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Abstract: The authors present a two-step method for identifying single-input, single-output (SISO) Wiener systems. First, using a
single harmonic input, they estimate a non-parametric model of the static non-linearity, which is assumed to be only piecewise
continuous. Second, using the identified non-parametric map, the authors use retrospective cost optimisation to identify a
parametric model of the linear dynamic system. This method is demonstrated on several examples of increasing complexity.
1 Introduction

Block-structured models are widely used for system
identification [1–3]. These models provide useful
information concerning the dynamic and static components
of a system, and thus constitute grey-box models in which
the block structure is ascribed physical meaning. The goal
of system identification is to model the internal structure of
each block from available data.

Among the most widely studied block-structured models are
the Wiener [4–11] and Hammerstein [4, 7, 12–15] models.
Each model structure involves a single linear dynamic block
and a single non-linear static block. For these two-block
structures, the difficulty of the identification problem typically
depends on a priori assumptions made about the components,
for example, finite impulse response (FIR)-against-infinite
impulse response (IIR) dynamics, and invertible against non-
invertible non-linearities [9]. Furthermore, identification of
Wiener systems is generally considered to be more
challenging than identification of Hammerstein systems
because of the fact that the input to the non-linear block is
available for Hammerstein systems but not for Wiener
systems. In the present paper, we focus on Wiener systems.

The methods for identifying Wiener systems developed in
[4, 6, 8, 11] assume that the non-linear block is invertible. To
overcome this requirement, non-parametric probabilistic
methods are used in [2]. Alternatively, frequency-domain
methods that apply multiple harmonic inputs are employed
in [5, 7]. In [7], the multiple harmonic inputs are assigned
random phase shifts, and a non-parametric model of the
non-linearity is obtained using the identified linear dynamic
model, which is previously estimated in the frequency
domain. In [5], the phase shift between the output of the
linear dynamic block and the output is exploited in the
frequency domain, for each harmonic input.
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In the present paper, we develop a novel technique for
identifying single-input, single-output (SISO) Wiener
systems. The proposed approach is semi-parametric, which,
as described in [2], refers to the fact that the non-linear
block is estimated non-parametrically, whereas the linear
dynamics are identified parametrically. To do this, we
consider a two-step procedure. In the first step, we apply a
single harmonic input signal, and measure the output once
the trajectory of the system reaches harmonic steady state.
We then examine the output of the system (which is not
harmonic because of the non-linearity) relative to the input,
and use the symmetry properties of these signals to estimate
the non-harmonic phase shift. This estimate allows us to
infer the phase shift of the unmeasured intermediate signal
(i.e. the output of the linear block) and thus reconstruct this
signal up to an arbitrary amplitude. By plotting the output
against the reconstructed intermediate signal, we thus obtain
a non-parametric approximation of the non-linear block of
the system.

The second step of the algorithm uses a sufficiently rich
signal to estimate the linear dynamics of the system. As we
do not assume that the non-linear block is invertible, we do
not have an estimate of the output of the linear block. To
overcome this difficulty, we apply retrospective cost
optimisation (RCO), which uses the available output signal
(in this case, the output of the non-linear block) to
recursively update the linear dynamics. This technique is
inspired by retrospective-cost-based adaptive control
[16–18], which is used for model updating in [14, 19, 20].

As alluded to above, the two-step identification algorithm
described herein does not require invertibility of the non-
linear block as assumed in [4, 6, 8, 11]. In fact, we do not
require that the non-linear block be either one-to-one, onto
or continuous, nor do we assume as in [6] that any specific
value of the non-linearity be known.
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The contents of the paper are as follows. In Section 2 we
define the Wiener identification problem. A method for
non-parametric identification of the static non-linearity
using a single harmonic input is presented in Section 3,
whereas a method for parametric identification of the linear
time-invariant dynamics using RCO is reviewed in Section
4. These methods are demonstrated on several examples of
increasing complexity in Sections 5–7. Concluding remarks
are presented in Section 8. A preliminary version of the
results of this paper appears as in [21].

2 Problem formulation

Consider the block-structured Wiener model shown in
Fig. 1a, where L is the SISO discrete-time linear time-
invariant dynamic system

x(k + 1) = Ax(k) + Bu(k) (1)

v(k) = Cx(k) (2)

with input u(k) [ R and intermediate signal v(k) [ R, where
k is the sample index, and y(k) [ R is the output given by

y(k) = W(v(k)) (3)

where W:R 7! R is the static non-linearity. We assume that L
is asymptotically stable and W is piecewise continuous. Note
that we do not assume that W is invertible, one-to-one,
continuous or (as in [6]) W(0) = 0. Also, we assume that
v(k) is not accessible, and that x(0) is unknown and
possibly non-zero.

Moreover, Fig. 1b shows the scaled-domain modification
Wl(n) W W(n/l) of W, where l is a non-zero real
number. Therefore Wl(lv) = W(v). Each value of l scales
both the gain of L and the domain of W. However, l is not
identifiable.

3 Non-parametric identification of the static
non-linearity

Consider the harmonic input signal

u(k) = A0 sin(v0kTs) = A0 sin(V0k) (4)

where A0 is the amplitude, v0 is the angular frequency in rad/s,
Ts is the sample period in s/sample, and V0 W v0Ts is the
angular sample frequency in rad/sample. Since L is

Fig. 1 Block-structured Wiener models

a Block-structured Wiener model, where u is the input, v is the intermediate
signal, y is the output, L is a discrete-time linear time-invariant dynamic
system and W is a static non-linearity
b An equivalent scaled model, where l is a scaling factor and Wl is a scaled-
domain modification of W satisfying Wl(lv) = W(v)
The scaling factor l is not identifiable
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asymptotically stable, it follows that, for large values of k,
the intermediate signal v is given approximately by the
harmonic steady-state signal

v(k) = |G(eȷV0 )|A0 sin(V0k + /G(eȷV0 )) (5)

where |G(eȷV0 )| and /G(eȷV0 ) are, respectively, the
magnitude and phase shift of the frequency response of
G(z) = C(zI − A)−1B at the angular sample frequency V0.
Therefore

y(k) = W(|G(eȷV0 )|A0 sin(V0k + /G(eȷV0 )) (6)

Next, note that the continuous-time harmonic signal sin (v0t)
is symmetric in the intervals [0, 1

2 T0] and [ 1
2 T0, T0] about the

points 1
4 T0 and 3

4 T0, respectively, where T0 W 2p/v0 is the
period of the harmonic input. To preserve symmetry for
the sampled signal (4) about the points 1

4 T0 and 3
4 T0, we

assume that

V0 = p

2m
(7)

where m is a positive integer. Thus N0 W 4m = T0/Ts is the
period of the discrete-time input (4). With this choice of
V0, the sampled signal u(k) is symmetric in the intervals
[0, 1

2 N0] and [ 1
2 N0, N0] about the points 1

4 N0 and 3
4 N0,

respectively. Furthermore, assuming that q W /G(eȷV0 )/V0
is an integer, that is, /G(eȷV0 )/p is an integer, the
intermediate signal v(k), which is shifted relative to u(k)
because of /G(eȷV0 ), is symmetric about 1

4 N0 + q in the
interval [q, 1

2 N0 + q] and about 3
4 N0 + q in the interval

[ 1
2 N0 + q, N0 + q]. If q is not an integer, then v(k) is only

approximately symmetric.
Next, we note that the output signal y, which is not

generally harmonic, possesses the same symmetry as v on
the same intervals. By exploiting knowledge of this
symmetry, we can identify the ‘non-harmonic phase shift’
of y relative to u, and thus the phase shift of v relative to u.
Since y is not sinusoidal, the non-harmonic phase shift of y
relative to u refers to the shifting of the symmetric portions
of y relative to the symmetric portions of u. Knowledge of
this non-harmonic phase shift allows us to determine v up
to a constant multiple, specifically, v is a sinusoid that is
shifted relative to u by a known number of samples.

To clarify the above discussion, we present two examples
using A0 = 1, m ¼ 18 (so that V0 = p/36) and
G(z) = 0.0685/(z − 0.9164). First, consider the polynomial
non-linearity y = W(v) = 0.6(v + 1)3 − 1, which is neither
even nor odd. Fig. 2a illustrates the resulting signals u(k),
v(k) and y(k) in harmonic steady state. Note that u is
symmetric about the discrete-time index d in the interval
[d− 1

4 N0, d+ 1
4 N0] and about d+ 1

2 N0 in the interval
[d+ 1

4 N0, d2 + 3
4 N0]. Likewise, v is symmetric about the

discrete-time index 1 in the interval [1− 1
4 N0, 1+ 1

4 N0] and
about 1+ 1

2 N0 in the interval [1+ 1
4 N0, 1+ 3

4 N0]. It thus
follows that y is symmetric about 1 in the interval
[1− 1

4 N0, 1+ 1
4 N0] and about 1+ 1

2 N0 in the interval
[1+ 1

4 N0, 1+ 3
4 N0].

Second, we consider the even polynomial non-linearity
y = W(v) = v2. Fig. 2b illustrates the resulting signals u(k),
v(k) and y(k) in harmonic steady state. The signals u and v are
equal to the signals shown in Fig. 2a. However, in addition to
the two points of symmetry shown in Fig. 2a, note that y has
two additional points of symmetry, specifically, y is symmetric
595
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about1+ 1
4 N0 in the interval [1, 1+ 1

2 N0] and about1+ 3
4 N0 in

the interval [1+ 1
2 N0, 1+ N0].

3.1 Symmetry search algorithm

We now present an algorithm to determine 1 from y. We then
use 1 to estimate the non-harmonic phase shift of y relative to
u. For convenience, we assume that the harmonic steady state
begins at k ¼ 0.

Consider the signal y shown in Fig. 3, and let n ≥ 6m denote
the width of the data window so that it includes at least one and
a half periods. To encompass a complete signal period, we
construct a sliding window with N0 + 1 data points. The
window is divided into quarters as shown in Fig. 3.

Next, for k = 0, . . . , n − N0, define

b1(k) W
∑2m−1

i=1

|y(k + i − 1) − y(k + 2m − i + 1)| (8)

Fig. 2 Illustration of the symmetry properties of the signals u, v
and y given by (4)–(6), respectively

a Non-even polynomial non-linearity y = W(v) = 0.6(v + 1)3 − 1
b Even polynomial non-linearity y = W(v) = v2

The signals u and v are harmonic, whereas y is the output of the non-linear
block W and thus is not harmonic. Note that, for both cases, u is symmetric
about d in the interval [d− 1

4 N0, d+ 1
4 N0] and about d+ 1

2 N0 in the interval
[d+ 1

4 N0, d+ 3
4 N0], whereas v and y are symmetric about 1 in the interval

[1− 1
4 N0, 1+ 1

4 N0] and about 1+ 1
2 N0 in the interval [1+ 1

4 N0, 1+ 3
4 N0]. In

addition, for the case of an even polynomial non-linearity shown in b, y is
also symmetric about 1+ 1

4 N0 in the interval [1, 1+ 1
2 N0] and about

1+ 3
4 N0 in the interval [1+ 1

2 N0, 1+ N0]
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which is the sum of the absolute difference in magnitude for
each pair of candidate symmetric points in the first and second
quarters about the point k + 1

4 N0 for the sliding window
starting at time step k. Likewise, for k = 0, . . . , n − N0,
define

b2(k) W
∑2m−1

i=1

|y(k + 2m + i − 1) − y(k + 4m − i + 1)| (9)

for each pair of candidate symmetric points in the third and
fourth quarters about the point k + 3

4 N0. The values of b1
and b2 quantify the symmetry error about the points
k + 1

4 N0 and k + 3
4 N0, respectively, for each allowable

value of k. Thus, using (8) and (9), we define the
‘symmetry error index’

b(k) W b1(k) + b2(k) (10)

corresponding to the sliding window starting at point k, for
k = 0, . . . , n − N0.

For k = 0, . . . , n − N0, let k0 , n − N0 be the minimiser
of b(k). We use knowledge of k0 to determine the location
of the points of symmetry 1 and 1+ 1

2 N0 for the sliding
window starting at point k0. In particular, since k0 is the
starting point of the window that minimises b and since 1
and 1+ 1

2 N0 are, respectively, the quarter point and three
quarter point of the same window, it follows that

1 = k0 +
1

4
N0 (11)

1+ 1

2
N0 = k0 +

3

4
N0 (12)

Note that, in general, b(k0) = 0. However if /G(eȷV0 )/p is
an integer, then b(k0) = 0, which indicates exact symmetry
about k0 + 1

4 N0 in the interval [k0, k0 + 1
2 N0] and about

k0 + 3
4 N0 in the interval [k0 + 1

2 N0, k0 + N0].
To illustrate the symmetry search algorithm, we reconsider

the example considered in Figs. 2a and 3, where
y = W(v) = 0.6(v + 1)3 − 1. Note that W is not even.
Fig. 4a shows the values of b calculated for y(k) on the
interval [k0, k0 + 2N0]. Since, in Fig. 4a, the data window
of y is selected to start at k0 = 1− 1

4 N0, the minimum

Fig. 3 Illustration of the symmetry search algorithm

The solid line box comprises the sliding window of length N0 + 1 starting at
time k, whereas the dashed lines indicate the windowed points of symmetry
IET Control Theory Appl., 2011, Vol. 5, Iss. 4, pp. 594–605
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values of b(k) occur at k0 and k0 + N0, where k0 + N0 is the
start of the next period and, thus, need not be considered.
Thus, using the unique minimiser k0 of b(k), it follows that
the locations of the points of symmetry are given by (11)
and (12).

Next, for the even non-linearity y = W(v) = v2 considered
in Fig. 2b, Fig. 4b shows the values of b(k) calculated for y(k)
on the interval [k0, k0 + 2N0]. In this case, the minimum
values of b(k) occur at k0, k0 + 1

2 N0 and k0 + N0, where
k0 + N0 is the start of the next period and, thus, need not be
considered. Thus, using k0, it follows that the locations of
the points of symmetry are given by (11) and (12). Also,
using k0 + 1

2 N0, we obtain two additional points of
symmetry given by

1+ 1

4
N0 = k0 +

1

2
N0 (13)

1+ 3

4
N0 = k0 + N0 (14)

This ambiguity is due to the fact that 1 and 1+ 1
2 N0 are the

midpoints of two identical symmetric portions of y. Thus,
the start of the data window within which the function has
the symmetry properties illustrated in Fig. 3 can be taken as
either k0 or k0 + 1

2 N0. Note that the second minimiser
k0 + 1

2 N0 appears only for even non-linearities.

3.2 Non-parametric approximation of the static
non-linearity

Using d, which is assumed to be known from the harmonic
input u, and the estimate of 1 obtained from y in Section
3.1, we now determine an estimate f̂ of the non-harmonic

Fig. 4 Illustration of the symmetry error index b(k) given by (8)

a Non-even polynomial
b Even polynomial
The values of b(k) are shown for two static non-linearities
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phase shift of y relative to u by

f̂ W V0(1− d) (15)

which is an estimate of /G(eȷV0 ). Moreover, define the
virtual signal

ṽ(k) W A0 sin(V0k + f̂ ) (16)

which is an approximation of the intermediate signal v given
by (5) divided by the constant |G(eȷV0 )|. Note that, if
f̂ = /G(eȷV0 ), then |G(eȷV0 )|ṽ = v. Also, note that the
amplitude of ṽ(k) is irrelevant because of the scaling factor
l shown in Fig. 1b.

Using ṽ and y, the non-parametric estimate of W is given
by

Ŵ W {(ṽ(k0), y(k0)), (ṽ(k0 + 1), y(k0 + 1)), . . . , (ṽ(n), y(n))}

(17)

where each pair (ṽ(k), y(k)), for k = k0, . . . , n, determines a
value of the non-parametric estimate Ŵ of W.

Fig. 4 shows that, depending on the type of non-linearity,
b(k) has either one or two minima within each period. For a
non-even polynomial non-linearity, b(k) has one minimum
within each period. Therefore, the estimate of the non-
harmonic phase shift has two candidate values, namely, f̂
and f̂ + p. For an even non-linearity, b(k) has two minima
within each period. Therefore the estimate of the non-
harmonic phase shift has four candidate values, namely, f̂ ,
f̂ + p

2, f̂ + p and f̂ + 3p
2 . However, for the even case, f̂

and f̂ + p yield the same non-parametric model Ŵ,
whereas f̂ + p

2 and f̂ + 3p
2 yield the same Ŵ.

Therefore for both non-even and even cases, there are two
candidate non-parametric estimates of W, both of which are
constructed using (16) and (17). The correct non-parametric
model will become apparent when identifying the dynamic
block of the Wiener system.

4 Parametric identification of the linear time-
invariant dynamics

Using the non-parametric model Ŵ of W, we now identify a
model of L given by L̂ using RCO [20]. The RCO algorithm
is presented in [17, 19, 20] together with guidelines for
choosing its tuning parameters, namely, nc, p and a.

Consider the adaptive feedback architecture for L̂ shown in
Fig. 5, where L̂m denotes the initial model with input w [ R
and output v̂ [ R, and where L̂D denotes the feedback delta
model with inputs u, v̂ [ R and output w.

Fig. 5 Identification architecture for Wiener models using RCO
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The goal is to adaptively tune L̂D so that the performance
variable

z(k) W y(k) − ŷ(k) (18)

is minimised in the presence of the identification signal u. For
simplicity, we choose L̂m to be the one-step delay 1/z.
Together, L̂ and Ŵ comprise a ‘semi-parametric model’ of
the Wiener system.

From Section 3.2, recall that there are two candidates for
the non-parametric estimate of W. Thus, we run RCO for
each non-parametric estimate of W and obtain a
corresponding parametric model of L. Note that the
performance variable z is calculated for both semi-
parametric models. We choose the semi-parametric model
whose performance variable has a smaller norm.

4.1 Retrospective cost optimisation

We now review the RCO adaptive control algorithm and
show how it is used to identify linear time-invariant
dynamic systems using Ŵ. A detailed discussion of RCO
and as well as the theoretical foundations of the algorithm
are found in [16, 17, 22].

RCO depends on several parameters that are selected a
priori. Specifically, nc is the estimated plant order, p ≥ 1 is
the data window size used to estimate L̂D and m is the
number of Markov parameters of L̂D. The methodology for
choosing these parameters is as follows. nc is overestimated,
that is, chosen to be greater than the expected order of L̂.
From Section 4, recall that we assume that the controller L̂D

is placed in feedback with a unit delay. Therefore there is
only one non-zero Markov parameter, so m ¼ 1 in all
example cases. The adaptive update law is based on a
quadratic cost function, which involves a time-varying
weighting parameter a(k) . 0, referred to as the ‘learning
rate’ since it affects the convergence speed of the adaptive
control algorithm. In [17], RCO is presented for multiple-
input multiple-output (MIMO) systems, where lu, lv, lw and
ly denote the sizes of u, v, w and y, respectively. However,
in this paper, we consider only the SISO system (1)–(3).
For convenience, we keep the notation of [17] and set
lu = lv = lw = ly = 1.

Let

L̂m � A B
C D

[ ]

as given by (1), (2), where x(k) [ Rlx , A [ Rlx×lx , B [ Rlx×1,
C [ R1×lx . Since L̂m is set as unit delay, it follows that
A = 0lx×lx

, B = 1lx×1 and C = 11×lx
, yielding

v̂(k) = w(k − 1)

where w(k 2 1) is the output of L̂D, which was obtained using
RCO in the previous iteration. Note that, to compute (18), ŷ(k)
is assumed to be known. To accomplish that, we use the
estimated intermediate signal v̂(k) with Ŵ as follows. Note
that, in general, v̂(k) is not in the set defined by (17). We
thus suggest two methods by which this issue may be
overcome. For simplicity, the first case is to use the closest
value of ṽ(k) in the set (17) to v̂(k). Second, interpolation
between the closest bounding values may be used. For
convenience, henceforth, we use the first method.
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Next, to compute w(k) we use an exactly proper time-series
controller of order nc such that the control w(k) is given by

w(k) =
∑nc

i=1

Mi(k)w(k − i) +
∑nc

i=0

Ni(k)
v̂(k − i)
u(k − i)

[ ]
(19)

where Mi [ Rlw×lw , i = 1, . . . , nc and Ni [ Rlw×(lv+lu),
i = 0, . . . , nc, are given by an adaptive update law. Note
that the ARX model given in (19) is a model of L̂D. The
control can be expressed as

w(k) = u(k)c(k) (20)

where

u(k) W N0(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
[ ]

is the ‘controller parameter block matrix’ and the ‘regressor
vector’ c(k) is given by

c(k) W

v̂(k)

..

.

v̂(k − nc)
u(k)

..

.

u(k − nc)
w(k − 1)

..

.

w(k − nc)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[ Rnclw+(nc+1)(lv+lu)

For positive integers p and m, we define the ‘extended
performance vector’ Z(k) and the ‘extended control vector’
W (k) by

Z(k) W

z(k)

..

.

z(k − p + 1)

⎡
⎢⎣

⎤
⎥⎦, W (k) W

w(k)

..

.

w(k − pc + 1)

⎡
⎢⎣

⎤
⎥⎦

(21)

where pc W m+ p.
From (20), it follows that the extended control vector W (k)

can be written as

W (k) W
∑pc

i=1

Liu(k − i + 1)c(k − i + 1) (22)

where

Li W

0(i−1)lw×lw
Ilw

0(pc−i)lw×lw

⎡
⎣

⎤
⎦ [ Rpclw×lw (23)

We define the ‘surrogate performance vector’ Ẑ(û (k), k) by

Ẑ(û (k), k) W Z(k) − �Bzw(W (k) − Ŵ (k)) (24)
IET Control Theory Appl., 2011, Vol. 5, Iss. 4, pp. 594–605
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where

Ŵ (k) W
∑pc

i=1

Liû (k)c(k − i + 1) (25)

and û (k) [ Rlw×[nclw+(nc+1)(lv+lu)] is the ‘surrogate controller
parameter block matrix’. The block-Toeplitz ‘surrogate
control matrix’ �Bzw is given by

�Bzw

W

0lz×lw
· · · 0lz×lw

Hd · · · Hm 0lz×lw
· · · 0lz×lw

0lz×lw
. .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.

0lz×lw

0lz×lw
· · · 0lz×lw

0lz×lw
· · · 0lz×lw

Hd · · · Hm

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

where the ‘relative degree’ d is the smallest positive integer i
such that the ith Markov parameter Hi = CAi−1B of L̂m is
non-zero. The leading zeros in �Bzw account for the non-zero
relative degree d. The algorithm places no constraints on
either the value of d or the rank of Hd or �Bzw. For the SISO
case when L̂m is a unit delay

�Bzw = 0 1 0
[ ]

(26)

Furthermore, we define

D(k) W
∑nc+m−1

i=1

cT(k − i + 1) ⊗ Li (27)

f (k) W Z(k) − �BzwW (k) (28)

We now consider the cost function

J (û , k) W Ẑ
T
(û , k)R1(k)Ẑ(û , k)

+ tr[R2(k)(û − u(k))TR3(k)(û − u(k))] (29)

where R1(k) W Iplz
, R2(k) W a(k)Inc(lw+(lv+lu)) and R3(k) W Ilw

.
Note that the cost function is quadratic in the retrospective term
Ẑ, while the second term penalises the difference
u(k + 1) 2 u(k); therefore R2 and R3 can be used to control
how much the controller parameters will change in a given step.

Substituting (24) and (25) into (29), J is written as the
quadratic form

J (û , k) = c(k) + bT vec û + (vec û )TA(k) vecû (30)

where

A(k) = DT(k)D(k) + a(k)I (31)

b(k) = 2DT(k) f (k) − 2a(k) vec u(k) (32)

c(k) = f (k)TR1(k)f (k) + tr[R2(k)uT(k)R3(k)u(k)] (33)

Since A(k) is positive definite, J (û , k) has the strict global
minimiser

û (k) = 1

2
vec−1(A(k)−1b(k)) (34)
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The controller gain update law is

u(k + 1) = û (k) (35)

such that w(k) is computed using (20). The key feature of the
adaptive control algorithm (20) is the surrogate performance
variable Z(k) based on the difference between the actual
past control inputs W (k) and the recomputed past control
inputs based on the current control law Ŵ (k). The
parameter a is chosen to be as small as possible while
guaranteeing that A(k) is positive definite.

5 Numerical examples: nominal case

To demonstrate semi-parametric model identification, we
consider various static non-linearities. For each example, we
choose G to have poles 0.34 + 0.87ȷ, −0.3141 + 0.9ȷ,
0.05 +0.3122ȷ, −0.6875 and zeros 0.14 + 0.97ȷ, −0.12+
0.62ȷ, −0.89 with monic numerator and denominator. Also,
u(k) is chosen to be a realisation of zero-mean Gaussian white
noise with standard deviation su = 3.5.

Note that A0 should, in practice, be chosen to be greater than
the expected operating range of the Wiener system. This
guarantees that the inputs to the model can be interpolated
from the non-parametric map. For the following examples we
choose m to be much larger than required. Although we show
in Section 7.2 that very little performance gain is attainted
from choosing m large, it is visually easier to compare the
identified non-parametric map to the true non-linearity when
using more data points. Finally, the parameter a(k) discussed
in the previous section is chosen as a constant value for all
examples. We choose varying values for a(k) to demonstrate
that the final estimate of the Wiener system is not sensitive to
this parameter.

Example 1 (Non-even polynomial): Consider W defined by

y = W(v) = v3 + 4v + 7 (36)

The parameters for non-parametric identification of W are
m ¼ 500 and A0 = 5. Fig. 6 compares the true and
identified non-linearities. The RCO parameters used to
identify the linear dynamic system are set as nc = 9, p ¼ 1
and a ¼ 1. Fig. 7 shows the frequency response of the true

Fig. 6 Identified non-linearity against true non-linearity (36),
where m ¼ 500 and A0 ¼ 5 (Example 1)

The argument of the identified non-linearity is scaled by 1/|G(e jV0 )| to
facilitate comparison with the true non-linearity
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dynamic model G and the identified model using RCO with
the identified non-linearity shown in Fig. 6.

Example 2 (Even polynomial): Consider W defined by

y(k) = W(v) = 7v4 + v2 (37)

The parameters for non-parametric identification of W are
m ¼ 500 and A0 = 5. Fig. 8 compares the true and
identified non-linearities. The RCO parameters used to
identify the linear dynamic system are set as nc = 9,
p ¼ 1 and a ¼ 50. Fig. 9 shows the frequency response of
G and the identified model using RCO with the identified
nonlinearity shown in Fig. 8.

Next, to illustrate the ambiguity discussed in Section 3.2, we
select the incorrect non-harmonic phase shift, specifically,
f̂ + p/2. Fig. 10 shows a comparison of the true and
identified non-linearities. Note that the incorrect non-
harmonic phase shift produces an erroneous non-parametric
model of the non-linearity. Fig. 11 shows a frequency
response comparison of G and the model identified using
RCO with the identified non-linearity shown in Fig. 10.

To determine the appropriate phase shift f̂ or f̂ + p/2, we
examine the performance variable z given by (18), which

Fig. 8 Identified non-linearity against true non-linearity (37),
where m ¼ 500 and A0 ¼ 5 (Example 2)

Fig. 7 Frequency response comparison of the true G and the
identified LTI system obtained using Ŵ as an estimate of (36),
where k is the number of data points used to determine the
identified dynamic model

The RCO controller order is nc ¼9 with p ¼ 1 and a ¼ 1 (Example 1)
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Fig. 9 Frequency response comparison of the true G and the
identified LTI system obtained using Ŵ as an estimate of (37),
where k is the number of data points used to determine the
identified dynamic model

The RCO controller order is nc ¼ 9 with p ¼ 1 and a ¼ 50 (Example 2)

Fig. 10 Identified non-linearity against true non-linearity (5.2),
where m ¼ 500 and A0 ¼ 5 (Example 2)

Both candidate values for the non-harmonic phase shift, namely, f̂ and
f̂ + (p/2), are used to build the two candidate identified non-linearities

Fig. 11 Frequency response comparison of the true G and
the identified LTI system obtained using Ŵ corresponding to
the incorrect phase shift as an estimate of (37), where k is the
number of data points used to determine the identified dynamic
model

The RCO controller order is nc ¼ 9 with p ¼ 1, and a ¼ 50 (Example 2)
IET Control Theory Appl., 2011, Vol. 5, Iss. 4, pp. 594–605
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provides insight into which candidate value yields the correct
semi-parametric model. The upper plot of Fig. 12 shows the
RCO performance variable z for the incorrect non-
parametric model of W, whereas the lower plot shows the
performance variable for the correct non-parametric model
of W. The correct semi-parametric model clearly
outperforms the incorrect model.

6 Numerical examples: off-nominal cases

We now reconsider the Wiener system (1)–(3) with noise, as
shown in Fig. 13. The input u(k) is a realisation of zero-mean
Gaussian white noise with standard deviation su = 3.5,
whereas d1(k) [ R and d2(k) [ R are unknown zero-mean
Gaussian white disturbances with standard deviations sd1
and sd2

, respectively. The output

y(k) = W(v(k)) + d3(k) (38)

has standard deviation sy about its mean, and d3(k) [ R is
an unknown zero-mean Gaussian white disturbance with
standard deviation sd3

. The disturbance signals d1(k),
d2(k) and d3(k) are process, input and output noise,
respectively.

We now consider additional static non-linearities, where,
for each example, we choose G as in Section 5.

Fig. 12 Retrospective optimisation performance comparison for
Example 2

The upper plot shows the performance variable z for the case in which the
non-parametric model is generated using the incorrect candidate for
the non-harmonic phase shift f̂ + (p/2). The lower plot shows z for the
case in which the correct candidate f̂ is used

Fig. 13 Block-structured Wiener model with process, input and
output noise, where d1, d2 and d3 are unknown zero-mean
Gaussian disturbances
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Example 3 (Deadzone): Consider W defined by

y = W(v) = 0 if |v| ≤ 0.17
v if |v| . 0.17

{
(39)

Furthermore, we consider process and output noise
sd1

= 1
15su, sd3

= 1
15 sy and d2 = 0. For this problem, the

parameters for non-parametric identification are m ¼ 250
and A0 = 5. In this example we also parameterise the
estimated non-linearity for comparison with the non-
parametric estimate. The parametric model is a 25th-order
polynomial. Fig. 14 compares the true, non-parametric
identified and parametric identified non-linearities. The
RCO parameters used to identify the linear dynamic
system are set as nc = 9, p ¼ 1 and a ¼ 10. Fig. 15a
shows the frequency response of G and the identified
model using RCO with the identified non-parametric
model of the non-linearity, while Fig. 15b shows the
frequency response of the identified model using RCO
with the identified parametric model of the non-linearity.
Fig. 16a compares the output of the Wiener system y(k)
and the output of the estimated semi-parametric Wiener
model ŷ(k) in response to a random input, whereas
Fig. 16b compares the output of the Wiener system y(k)
and the output of the estimated parametric Wiener model
ŷ(k) in response to a random input. Fig. 16c shows the
difference between the error in the semi-parametric Wiener
model and the parametric Wiener model. Where the graph
is negative, the semi-parametric model has superior
performance, and where the graph is positive the
parametric model is superior. In this case, it is not clear if
the parametrisation of the non-linearity pays off.

Example 4 (Saturation): Consider W defined by

y = W(v)

=
8.64(v + 0.23) − 3.98 if 0.1 , v , 0.4
1.5 if v ≥ 0.4
−1.2 if v ≤ 0.1

⎧⎨
⎩ (40)

Furthermore, we consider input noise sd1
= 1

8 su and

Fig. 14 Identified non-linearity against true non-linearity (39),
where m ¼ 250 and A0 ¼ 5

In this example, we also parameterise the estimated non-linearity using a
25th-order polynomial (Example 3)
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d2 = d3 = 0. The parameters for non-parametric
identification are m ¼ 150 and A0 = 5. Fig. 17 compares
the true and identified non-linearities. The RCO parameters
used to identify the linear dynamic system are set as
nc = 9, p ¼ 1 and a ¼ 1. Fig. 18 shows the frequency
response of G and the identified model using RCO with the
identified non-linearity shown in Fig. 17.

Example 5 (Switch function): Consider W defined by

y = W(v) = 0 if |v| = 0
8.64v + sgn(v)4.5 if 0 , |v| ≤ 1.5

{
(41)

Furthermore, we consider process, input and output noise
sd1

= 1
15su, sd2

= 1
15sw and sd3

= 1
15sy.

The parameters for non-parametric identification are m ¼
100 and A0 = 5. Fig. 19 compares the true and identified
non-linearities. The RCO parameters used to identify the
linear dynamic system are set as nc = 9, p ¼ 1 and a ¼ 1.
Fig. 20 shows the frequency response of G and the
identified model using RCO with the identified non-
linearity shown in Fig. 19.

Fig. 15 Frequency response comparison of the true G and the
identified LTI system obtained

a Non-parametric Ŵ as an estimate of (39)
b Parametric 25th polynomial estimate of (39)
k is the number of data points used to determine the identified dynamic
model. The RCO controller order is nc ¼ 9 with p ¼ 1 and a ¼ 10
(Example 3)
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Example 6 (Stairs function): Consider W defined by

y = W(v) =

0 if |v| = 0
sgn(v)1 if 0 , |v| ≤ 0.17
sgn(v)3 if 0.17 , |v| ≤ 0.35
sgn(v)4.5 if 0.35 , |v| ≤ 0.52
sgn(v)6 if 0.52 , |v|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(42)

Fig. 16 Performance comparison for Example 3

a Non-parametric estimate for the non-linearity
b Parametric estimate of the non-linearity
In both a and b, the top plot shows the output of the Wiener system y(k) and
the output of the estimated system ŷ(k), whereas the bottom plot shows the
performance z(k)
c Difference between the error in the semi-parametric Wiener model and the
parametric Wiener model is shown
Wherever the graph is negative, the semi-parametric model has superior
performance, and wherever the graph is positive the parametric model is
superior
IET Control Theory Appl., 2011, Vol. 5, Iss. 4, pp. 594–605
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Furthermore, we consider process, input and output noise
sd1

= 1
8 su, sd2

= 1
8 sw and sd3

= 1
8sy. The parameters for

non-parametric identification are m ¼ 75 and A0 = 5.
Fig. 21 compares the true and identified non-linearities. The
RCO parameters used to identify the linear dynamic system
are set as nc = 9, p ¼ 1 and a ¼ 1. Fig. 22 is a frequency

Fig. 18 Frequency response comparison of the true G and the
identified LTI system obtained using Ŵ as an estimate of (40),
where k is the number of data points used to determine the
identified dynamic model

The RCO controller order is nc ¼ 9 with p ¼ 1 and a ¼ 1 (Example 4)

Fig. 17 Identified non-linearity against true non-linearity (40)
where m ¼ 150 and A0 ¼ 5 (Example 4)

Fig. 19 Identified non-linearity against true non-linearity (41),
where m ¼ 100 and A0 ¼ 5 (Example 5)
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response comparison of G and the system identified using
RCO with the identified non-linearity shown in Fig. 21.
Fig. 23 compares the output of the Wiener system y(k) and
the output of the estimated semi-parametric Wiener model
ŷ(k) in response to a random input.

Fig. 21 Identified non-linearity against true non-linearity (42),
where m ¼ 75 and A0 ¼ 5 (Example 6)

Fig. 20 Frequency response comparison of the true G and the
identified LTI system obtained using Ŵ as an estimate of (41),
where k is the number of data points used to determine the
identified dynamic model

The RCO controller order is nc ¼ 9 with p ¼ 1 and a ¼ 1 (Example 5)

Fig. 22 Frequency response comparison of the true G and the
identified LTI system obtained using Ŵ as an estimate of (42),
where k is the number of data points used to determine the
identified dynamic model

The RCO controller order is nc ¼ 9 with p ¼ 1 and a ¼ 1 (Example 6)
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7 Numerical examples: error metrics

We now investigate the effect of systematically decreasing the
amount of available output data that is used to identify the
linear block of the Wiener system. Moreover, we investigate
the effect of decreasing m, which determines the number of
points in the non-parametric model, and therefore affects
the fidelity of Ŵ.

To quantify the accuracy of the identified semi-parametric
model, we compute the root-mean-square error (RMSE) for
the first 15 Markov parameters of the true linear system and
the identified linear system. The linear model is the same as
in Sections 5 and 6, while W is given by (36).

7.1 Effect of disturbances

To evaluate the effect of sd1
, sd2

and sd3
, we decrease the

number of available data points from 4000 to 10. For each
case, we perform a 100-run Monte Carlo simulation with a
signal-to-noise ratio of 10. We consider the effect of d1, d2
and d3 individually, as well as the effect of all three noise
signals, which may be uncorrelated or correlated.

Fig. 23 Performance comparison for Example 6 of the output of
the Wiener system y(k), and the output of the estimated system ŷ( k)

The bottom plot is the performance z(k)

Fig. 24 RMSE Markov parameter error against number of data
points

For each number of data points we perform a 100-run Monte Carlo simulation
604
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Furthermore we consider when d1 and d3 are correlated,
and d2 and d3 are correlated.

Fig. 24 demonstrates the increase in error for decreasing
amounts of available data. Furthermore, we see that the
cases with correlated disturbances yield similar results
compared to the case with uncorrelated disturbances.

7.2 Non-parametric model accuracy

We now perform a Monte Carlo simulation to evaluate how
m affects the accuracy of the identified linear system.
Specifically, we vary m from 1 to 100. For each value of m
we average the result over 100 simulations. We consider the
nominal case, that is, without noise.

Fig. 25 shows that RMSE generally decreases as m
increases. Note that, for this example, only a slight decrease
in RMSE is observed for m ≥ 20.

8 Conclusions

In this paper we develop a two-step method to identify semi-
parametric models for SISO discrete-time Wiener systems.
We make only two assumptions about the system, namely,
the linear dynamic block is assumed to be asymptotically
stable, and the static non-linearity is assumed to be
piecewise continuous. Furthermore, this method requires
identification signals with specific properties for each of the
two steps, as discussed as follows.

First, we choose a single harmonic input and measure the
system output when the state trajectory is in harmonic
steady state. By exploiting symmetry properties of these
signals, we approximate the non-harmonic phase shift and,
therefore estimate the intermediate signal. Using the
estimate of the intermediate signal, a non-parametric model
of the static non-linearity is obtained.

Second, using the identified non-parametric model, we use
RCO to identify a parametric model of the dynamic system.
As commonly assumed in the system identification
literature, the identification signal for this step is assumed to
be sufficiently persistent such that the dynamic linear
system can be identified.

It is important to point out that the method investigated in
this work does not require invertibility of the non-linearity,
which is a common assumption in Wiener identification.
However, the cost of removing this assumption is the need

Fig. 25 RMSE Markov parameter error for an increasing number
of points in the non-parametric model

For each value of m, a 100-run Monte Carlo simulation is performed
IET Control Theory Appl., 2011, Vol. 5, Iss. 4, pp. 594–605
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for two steps, and the requirement that the signal for the first
step be a single harmonic. Furthermore, the user must wait
until the system has reached a steady state before useful
data can be obtained. On the other hand, from Section 1,
recall that there are methods based on multiple harmonic
inputs in the literature. Finally, it should be noted that,
although a non-parametric model of the non-linearity was
used in this discussion, the data that represent the non-
parametric map could be parameterised.

The two-step method presented in this paper is effectively
demonstrated on several examples of increasing complexity,
including non-linearities in the form of both even and non-
even polynomials, deadzone, saturation and discontinuity,
and disturbances on the form of process, input and output
noise.
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