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State Space Modeling of an 
Acoustic Duct Witli an End-
IVIounted Speaker* 
This paper develops a state space model of the dynamics of an acoustic duct with 
end-mounted speakers. The initial model formulation includes the forcing term as 
part of the boundary conditions. The shifted particle velocity is then defined to 
transform the nonhomogeneous boundary conditions into homogeneous boundary 
conditions and thus develop the state space model. It is shown that the speaker and 
acoustic dynamics interact by means of feedback in which the speaker creates an 
acoustic field, which, in turn, affects the motion of the speaker cone. This interaction 
is studied using positive real closed-loop feedback analysis, and shifts in the modal 
frequencies of the duct due to the presence of the end-mounted speaker are predicted. 

1 Introduction 
The feasibility of active noise control technology is facilitated 

by the availability of affordable high performance actuators, that 
is, audio speakers. As in all control applications, the dynamical 
properties of the electromechanical actuator, such as frequency 
response, amplitude limits, and back EMF, must be accounted 
for in the design process. An additional consideration in real-
world implementation that is not readily apparent is the two-
way coupling of the acoustic dynamics and the actuator dynam
ics. Once the speaker properties have been characterized, it is 
standard practice to model the acoustic-speaker system as the 
cascade, or one-way interaction, of two dynamical systems. In 
reality, however, this interaction is two-way since the speaker 
also reacts to the acoustic back pressure. Consequently, the 
acoustic duct dynamics and the speaker dynamics are coupled 
by means of a feedback mechanism. The purpose of this paper 
is to derive a state space model of this feedback interaction. 

The basic problem we consider involves a one-dimensional 
acoustic duct with an end-mounted speaker. Unlike the case of 
a side-mounted speaker [1], [2] , [3] , the end-mounted speaker 
case, which was studied in [4] , requires careful consideration 
since the speaker cone velocity enters the partial differential 
equation through the boundary condition. To arrive at a state 
space model for control design, we define a shifted particle 
velocity as in [10], pp. 284-287, that satisfies standard, control-
free, boundary conditions. In the case of an ideal speaker having 
commandable cone velocity, the duct with open-speaker and 
closed-speaker boundary conditions is shown to possess the 
same modal frequencies and mode shapes as in the case of a 
side-mounted speaker. We then introduce voltage-driven sec
ond-order speaker dynamics and show that in this case the 
speaker dynamics interact with the duct dynamics in a feedback 
loop. We show that this feedback interaction leads to the shifting 
of the duct modal frequencies in an intuitively expected way. 
Specifically, at high frequencies, where the speaker has high 
impedance, the modal frequencies correspond closely to those 
of a closed-end boundary condition, whereas, at low frequencies 
and especially near the speaker's resonance frequency, the 
modal frequencies correspond closely to those of an open-end 
boundary condition. These results are demonstrated for both 
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open-speaker and closed-speaker boundary conditions. The 
method is then extended to the case of a duct with speakers 
mounted on both ends. 

Our modal analysis of the dynamics of an end-mounted 
speaker complements the duct termination impedance analysis 
of [5] (pp. 119-120) and [6] (pp. 210-212) by providing an 
exact characterization of the modal frequencies of a duct with 
an end-speaker and yields a state space model for use in active 
noise control. 

2 Duct Dynamics With Commandable Spealcer Cone 
Velocity 

2.1 Open-Speaker Boundary Conditions. Consider a 
one-dimensional acoustic duct of length /. Let x be the spatial 
coordinate along the length of the duct with one end at A: = 0 
and the other sA x = I. h. speaker is mounted at x = 0 and the 
end X = I is open. Assuming that there is no mean flow in the 
duct, the wave equation that describes the acoustic dynamics in 
the duct is 

u{x, t) 2 d^ujx, t) _ 

dt' dx^ 
(1) 

where u(x, t) is the longitudinal velocity of a particle in the 
acoustic medium at location x and time f, and c is the acoustic 
wave velocity in the medium. The boundary conditions are 

u(0,t) = VoM, 
du{x, t) 

dx 
= 0, (2) 

where VoAt) is the cone velocity of the speaker located at x = 
0. The first boundary condition neglects the radiation effects 
due to the nonuniform flow and nonuniform pressure distribu
tion across the open end of the duct. These effects can be 
neglected by assuming that the diameter of the duct is less than 
one tenth of the smallest wavelength of the acoustic waves [7] 
(pp. 471-474). If this assumption is not satisfied, additional 
mass and dissipative terms which represent the acoustic termi
nation impedance must be included. 

Let the shifted particle velocity v{x, t) be defined by 

v{x, t) A u{x, t) - vos(r). 

Then from (2) it follows that 

(3) 
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v{0, t) = 0, 
dv{x, t) 

dx 
= 0. 

Substituting u(x, t) from (3) into (1) yields 

'^v{x, t) 2 d^^ix, t) 

dx^ 
= -voA'), 

(4) 

(5) 

P o ( 0 = - p o c ' I / / , ' ( 0 ) 9 , . ( 0 , 
;=0 

where PQO) ^ P(0,t). Using (7) this yields 

Po(t) = Cq{t), 

where 

(16) 

(17) 

where a dot over a variable denotes its time derivative. Letting C 
-pocV 

[1 0 3 0 . . . 2r - 1 0 ] . (18) 

v(x, t) = 'ZHi(x)q,{t), (6) 

the eigenfunctions of (5) with boundary conditions (4) are 
given by 

fl . {2i+ I)1TX . 
Hi(x) = -sm , j = 0, 1, . . . (7) 

From (5), (6) and (7) it thus follows that 

2 . (2i + OTTJC , , I c(2i + l)7r 

Now define the (2r + 1)-dimensional state vector 

'qit) - BiioAt) - ABvoM' 

Po(t) 
x(t)A (19) 

and, noting that CB = 0, we rewrite (11) and (17) in state 
space form as 

'2 . (i + 1)TTX , ^ 
sin ^ ' ( ' ^ = -iio,(0. (8) 

where 

A A 
[A 0] 

[c oj 
, BA 

\A^Bl 

[ CAB J 

xiO = Ax(t) + Bvo,Xt), 

PoiO = Cx(t), 

C A [ 0 

(20) 

(21) 

0 1]. (22) 

Multiplying (8) by Hj(x) and integrating over the length 0 
• X ^ I yields 

qjit) + Loljqjit) = 
21 

(2j+ l)nVl 
Vos(t), 

y = 0, 1, . . . , (9) 

We note that the zero eigenvalue of the system (22) comes 
from integrating the pressure rate Po{t) in (17) to obtain the 
pressure measurement Fo(Oin(21) . 

2.2 Closed-Speaker Boundary Conditions. For the case 
in which the end of the duct at x = / is closed, the acoustic 
dynamics are given by (1) with the boundary conditions 

where the natural frequency of the 7th mode is LJ„J = c{2j + 
\)n/2l. Retaining r modes and defining the modal state vector 

q(t) A [q,(t) q,(t) qM Ut) . . . qAt) qMY, (10) 

Equation (9) can be written in the form 

q{t)=Aq{t) + BvoAt), d D 

where 

0 r 
-W^2 0 

M(0, t) = VQ,{t), u(l, t) = 0. 

Defining the shifted particle velocity v{x, t) by 

v(x, t) A u{x, 0 - 1 1 \vo,{t). 

and substituting u{x, t) from (24) into (1) yields 

d^v{x, t) 2 d^^ix, t) 

A A block - diag 
0 1 

-wL 0 

dt' dx^ 

(23) 

(24) 

- ( l - y ) D o , ( 0 , (25) 

B A 
2^1 

0 - 1 0 

0 1 

- w i 0 

1 

2r - 1 

with the boundary conditions (23) now written as 

D(0, t) = 0, v{l, t) = 0. (26) 

, (12) 

(13) 

Next, the rate of change of acoustic pressure is given by ([ 5 ] , 
p. 15) 

We note that the transformation (24), which converts the non-
homogeneous boundary conditions (23) to the homogeneous 
boundary conditions (26), is not unique. Although the shifted 
particle velocity v{x, t) depends on this transformation, which 
involves 1 — {xll) in this case, the particle velocity u{x, t) is 
independent of (24). 

Using (6), the eigenfunctions of (25) with the boundary 
conditions (26) are given by 

P{x, t) = -poc 
2 du(x, t) 

dx 
(14) 

where po is the density of the acoustic medium. From (3) and 
(6) it follows that 

Hi(x) 

and from (25), (6) and (27) we obtain 

2 . i-KX . , -
- s i n — , J = 1, 2, . . . , (27) 

du{,x, t) 

dx 
= iHl(x)qAt), (15) 

2 . inx , ^ (cm\^ 2 . iitx , , 
y s m - y , , . ( 0 + ( — ) J y s m - ^ , , W 

where H'{x) = 5/?, (X)/9A:. Retaining rmodes and using (14), 
(15) we obtain 

1 - y )i)o.(0- (28) 
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Multiplying (28) by i2/l sinj-Kx/l and integrating over the 
length 0 < X s / yields 

qj(t) + ujljqjit) = - — F i3o.,(0, ; = 1, 2, , . . , (29) 

where the natural frequency of theyth mode is a;„y = cjir/l. 
Retaining r modes and defining the modal state vector as in 
(10), Eq. (29) can be rewritten in the form (11), where 

A 4 block - diag 
0 1 

B A V2/ 0 - 1 0 -

' 

' 0 r 
. - w L 0_ J 

0 r 
.-^Ir 0_ 

i 0 -11 
2 r 

(30) 

(31) 

Now, retaining rmodes and using (14), (24) and (6) we obtain 

Po(0 = -Poc c^ l / / , ' ( 0 ) ? , ( r ) 

which implies that 

where 

C 

Po(f) = Cq(,t) + DtJo.,(0, 

- p o c V J ^ [ l 0 2 0 

(32) 

(33) 

r 0 ] , 

D A (34) 

Noting that CB = 0 and defining jc ( 0 as in (19), we can rewrite 
(11) and (33) in state space form (20), (21), where 

A A 
VA 0] 

[c oj 
, B A 

C A [0 

A^B 

CAB + D 

0 1]. (35) 

2.3 Speaker-Speaker Boundary Conditions. We now 
consider the case of speakers mounted on both ends of the duct. 
In this case the dynamics of the duct are given by (1) with the 
boundary conditions 

i-1 L 
y s m - ^ , , . ( 0 + ^ — j J y s m - , . ( 0 

- I 1 - y j i i o . ( 0 - y i ' / . , ( 0 . (39) 

Multiplying (39) by v2// sin i'nxll and integrating over the 
length 0 s X < / yields 

h\^ 
qj(t) + toljqj(t) = - — / - Vo,(t) + — P ( - ! )%.(?) , 

77r 

j = 1, 2, ) • • • ) (40) 

where the natural frequency of theyth mode is LO„J = cjir/l. 
Retaining r modes and defining the modal state vector as in 
(10), Eq. (40) can be rewritten in the form 

q(t) = Aq(t) + Bvoi,(t), (41) 

where 

A A block - diag 
0 

- t ^ ^ l 

r 
0 ' 

0 r 
,-0jl2 0_ 

• •• , 

' 

0 r 
.-wL 0_ 

S A ^ 
TT 

0 - 1 0 -

0 - 1 0 -
2 

0 -

0 

]_ 

r 

( -1 ) ' 

Vo/.,(f) 
%(0 

, (42) 

. (43) 

(44) 

Now, retaining r modes and using (14), (37) and (6), we 
obtain 

PM = -p.c'(iHmqM - 1 ^ + 1 ^ ) , (45) 

PAt) = -p,c-[ I HliDqM - ^ + H ^ ) , (46) 

«(0, f) = Do,(0, «( ' , 0 = U„(f), (36) 

where i;oi(?) is the cone velocity of the speaker located &tx = 
0, and vi,{t) is the cone velocity of the speaker located at ;t: = 
/. Defining the shifted particle velocity v{x, t) by 

v{x, t) A u{x, t) I --Wit) ~-^v„it) (37) 

where P,{t) A p ( / , t). Letting P{t) A 

^ ( 0 as in (10), (45) and (46) implies 

Pit) = Cqit) + DvoiAt) 

where 

/2 

^o(f) 
P,it), 

and defining 

(47) 

C A - ^ o c V . 

and substituting M(X, t) from (37) into (1) yields 

d\ix, t) ^dMx^ 

1 0 2 0 ••• r 0 
- 1 0 2 0 ••• ( - l ) V 0 

dt' dx^ 
D A poc-

1// - 1 / / 

1// - 1 / / 

l-^]vosit)~jv,,,it), (38) 

with the nonhomogeneous boundary conditions (36) now con
verted to the homogeneous form (26). Using (6), the eigen-
functions of (38) with the boundary conditions (26) are given 
by (27), and from (38) and (6) we obtain 

Defining the 2r + 2 dimensional state vector 

'qit) - BviiAt) - ABvnAt) 

Pit) 
xit) 

(48) 

(49) 

and using CB = 0, we can rewrite (41) and (47) in the state 
space form 
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x(t) = Ax(t) + Bvo,,{t), 

Pit) = Cx(t), 

where A and B are of the form (35) and 

"0 • • • 0 1 0 
C A 

0 0 0 1 

(50) 

(51) 

(52) 

3 Coupled Acoustic and Speaker Dynamics 

3.1 Open-Speaker and Closed-Speaker Boundary Con
ditions. In this section we consider an acoustic system com
prised of a duct with either open-speaker or closed-speaker 
boundary conditions, and with speaker dynamics. To begin with, 
we assume that the dynamics of the speaker can be modeled 
as [8] 

losVos(t) + (ROS + ^]vos(t) + Ko,XoAt) 

Roc 

where /a, is the mechanical inertia of the speaker, Ros is the 
viscous friction of the speaker, fio is the electromagnetic cou
pling factor defined to be the electromagnetic force generated 
by the speaker coil per unit measure of current input to the coil, 
Roc is the resistance of the speaker coil, A'o,, is the stiffness of 
the speaker, Xos(t) is the speaker cone displacement, Vo(0 is 
the voltage input to the speaker, So is the speaker cone area and 
Poit) is the acoustic pressure at jc = 0. 

Equation (53) can be written in state space form as 

Ut) = A,Ut) + Bp.Poit) + Bv.Voit), (54) 

Vo,(f) = « , ( / ) , (55) 

where i, A [xoAO VoAOV and 

0 

'Os 'Os 

1 

'Os \ Roc 

0 

0 

Mo 

losRoc 

C A [0 1]. (56) 

Note that the speaker cone velocity Vo,,(t) appears in (2), (23) 
and (36). 

Next, by combining (54), (55) with (20), (21) and by defin
ing the augmented state vector 

Xa(t) A 
x(t) 

Ut) 
(57) 

we obtain the state space representation of the closed-loop sys
tem 

where 

Xa = Ji^Xa(t) + , 

A BC, 

Bp,C A, + BpsDCs 

o(t), 

0 

Bvs 

(58) 

(59) 

The combined system described by (58) is equivalent to the 
series connection of acoustic impedances as described in [6] 
(pp. 210-212). This series connection is equivalent to the feed-

Vls( t ) Duct 
(Impedance) 

Speaker 
(Admittance) 

Po(t) 

^ 

Vo(t) 

-Po(t) 

Fig. 1 Block diagram representation of coupled duct and end speal<er 
dynamics 

500 

Vo(t) - SoPo(t), (53) £400 

X Open-Speaker 

+ Open-Closed 

0 Open-Open 

10 15 
Mode 

20 25 

Fig. 2 IModai frequency comparison for open-speaker, open-closed and 
open-open boundary conditions 

25 

"15 

Q 

r,. 

+ lf_op-spk - f_op-cll 

o ll_op-spl< - t_op-opl 

o b 0 0 0: 0 

0 P 

+ 
o o 

o 
:o 

: ^ -f ••• + + + +: . 

_j I I u 
100 200 300 400 

Frequency (Hz) 
500 600 700 

Fig. 3 Modal frequency difference between open-speaker and open-
closed boundary conditions and between open-speaker and open-open 
boundary conditions 

back interconnection shown in Fig. 1. As shown in the Appen
dix, the lossless duct is positive real and the speaker is strictly 
positive real, and thus their feedback interconnection is asymp
totically stable. The above analysis is valid for both open-
speaker and closed-speaker boundary conditions. 
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25 

Fig. 4 Modal frequency comparison for closed-speaker, ciosed-open 
and closed-closed boundary conditions 

25 
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, : 0 o 
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+ : + + + + 

0 too 200 300 400 500 600 700 
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Fig. 5 Modal frequency difference between closed-speaker and closed-
closed boundary conditions and between closed-speaker and closed-
open boundary conditions 

Figures 2 and 3 compare the modal frequencies of a 6 m 
duct for open-speaker, open-closed and open-open boundary 
conditions. The speaker parameters are IQS = 0.0149 kg, Ro^ 

1.2931 kg/s, Ko, = 1.47 X 10^ k g / s ^ So = 0.0206 m^ 
= 6.3396 N/amp and Roc = 5.89 ohms. These parameters are 
taken from the specification sheet of a commercially available 
speaker. The free air resonance frequency of this speaker is 
50 Hz. The diameter of the duct is approximately 16 cm. 
From Figs. 2 and 3, we observe that at lower frequencies, 
especially near the free air resonance frequency of the 
speaker, the open-speaker duct behavior closely resembles 
that of an open-open duct. Near the free air resonance fre
quency, the ratio of the diameter of the duct to the acoustic 
wavelength is approximately 0.02, and thus, radiation effects 
are negligible. At higher frequencies, however, where the 
speaker has high impedance, the open-speaker duct behavior 
is closer to that of an open-closed duct. Similarly, Figs. 4 and 
5 compare the modal frequencies of the same duct-speaker 

combination with closed-speaker, closed-open and closed-
closed boundary conditions. Again, we notice that the speaker 
end behaves more like an open end at low frequencies, partic
ularly near the speaker resonance frequency, and more like 
a closed end at higher frequencies. 

3.2 Speaker-Speaker Boundary Conditions. We now 
consider the two-speaker system described in Section 2.3 with 
one speaker located at x = 0 and the other located at J: = /. 
The subscript 1 is used to denote the speaker at ĉ = 0 and the 
subscript 2 is used to denote the speaker at x = /. Using the 
speaker dynamics model (53), we obtain a state space model 
of the two-speaker system of the form 

Ut) = A,6(r) + Bp,P(t) + Bv,,V{t), (60) 

voiM = C,Ut), (61) 

700 

500 

£400 
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c 
0 
3 
«300 

200 

X Speaker-Speaker 

+ Closed-Closed 

0 Closed-Open 

i ? 

? : 

X 
X O 

...... 
8 " 

10 15 
Mode 

20 25 

Fig. 6 Modal frequency comparison for speaker-speaker, closed-open 
and closed-closed boundary conditions 
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-
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+ 

200 300 400 
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Fig. 7 Modal frequency difference between speaker-speaker and 
closed-closed boundary conditions and between speaker-speaker and 
closed-open boundary conditions 
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where 

A, A 

0 

0 

0 

1 

4 

0 

0 

1 

4 V Ric 

open-closed duct while the natural frequencies obtained for the 
closed-speaker case are identical to those of a closed-closed 
duct. However, if we account for the effect of acoustic back 
pressure and speaker dynamics, we see from (58), (65) and 
(59) that the plant modal frequencies are altered, with the 
speaker tending to behave more like an open end at low frequen
cies, especially near the free air resonance of the speaker, and 
like a closed end at higher frequencies. For the speaker-speaker 
boundary conditions the low frequency behavior is not clear, 
however, at high frequencies both speakers behave like closed 
ends. 

Bp., A 

0 0 

- ^ 0 

0 0 

Bv. 

0 

0 

Mo 
hsRoc 

0 

0 

4 

0 

0 

(62) 

C, A 
0 1 0 0 

0 0 0 1 
, V{t) A 

Vo(o 
VM 

(63) 

and Vois(t) and P(t) are defined in Section 2.3. We now combine 
(50), (51) and (60), (61) in feedback by defining the aug
mented state vector 

Xa(t) = 
X(t) 

Ut) 

to obtain the closed-loop state space equation 

(64) 

(65) 

where J?/and ^ are defined in (59). 
Figures 6 and 7 compare the modal frequencies of the duct 

with speakers on both ends. The duct and speakers have the 
same parameters as those used for the numerical comparisons 
in Section 3.1. We observe that at lower frequencies the duct 
with two end-mounted speakers behaves neither like an open-
closed duct nor like a closed-closed duct. At intermediate fre
quencies the modes correspond to those of an open-closed duct, 
while at higher frequency the modes are closer to those of a 
closed-closed duct. 

4 Discussion 
From the derivations in the previous sections, we note that 

the speaker dynamics enter the wave equation as a forcing term. 
The boundary conditions (4) correspond to those of a closed-
open duct while the boundary conditions (26) correspond to 
those of a closed-closed duct. Hence the natural frequencies 
obtained for the open-speaker case are identical to those of an 
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A P P E N D I X A 
Consider the duct dynamics described by (20) and (21) rep

resented in the form of a transfer function as 

r^, ^ Pa\S) 2 2 ' ^ •* 
G(.J) = — 7 T = 7 Po'̂  ^ T—-! Vu{s) I .s'' + ojt, 

(66) 

Since Re[G(7a')] = 0 ( 7 = v—1) for all real w, the acoustic 
duct dynamics are positive real. 

The speaker transfer function from pressure to velocity is 

G,{s) = 
SiS 

(67) 

Since Si, Ru, jA and R^ are all positive, it follows that 

S^Ru + f^W 

Re[G.(ja;)] = 

{Ku - luuj'r + ( Ru + ^ Y to' 

> 0. (68) 

Thus, Gs{s) is strictly positive real. Consequently, the negative 
feedback interconnection of G( . J ) and G^is) is asymptotically 
stable [9] . 
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