0
j even

ATj
p CT

p Qj

BT
p PN - å

n

i=0
i even

NiCpA
i
p

+ å
q

j=0
j even

QjCpA
j
p

å
q

j=2
j even

QjCpA
( j- 1)
p Bp + BT

p AT( j- 1)
p CT

p Qj

- å
n

i=2
i even

NiCpA
( i- 1)
p Bp + BT

p AT(i- 1)
p CT

p Ni

é
êêêêêêêêêêêêêêêêêë

ùúúúúúúúúúúúúúúúúú
û

£ 0 (10)

~A
T
P + P~A ~B

T
P - ~C

~BP - ~C
T

e I - ( ~D + ~D)T[ ] £ 0 (11)

then the feedback interconnection of G(s) and D is asymptotically stable for all
D Î D g .

Proof: First, using Lemma 3, it follows that

1
p~ (s)p(s)

Q(s) ~

Ap Bp

å
q

j=0
j even

QjCpA
j
p å

q

j=2
j even

QjCpA
j- 1
p Bp

é
êêêë

ùúúú
û

and

1
p~ (s)p(s)

(Neven(s) - Q(s))

~

Ap Bp

å
n

i=0
i even

NiCpA
i
p + å

q

j=0
j even

QjCpA
j
p å

n

i=2
i even

NiCpA
i- 1
p Bp + å

q

j=2
j even

QjCpA
j- 1
p Bp

é
êêêë

ùúúú
û

Next, using implication (iii) Þ (i) of Lemma 2, (9) and (10) imply that

1
p~ (s)p(s)

Q(s) ³ e QI, 1
p~ (s)p(s)

(Neven(s) - Q(s)) ³ 0

for all s = jx . Since p(s) is Hurwitz, p~ (s)p(s) >0 for all s = jx , so that
Neven(s) ³ Q(s) >0 for all s = jx .

Next, note that

g
2p~ (s)p(s)

Q(s) +
1

p~ (s)p(s)
N(s)Gg (s) ~

~A ~B
~C ~D

é
ë

ù
û

Using implication (iii) Þ (i) of Lemma 2, it follows from (11) that

He
g

2p~ (s)p(s)
Q(s) +

1
p~ (s)p(s)

N(s)Gg (s)[ ] ³
e

2
I
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for all s = jx . Hence, it follows that 1
2g Q(s) + N(s)Gg (s) is strictly generalized

positive real. The result follows from Theorem 2 by noting that N(s) D = D N(s)
and Q(s) D = D Q(s) for all D Î D and for all s Î C and that He N(s) =
He Neven(s) = Neven(s) ³ Q(s) for all s = jx . h

5.2. Rational function parametrization
We next let N(s) and Q(s) be rational functions involving sums of ® rst-order

rational transfer functions. Let n and q be positive integers, Ni Î X, i = 0,1,. . . ,n,
Qj Î X, j = 0,1,. . . ,q, b i Î R , b i /= 0, i = 0,1,. . . ,n and a j Î R , a j /= 0,
j = 0,1,. . . ,q and de® ne

N(s) 7 N0 +
1

s + b 1
N1 + ´´´+

1
s + b n

Nn

Q(s) 7 Q0 +
1

s + a 1
+

1
- s + a 1( ) Q1 + ´´´+

1
s + a q

+
1

- s + a q( ) Qq

Next, note that

He N(s) = N0 +
1
2

1
s + b 1

+
1

- s + b 1( ) N1 + ´´´+
1
2

1
s + b n

+
1

- s + b n( ) Nn

for all s = jx and let

He N(s) ~
AN BN

CN DN

é
ë

ù
û
, Q(s) ~

AQ BQ

CQ DQ

é
ë

ù
û

and

He N(s) - Q(s) ~
ANQ BNQ

CNQ DNQ

é
ë

ù
û

where

AN 7

- b 1I

b 1I

. .
.

b nI

é
êêêêêêë

ùúúúúúú
û
, BN 7

I

I

..

.

I

é
êêêêêë

ùúúúúú
û

CN 7 1
2N1 - 1

2N1 ´´´ - 1
2Nn[ ], DN 7 N0

AQ 7

- a 1I
a 1I

. .
.

a qI

é
êêêêë

ùúúúú
û
, BN 7

I
I
..
.

I

é
êêêêë

ùúúúú
û

CN 7 Q1 - Q1 ´´´ - Qq[ ], DN 7 Q0
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ANQ =
AQ 0

0 AN[ ] , BNQ =
BQ

BN[ ]
CNQ = - CQ CN[ ], DNQ = DN - DQ

Furthermore, for convenience, let

~A7

Ag 0 0

BNC AN 0

0 0 AQ

é
êêêë

ùúúú
û
, ~B7

B

0

BQ

é
êêêë

ùúúú
û

~C7 DNC CN
1
2 g CQ[ ], ~D 7 1

2 g DQ

Now, we specialize the robust stability test of Theorem 2 using the rational
multipliers and scaling de® ned above.

Proposition 2: Let G(s) = C(sI - A)- 1B and g >0, and assume that Gg (s) is asymp-
totically stable. If there exist PQ = PT

Q, PNQ = PT
NQ, P = PT, e Q >0, e >0, Ni Î X,

i = 0,1,. . . ,n, and Qj Î X, j = 0,1,. . . ,q, such that

AT
QPQ + PQAQ BT

QPQ - CQ

BQPQ - CT
Q e QI - (DQ + DT

Q)[ ] £ 0 (12)

AT
NQPNQ + PNQANQ BT

NQPNQ - CNQ

BNQPNQ - CT
NQ - (DNQ + DT

NQ)[ ] £ 0 (13)

~A
T
P + P~A ~B

T
P - ~C

~BP - ~C
T

e I - ( ~D + ~D
T)[ ] £ 0 (14)

then the feedback interconnection of G(s) and D is asymptotically stable for all
D Î D g .

Proof: First note that

1
2 g Q(s) + N(s)Gg (s) ~

~A ~B
~C ~D

é
ë

ù
û

Hence, using implication (iii) Þ (i) of Lemma 2, (12) and (13) imply that
He N(s) ³ Q(s) >0, while (14) implies that 1

2 g Q(s) + N(s)Gg (s) is strictly general-
ized positive real. The result follows by applying Theorem 2. h

6. Peak structured singular value bounds

In this section, we use Propositions 1 and 2 to recast the peak upper bounds of
the structured singular value as convex feasibility tests. Recall that the structured
singular value of G(jx ) for real, block-structured uncertainty is de® ned as

¹(G(jx )) 7 1
min{ s max( D ) : D Î D 0}
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where

D 0 7 { D Î D : det (I + G(jx ) D ) = 0}
If D 0 is empty, then ¹(G( jx )) 7 0. Hence, the real structured singular value ¹(G( jx ))
is the inverse of the smallest real perturbation having the speci® ed block structure
that moves a pole to jx on the imaginary axis.

The peak value of ¹(G( jx )) over frequency provides a measure of the smallest
destabilizing perturbation having the speci® ed block structure. However, it is often
di� cult to compute reliably the peak value of the frequency-domain upper bound by
frequency gridding since sharp peaks or discontinuities may be overlooked (Sparks
and Bernstein 1998). Hence, it is preferable to compute the peak of the upper bound
directly.

Using Proposition 1, we can de® ne

¹1 = inf { g >0 : there exist Ni,Qj Î X, i = 0,1,2,. . . ,n, j = 0,2,4, . . . ,q,
PQ = PT

Q,PN = PT
N,P = PT, e Q >0,

and e >0 such that (9),(10),(11) hold}
while using Proposition 2 we can de® ne

¹2 = inf { g >0 : there exist Ni,Qj Î X, i = 0,1,. . . ,n, j = 0,1,. . . ,q, PQ = PT
Q,

PNQ = PT
NQ,P = PT, e Q >0,

and e >0 such that (12),(13),(14) hold}
Theorem 2 guarantees asymptotic stability of an uncertain system for norm-
bounded, structured uncertainty. Using the de® nition of the structured singular
value, it follows that the peak structured singular value over frequency is bounded
by the norm bound of Theorem 2. Since Propositions 1 and 2 are tests that utilize a
particular form of the multiplier and the scaling to satisfy the conditions in Theorem
2, it thus follows that

¹(G( jx )) £ ¹1,¹2

for all x Î R .

7. Numerical examples

We now present three numerical examples to demonstrate the robust stability
tests of Propositions 1 and 2 by computing ¹1 and ¹2. Each peak upper bound is
computed by using an interior point technique (Boyd et al. 1994) to solve the LMIs
in a bisection search for the smallest g . For each value of g , the appropriate system
of LMIs, (9) ± (11) or (12) ± (14), is checked for feasibility. The value of g is then
increased or reduced to determine the smallest g such that the system of LMIs is
feasible.

7.1. Example 1
Consider the plant (Balakrishnan et al. 1995)
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G(s) =
2 - 10s - 8

5(s + 1)
- 2s + 8

s + 1
2

é
êêë

ùúú
û

in a feedback interconnection with the uncertain matrix D = diag ( d 1, d 2) . The
problem is to determine the largest norm bound on the uncertain matrix D for
which the system is guaranteed to be asymptotically stable.

Using LMIs (9) ± (11), ¹1 was computed as 4.0988 using a multiplier and scaling
with n = q = 2 and p(s) = s + 1. Then, using LMIs (12) ± (14), ¹2 was computed for
multipliers and scalings with n = 0,1,2 and q = 0,1,2 and a i = b i = - i. The results
appear in table 1. Note that as the order of the multiplier or scaling increases, the
conservatism of ¹2 decreases. However, letting the number of scaling terms be
greater than the number of multiplier terms yields no improvement.

In Balakrishnan et al. (1995), the authors obtained a robust stability bound of
4.1425 for this example using a second-order multiplier. Hence, by exploiting fre-
quency-dependent scaling, the upper bounds ¹1 and ¹2 provide a less conservative
robust stability measure than the technique of Balakrishnan et al. (1995) for this
example.

7.2. Example 2
Next, consider the plant of Haddad et al. (1994)

Çx =

- 2 - 400 0.1 0.2

1 0 0.5 0

0 2 - 3 - 80

0 0 1 0

é
êêêêêë

ùúúúúú
û

x +

2 0.8

0 0

0 1

1 0

é
êêêêêë

ùúúúúú
û

u

y =
1.5 0 1 0

0 1 2 2[ ] x

in a feedback interconnection with the uncertain matrix D = diag ( d 1, d 2) .
As before, ¹1 was computed for multipliers N(s) and scalings Q(s) of various

orders. Speci® cally, a peak upper bound of 2.7176 was computed using constant
scaling and a multiplier with n = 1 and p(s) = 1, of 2.2336 using constant scaling and
a multiplier with n = 3 and p(s) = s + 1, of 1.9952 using scaling and a multiplier with
n = q = 2 and p(s) = s + 1, and of 1.6930 using scaling and a multiplier with n = 3,
q = 2, and p(s) = s + 1. The peak upper bounds are shown in ® gure 2 along with the
frequency-domain upper bound ¹(G(jx )) .
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n = 0 1 2

q = 0 4.8027 4.5491 4.5004
1 4.8027 4.1435 4.1105
2 4.8027 4.1435 4.0988

Table 1. Peak upper bounds ¹2 for Example 1.



Next, ¹2 was computed using LMIs (12) ± (14) with multipliers and scaling with
a i = b i = - i and the results are shown in table 2. As in the previous example, the
conservatism of the robust stability test is reduced by increasing the number of
multiplier and scaling terms, and there is no advantage to increasing the order of
the scaling to be greater than the order of the multiplier.

7.3. Example 3
Finally, consider the plant G = C(sI - A)- 1B, where (Haddad et al. 1994)

A = block-diag
- 4 - 7

1 0[ ] , - 1.5 - 4

1 0[ ] , - 3 - 2.5

1 0[ ] , - 2 - 5

1 0[ ]( )
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Figure 2. Peak upper bounds ¹1 for Example 2.

n = 0 1 2 3

q = 0 3.0866 2.8160 2.6655 2.6258
1 3.0866 1.9817 1.9694 1.9321
2 3.0866 1.9817 1.8724 1.8248
3 3.0866 1.9817 1.8724 1.7242

Table 2. Peak upper bounds ¹2 for Example 2.



B =
1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0[ ]
T

, C =
0 1 2.5 0.5 0 0 0 0

0 0 0 0 1 0.5 0 1[ ]
in a feedback interconnection with the uncertain matrix D = diag ( d 1, d 2) . Peak
upper bounds ¹1 and ¹2 were computed using multipliers and scaling of di� erent
orders, and the results are shown in table 3 and ® gure 3.

8. Summary and conclusions

Robust stability tests were given for systems with block-structured, sector- and
norm-bounded uncertainty. The robust stability tests each used a frequency-depen-
dent stability multiplier and scaling to reduce conservatism. The robust stability tests
for block-structured, norm-bounded uncertainty yield upper bounds for the peak of
the structured singular value over frequency. To translate the robustness tests into a
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Figure 3. Peak upper bounds ¹1 for Example 3.

n = 0 1 2

q = 0 0.8679 0.8177 0.7034
1 0.8679 0.7172 0.7034
2 0.8679 0.7172 0.7034

Table 3. Peak upper bounds ¹2 for Example 3.



form that is easily computable, the frequency-dependent multiplier and scaling were
parametrized ® rst as matrix polynomials with arbitrary polynomial denominators
and then as sums of ® rst-order rational matrix functions. In both cases, the resulting
tests were written as linear matrix inequalities, and thus were evaluated as convex
feasibility problems. Numerical examples showed the reduction in conservatism
achieved by increasing the number of terms in the parametrizations of the multiplier
and scaling, and the improvement in the robust stability tests by including both a
stability multiplier and a scaling matrix.
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