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Abstract: \We consider adaptive stabilization for a class of linear time-varying second-order systems. Inter-
preting the system states as position and velocity, the system is assumed to have unknown, non-parametric,
bounded time-varying damping and stiffness coefficients. The coefficient bounds need not be known to im-
plement the adaptive controller. Lyapunov methods are used to prove global convergence of the system states.
For illustration, the controller is used to stabilize several example systems.
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1. INTRODUCTION

There are many applications of control in which areliable model of the dynamical systemis
not available. Thiscan occur if the system possesses unknown or changing parameters, if the
system is not amenable to analytical modeling due to unknown physics, or if identification is
not feasible due to instability, disturbance and sensor noise, poor repeatability, unpredictable
changes, or high cost. Under such high levelsof uncertainty, robust control may beineffective
and adaptive control may be viable.

Stahilization of time-varying systems is complicated by the fact that stability cannot be
determined by the frozen-time system eigenvalues (Wu, 1974). Hence some control methods
require explicit knowledge of the time variation of the system parameters for feedback
synthesis (Wolovich, 1968; Wu, 1975; Cheng, 1979; Tadmor, 1992). In addition, some control
strategies require a sufficiently small rate of time variation in order to guarantee stability
(Kamen et a., 1989). The stability of systems with periodic time variation, including the
classical Hill and Mathieu equations, is analyzed in Richards (1983).

In this paper we consider the problem of adaptive stabilization for a class of second-
order time-varying systems under full-state feedback. In Section 2, we present a fixed-gain
controller that facilitates the development of the adaptive controller. Then, in Section 3, we
present the adaptive controller and prove convergence of the plant states. In Section 4, we
present three example problems that demonstrate the breadth of the admissible system class.
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Interpreting the system states as position and velocity, the system is assumed to have
unknown, time-varying damping and stiff ness coefficients, which are assumed only to belong
to aclass of piecewise continuous functions and to be bounded. Furthermore, the coefficient
bounds need not be known. The novel aspect of the controller isthe fact that global stability
and convergence is guaranteed under non-parametric assumptions about the time variation.
The form of the adaptive controller is similar to direct adaptive controllers developed for
linear time-invariant systems. Related theory can be found in Astrém and Wittenmark
(1995), loannou and Sun (1996), Kaufman et a. (1998), Krstic et al. (1995), Narendra
and Annaswamy (1989), and Sastry and Bodson (1989), where the emphasis is on model
following control. For adaptive stabilization of linear systems, a self-contained treatment of
therelevant ideas and techniquesisgiven in Hong and Bernstein (2001), where stability of the
closed-loop system is proven for linear time-invariant plants. In Roup and Bernstein (2001),
the same controller is applied to second-order nonlinear plants with position-dependent
stiffness and damping coefficients.

Since we assume full-state feedback in companion coordinates, i.e. position and vel ocity
measurements, the controller is a direct adaptive controller, and thus parameter estimates
are not needed. In addition, full-state feedback availability avoids the need for positivity
assumptions. Extensions to nonlinear time-varying uncertainty, output feedback, and model
reference adaptive control will be considered in future work.

2. FIXED-GAIN STABILIZATION
We wish to determine a fixed-gain feedback control law for the linear time-varying system

m§(t) + g(t) q(1) +f(2) q(2) = bu() + d, €y
wheret € [0,00),f: [0,00) — IR, g : [0,00) — IR, and m, b,d € IR, such that ¢(t) — 0
and ¢(t) — 0 ast — oo. We assume that f'and g are piecewise continuous and bounded.
Additionally, we assume that m > 0 and b # 0. Implementation of the controller requires
that m, b, d, and upper and lower bounds on f'and g be known. Explicit knowledge of fand

g isnot required for implementation.
Consider the control law

u(t) = kiq(2) + k2g (1) + ¢, 2

whereky, ko, ¢ € IR. Definethe state

s [ 9(1) ] , @)

and the gain matrix
K2k k). (4)

Dynamic variables will henceforth be written without a time-dependence argument. Equa-
tions (1) and (2) can be written in state form as
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X2

{ (1/m) [bKx + b + d — g(t)xs — f(t)x1] ©)

X =

LetP £ [51 I;Q } be positive definite with p,, > 0. Let
12 2

ar = inf f(1), az & sup f(1), f1 = inf g(t), 2= sup g(t),  (6)

t€[0,00) 1€[0,00) te[O o) 1€[0,00)
and define
Vlé%ﬁl +%(117 V2 Apuﬂz‘f'—az» y 2 max(|y1],y2)). ()
Define the set

]Cs(P) £ {[/ﬁ kz] 2 bk < ay, P12 bk -|- bkl +p1 <0,
P2y, — i) fﬁwl—bkz)—pm} > _y2}, ®
m m

We will show that the elements of the set I, (P) are constant feedback gains K associated
with P that stabilize the origin of equation (5).

Definition 1. (Definition 3.5 in Khalil, 1996) Consider the time-varying nonlinear
differential equation
x = f(t,x) 9)

wheref: R x R" — IR" and assumef(z,0) = 0 for al # > 0. The equilibriumx = 0 is
globally exponentialy stable if thereexist £ > 0 andy > 0 such that, for al 7, > 0 and for
al initial statesx(#) € R",

Ix(@)|] < llx(to)lle™ =, 1> 15, (10)

Lemma 1. K, (P) isnot empty. Furthermore, let K, € I (P). Then, with K = K and
¢ = —d/b, the origin of equation (5) is globally exponentially stable.

Proof. The constraint inequality bk; < a; in the definition (8) of ', (P) provides an
upper bound on bk;. The remaining inequalities can be restated as upper bounds on bk,
given by

2

i ) + P12 - (1)

m (/p> m
bky < — | —= bk bk - | —
2 < (m 1+p1>7 2<ﬂl 4p12(a1—bk1

P12
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Since bk, and bk, are bounded from gbove only it follows that C; (P) is not empty.
Write K, = [k, kos] and definef: [0,00) — Rand g : [0,00) — R by

() 2f(t) = bhkys,  8(t) 2 g(t) — by . (12)

The closed-loop system (5) can be written in the form

X2
X = - ~ . 13
: [ (1/m) [ &), ~ 7o ] &)
Define
5,2 (p1 PRy @blqs) (14)
m m
and % : [0,00) — R by
P12 . D27,
h(r) £ =2g(0) +2f(1) = p1 — 0, (15)
Define
[ P12 1 i
—(ay — bkyy) —
ReE| w2 , (16)
I 57’1 E(ﬁl_bl@s) — P12 |
- &(al_bkls) l)’z ]
Ry2 | m s 2 . (17)
57’2 —(ﬁ1—bk2s) — P12
| m _

Note that since K, € K, (P) it followsthat f(¢) > 0, g(r) > 0,andy, < h(t) < y, for dl
t € [0,00). Furthermore, 6, > 0, and R, and R, are positive definite. Let & > 0 satisfy

6 S /lmin (R1)7 (18)
6 S A min (RQ) ) (19)
where 1, (+) denotes the smallest eigenvalue of the argument matrix.

Consider the Lyapunov candidate for equation (5) given by

1 1
Vix) = §xTPx + §5px12, (20)

which is positive definite, continuously differentiable, and radially unbounded. The time
derivative V(¢) of ¥(¢) 2 V(x(¢)) along the system trajectory is given by

V(I) = XTP).C + 5PX1).C1

1 . .
= (x1p1 + X2p12)X2 — E(lelz + xop2) [ng(t) +x1f(2)| + dpx1xa



ADAPTIVE STABILIZATION OF TIME-VARYING SYSTEMS 967

= L7 — (22200 + 22700~ pr — 6, ) v (2220 — )

= P20 her, - (20 —Pw) &

< a (0!1 bkls)xl h(t)xle B [p_(ﬁ kas) PlQ} x22
m m

) _1;;1_2((11 . bkls) — P1X1Xg — [1’:1— kaq 2:| XQ27 X1Xg > 07

= —%(al _ bkls) — YoX1Xg — [% kaS 2:| x227 X1X2 S 0
—XTR1X, X1X2 Z 07

- —XTRQX, X1X2 é 0

< —&xlx =

Since ¢x” x is positive definite, it follows from Corollary 3.4 in Khalil (1996) that x = 0 is
globally exponentialy stable. O

Let /C; denote the set of constant gains K that render the equilibrium x = 0 of the closed-
loop system (5) globally asymptotically stable with ¢ = —d/b. Hence, K, (P) C K;.

3. ADAPTIVE STABILIZATION

Next we consider an adaptive stabilizer for egquation (1) which operates with reduced
parametric information. We assume that the functions /" and g are globally piecewise
uniformly continuous (see Appendix A) and bounded, m is positive, and & is non-zero.
The globally piecewise uniformly continuous function class, a subset of the piecewise
continuous functions class, includes certain discontinuous functions such as piecewise
constant functions. For this case, the only parametric information required is knowledge
of sign(b). Unlike the fixed-gain case, implementation of the adaptive agorithm does not
require knowledge of m, b, d, and upper and lower bounds on f'and g.
The control law

u(t) = ka (1) q(1) + ko (1) 4 (1) + ¢ (1), (22)

where the gains &, (¢), k»(¢) and the parameter ¢ (¢) are adapted, will be used to obtain
q(t) = 0and ¢(r) — 0 ast — oo.
Define the state x asin equation (3), and the gain matrix

K@) = k() k()] (23)

Dynamic variables will henceforth be written without a time-dependence argument.
Equations (1) and (22) written in state form yield equation (5), where now K and ¢ are
time-dependent.
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NextletP £ {51 ];12 } be positive definitewith p,, > 0 and consider the adaptation
12 2
law

K = —BiPxxTA (24)
é = —BIPxi (25)

where A € R**? is positive definite, and 4 € R ispositive. Define B, £ [ Sigr?(b) }
The equilibrium set of equations (5), (24), and (25) is
E={xK¢o) e R*x R"*xR: x=1[0,0]", Ke R”? ¢ =—d/b}.
Define the subsets of equilibria
E2{(x,K,90)cE: Ke K}
and

E(P) 2 {(x,K¢p) €& : KE K, (P)}).

Theorem 1. Every element of & (P) is a uniformly Lyapunov stable equilibrium
(Definition 3.2 in Khalil, 1996) of the closed-1oop system (5), (24), and (25). Furthermore, let
(x,K, ¢ ) beasolution of equations (5), (24), and (25). Thenx(z) — [0,0]", K(¢) converges,
and ¢ (t) — —d/bast — oc.

Proof. Let ([o 0" K., —d/b) € & (P), where K, = [ky, ko] € K,. Define
b 2k —ky, 2k —ky, KEK-K, ¢2¢+d/b, (26)

andf: [0,00) — IRand g : [0, 00) — IR by equation (12). The closed-loop system (5), (24),
and (25) can be written in the form

. . -~ NXQ i

X = [ (1/m) [be—}— bop — g(t)x, —f(t)xl} ] ) 27
K = —BJ Pxx"A, (29)
QLS = —ByPx). (29)

Let 6, be given by equation (14), and let 4 : [0,00) — IR be given by equation (15). Let
Ry, R, € IR*** be given by equations (16) and (17). Asin Lemma 1, note that since
K.€ K,(P) it follows that /() > 0 and g(f) > O foral ¢ € [0,00),, > 0, and R,
and R, are positive definite. Let & > 0 satisfy equations (18) and (19).

Consider the Lyapunov candidate for the system (27)—29) given by
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- 1 1
Vix,K,¢) = §xTPx + §5px12 +

bl - o bl .-
|2 e RATRT & 2—|tr¢/11¢T, (30)

2m m
which is positive definite, continuously differentiable, and radially unbounded. The time
derivative V(1) of V(1) £ V(x(¢),K(t), ¢ (¢)) dlong the system trajectory is given by

0]

m

bl

. ~ - T - T
Vit) = x"Pi+6,xx+ —trKAT'K + —=trgi "¢
m

1 - 5 ~ -
= (x1p1 +x2p12)X2 + E(ﬁﬁpm + X2p2) (be +bop — x,8(t) — xlf(t))

b ~ 2T b ~ =T
| |trKA71K +| |tr¢/171q§

+0,X1X0 + — —
m m

1 3 .

= (x1p1 +x2p12)x2 — - (X1p12 + X2p2) (ng(t) +x1f(t)> + dpx1X2

~ ~ T ~ ;T

+ %’tr[( (xxTPBo +A'K ) + %tw (xTPBO +171 >
D125 D12 - D25 D2 .

= B0 - (B2e) + BJ0) - pi - 0, ) v — (Ba() — pra)

= 20 heexs - (a0 - pa)

< P20 = bkt = o - [208 - b)) — i)

< —22 (00y — bkys ) x] — y1x1x0 — [1;1_2(51 — bkyy) _p12] X3, xixp 20

B =82 (ay — bk )xt —yoxixy — [2(B1 — bha) — pro] 3, x1x2 <0

B —xTRlx, x1x2 > 0

o —xTsz, x1x2 <0

< —&xx

. (31)

Hence 0 < ¥(¢) < V(0) foral ¢ > 0. Let || - ||» denote the Euclidean norm. Since V'is
quadratic and positive definite, there exist g1, 02 > 0 such that

~ T2

AN EIN Y IETA [ S (32
foral (x,K,¢) € R" x R™" x IR. Hence, for al ¢ > 0,
T T

< (&) o< (2)no < (2) [ 0.k ©),60)

2

|E" 0. k@), 00)]

’
2

(33)
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which implies

|E"@.k@.00]"|| < (2) |+ ©).k0),60)]

It follows from Lemma 3.3 in Khalil (1996) that ([0 O}T,KS,—d/b> is a uniformly

Lyapunov stable equilibrium of equations (5), (24), and (25). Furthermore, since V() is
bounded and ¥(x, K, ¢) is radialy unbounded, it follows that x(¢), K(), and ¢ (¢) are
bounded. Theorem 4.4 in Khalil (1996) implies that {x™(¢) x(¢) — 0 ast — oo. Hence
x(t) = [|" ast — .

Sincex(f) — 0 ast — oo it follows from equation (24) that K(r) — 0 ast — oc. Since
K(t) isbounded for al 7 > 0 it follows that K(#) convergesast — oc.

Since x, K, ¢, f, and g are bounded, it follows from equation (5) that x is bounded.
Hence, since x is continuous, it follows that x is uniformly continuous. Since x is uniformly
continuous and x(¢) — 0 ast — oo, it followsthat lim, . .. fo' x(7) dr exists. Sincef'and g
are globally piecewise uniformly continuous, it follows from equation (5) that x is globally
piecewise uniformly continuous. Hence, Lemma 2 (see Appendix B) implies that x(1) — 0
ast — oo. Sincex(t) — 0 andx(¢) — 0 ast — oo, and K(¢), f(¢), and g(¢) are bounded, it
follows from equation (5) that ¢ (1) — —d/b ast — oc. O

Note that the bounds a4, a,, 1, and 8, for fand g defined by equation (6) are used
only in the proof of Theorem 1 and need not be known in order to implement the adaptive
controller (24), (25).

For the case in which equation (1) is time invariant, Theorem 1 specializes to
Corollary 3.1in Hong and Bernstein (2001), where the matrix P was obtained as the solution
to the Lyapunov equation AT P+ P4, +R = 0, andwhere 4, = A+ BK, and R isan arbitrary
positive-definite matrix. It can be seen that when A, isin companion form, the (1, 2) entry of
P isalways positive. Hence, the requirement p, > 0 represents no loss of generality when
Theorem 1 is applied to linear time-invariant plants.

T

(34)

2

4. NUMERICAL EXAMPLES

Example 1. We begin with a simple introductory example problem to demonstrate the
controller. Consider the system (1) with sinusoidally varying stiffness /(¢) = 5sin(15¢) and
damping g(¢) = 3sin(37¢) and with parametersm = 1, b = 1, and constant disturbance
d = 1. Choose the controller parameters

1 05 10
P‘[0.5 1}’A_[0 1}”1_1 (35)

Figure 1 shows the system trgjectory in the ¢, ¢ plane and Figure 2 shows the time history
of k1, ko, and ¢ . The system isfirst simulated uncontrolled, and then the adaptive controller
isactivated at t = 10. The controlled response indicates that ¢ and ¢ converge to zero, the
gains k; and k- converge, and ¢ convergesto —1.

Example 2. Next we consider a system that is non-periodic and continuous with
discontinuous derivative. This demonstrates that the controller does not require a basis
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ylabel

-5 0 5 10 15 20 25 30 35

Figure 1. Trajectory in the g, ¢ plane for Example 1. Initial conditions are ¢ = 1, ¢ = 1, k1 = 0,
k2 = 0, and ¢ = 0. The uncontrolled response is shown by the dashed line, and the controlled response
is shown by the solid line.
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Figure 2. Time history of k1, k2, and ¢ for Example 1. The control system is activated at ¢ = 10.
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Figure 3. Time-varying stiffness and damping coefficients for Example 2.

expansion for the time variation. Consider the system given by equation (1) where the
continuous piecewise linear functions /(¢) and g(¢) are shown in Figure 3. In this example
the stiffness /() varies between —3 and 5 and the damping g(¢) varies between 0 and 6. Let
m=1,b=1,andd = 1. Choose controller parameters as in equation (35). Figure 4 shows
the system trgjectory in the ¢, ¢ plane and Figure 5 shows the time history of &y, k5, and ¢ .
Following activation of the adaptive controller at t = 10, g and ¢ converge to zero, the gains
k, and k, converge, and ¢ convergesto —1.

Example 3. Finally, we consider a system with discontinuous time variation to
demonstrate that continuity isnot required for stability and convergence. Consider the system
given by equation (1) with discontinuous coefficient functionsf(¢) = 5 + 3 sign(sin(z)) and
g(t) = 3+ Hsign(cos(nt)) showninFigure6. Letm = 1,b = 1,andd = 1. Again, choose
controller parameters as in equation (35). Figure 7 shows the system trgjectory in the ¢, ¢
plane and Figure 8 shows the time history of ki, k>, and ¢ . As before, we alow the system
to propagate uncontrolled until £ = 10 in order to demonstrate the uncontrolled behavior of
the system. After the control is activated at ¢+ = 10, ¢ and ¢ converge to zero, the gains k;
and k, converge, and ¢ convergesto —1.

5. CONCLUSION

In this paper we have adaptively stabilized a class of second-order linear time-varying
systems. We have proven closed-loop Lyapunov stability and convergence of the plant states.
Futurework will include extension to higher-order plants, more general basisrepresentations,
and nonlinear time-varying plants.
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0.5

ylabel

05 F

xlabel

Figure 4. Trajectory in the g, ¢ plane for Example 2. Initial conditions are ¢ = 1, ¢ = 1, k1 = 0,
k2 = 0, and ¢ = 0. The uncontrolled response is shown by the dashed line, and the controlled response
is shown by the solid line.
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Figure 5. Time history of k1, k2, and ¢ for Example 2. The control system is activated at ¢ = 10.
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ylabell
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N

N o

xlabel

Figure 6. Discontinuous stiffness and damping coefficient functions for Example 3.

40 T

30 , \ il

ylabel
5
T

xlabel

Figure 7. Trajectory in the g, ¢ plane for Example 3. Initial conditions are ¢ = 1, ¢ = 1, k1 = 0,
k2 = 0, and ¢ = 0. The uncontrolled response is shown by the dashed line, and the controlled response
is shown by the solid line.
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Figure 8. Time history of k1, k2, and ¢ for Example 3. The control system is activated at ¢ = 10.

APPENDIX A

Definition 2. Let y : [0,00) — IR" andlet {¢;},°, beanincreasing sequencein [0, co) such
that inf,cz, (11 — ;) > 0. Let || - || denote anorm on IR". Then v is globally piecewise
uniformly continuous if there exists 0 : [0,00) — [0, 00) such that, for every i € Z, and
e>0,||w(t) —w(t)| <eforaltt’ € [t;,t;41) suchthat [t — /| < d(e).

APPENDIX B

Lemma 2. Let y : [0,00) — IR" be globally piecewise uniformly continuous and assume
that [ w(7)dr exists. Theny(¢) — 0 ast — oc.

Proof. It sufficesto consider n = 1. Let {#,}:°, betheincreasing sequence of points of
discontinuity of y asin Definition 2. Define T 2 infiez, (i1 —1;),andletj: [0,00) — Z,
be given by

JIOERA L <t<ty,,i€Z,. (36)

Thefunctionj(z) givesthe index of the interval in which ¢ resides. Next, we note that

| wirar- S e, (37)
i=1

where
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tit1
e, 2 / w(T)dr, icZ,. (38)
.

Since ), ©; exists, it followsthat ©, — 0 asi — oo.
Next, define the piecewise constant function 8 : [0, 0c) — IR by

S0

0(t) &8 —L>— t€[0,00). (39)
Lin+1 — G
Note that
t t
/ O(r)dr = / w(T)dr, ieZ,. (40)
0 0
Define the piecewise linear functiond : [0,00) — IR by
t—t
B} 2 0, —LL (41)
G+ = L)
and note that
! )
/ 0(r)dr = / 0(r)dr +9(), 1€ [0,00). (42)
0 0
Since0 < () < Oy and0 < T(¢) < Oy foradlt € [0,00), and lim, ., O;;) =
lim, ., ©; = 0, it follows that
lim 9(7) = 0, lim 6(z) = 0. (43)
t—o0 t—o0

Hence, equations (43), (42), and (36) imply

im [ 0()dr — lim (/Ot'”’)a@mfw(z))

t—o00 0 t—o00
) t

= lim 0(7)dr = lim O(r)dr. (44)

t—o0 0 I—00 0

It follows from equations (44), (39), and (37) that

t t t

lim [ 0(r)dr=1lim [ 6(r)dr=3"6,=1m [ y(rjdr, (@9
—oo Jq i—oo Jg =1 —> Jo

which implies

/O T p(r) = (7)) dr = 0. (46)
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Definev : [0,00) — IR by

v(t) £ y() = 0(), (47)

sothat [~ v(7)dr = 0. Wewish to show that v(r) — 0 ast — oo. Since y is globally
piecewise uniformly continuous and € is piecewise constant, it follows that v is globally
piecewise uniformly continuous. Hence, there exists d : [0,00) — [0, o0) such that, for
everyi € Zyandeg > 0, |v(t)—v(t')| < egoforale, ¢’ € [t;,4,1)suchthat [t—¢'| < d(eo).

Choosee > 0. Lete’ > 0 satisfy ¢’ < ¢/4, and let o > 0 satisfy 0 < min(d(¢'), T).
Since [ v(7) dr = 0, it follows that there exists 7; > 0 such that

/Otv(r) dr
/tHrUV(T)dT

Letic Z,,i>j(T,)andlett > T, satisfy t;, < ¢ < t,;; — 0. Notethat

< ‘ff foral 1> Ty (48)
Hence,

<% foralt> T (49)

()| —€& <) < @)+  fordlt<t <t+o. (50)

Suppose |v(¢)| > ¢&’. Then equations (50) and (49) imply

t+o t+ o oe
/ (v(5)| &) dr < / vrydr < %, (51)
t t
Hence,
€ !
]v(t)\<§+e, (52)
and it follows from equation (50) that
v <2(E4e)<e  fordli<i <i+to. (53)
4
On the other hand, suppose |v(#)| < &’. Then
() <2 <e fordle<t’' <t+o. (54)

It follows from equations (53) and (54) that v(¢) < e foral ¢ > T;. Hencev(t) — 0 as
t — o00. Since#(t) — 0 ast — oo, it followsthat y(f) — 0 ast — oc. O
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