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* We consider adaptive stabilization for a class of linear time-varying second-order systems. Inter-
preting the system states as position and velocity, the system is assumed to have unknown, non-parametric,
bounded time-varying damping and stiffness coefficients. The coefficient bounds need not be known to im-
plement the adaptive controller. Lyapunov methods are used to prove global convergence of the system states.
For illustration, the controller is used to stabilize several example systems.

+�� ,��-�* Adaptive, stabilization, time varying, control

 ! "#�$�%&��"�#

There are many applications of control in which a reliable model of the dynamical system is
not available. This can occur if the system possesses unknown or changing parameters, if the
system is not amenable to analytical modeling due to unknown physics, or if identification is
not feasible due to instability, disturbance and sensor noise, poor repeatability, unpredictable
changes, or high cost. Under such high levels of uncertainty, robust control may be ineffective
and adaptive control may be viable.

Stabilization of time-varying systems is complicated by the fact that stability cannot be
determined by the frozen-time system eigenvalues (Wu, 1974). Hence some control methods
require explicit knowledge of the time variation of the system parameters for feedback
synthesis (Wolovich, 1968; Wu, 1975; Cheng, 1979; Tadmor, 1992). In addition, some control
strategies require a sufficiently small rate of time variation in order to guarantee stability
(Kamen et al., 1989). The stability of systems with periodic time variation, including the
classical Hill and Mathieu equations, is analyzed in Richards (1983).

In this paper we consider the problem of adaptive stabilization for a class of second-
order time-varying systems under full-state feedback. In Section 2, we present a fixed-gain
controller that facilitates the development of the adaptive controller. Then, in Section 3, we
present the adaptive controller and prove convergence of the plant states. In Section 4, we
present three example problems that demonstrate the breadth of the admissible system class.
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Interpreting the system states as position and velocity, the system is assumed to have
unknown, time-varying damping and stiffness coefficients, which are assumed only to belong
to a class of piecewise continuous functions and to be bounded. Furthermore, the coefficient
bounds need not be known. The novel aspect of the controller is the fact that global stability
and convergence is guaranteed under non-parametric assumptions about the time variation.
The form of the adaptive controller is similar to direct adaptive controllers developed for
linear time-invariant systems. Related theory can be found in Åström and Wittenmark
(1995), Ioannou and Sun (1996), Kaufman et al. (1998), Krstic et al. (1995), Narendra
and Annaswamy (1989), and Sastry and Bodson (1989), where the emphasis is on model
following control. For adaptive stabilization of linear systems, a self-contained treatment of
the relevant ideas and techniques is given in Hong and Bernstein (2001), where stability of the
closed-loop system is proven for linear time-invariant plants. In Roup and Bernstein (2001),
the same controller is applied to second-order nonlinear plants with position-dependent
stiffness and damping coefficients.

Since we assume full-state feedback in companion coordinates, i.e. position and velocity
measurements, the controller is a direct adaptive controller, and thus parameter estimates
are not needed. In addition, full-state feedback availability avoids the need for positivity
assumptions. Extensions to nonlinear time-varying uncertainty, output feedback, and model
reference adaptive control will be considered in future work.

'! (")*%�+�"# 	���"�",��"�#

We wish to determine a fixed-gain feedback control law for the linear time-varying system

� ����� � ���� ����� � � ��� ���� � ����� � �	 (1)

where � � ��	��, � 	 ��	�� � ��, � 	 ��	�� � ��, and �	 �	 � � ��, such that ���� � �
and ����� � � as � � �. We assume that � and � are piecewise continuous and bounded.
Additionally, we assume that � 
 � and � �� �. Implementation of the controller requires
that �, �, �, and upper and lower bounds on � and � be known. Explicit knowledge of � and
� is not required for implementation.

Consider the control law

���� � ������ � �� ����� � � 	 (2)

where ��, ��, � � ��. Define the state

��� �

�
����

����

�
�
�
����

�����

�
	 (3)

and the gain matrix

� � ��� ��
 � (4)

Dynamic variables will henceforth be written without a time-dependence argument. Equa-
tions (1) and (2) can be written in state form as
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�

����� ���� �� � �� ����� � � ����


�
� (5)

Let � �
�
�� ���
��� ��

�
be positive definite with ��� 
 �. Let

�� � ��
�������

� ���	 �� � ���
�������

� ���	 � � � ��
�������

����	 � � � ���
�������

����	 (6)

and define

� � �
���
�
� � �

��
�
��	 � � �

���
�
� � �

��
�
��	 � � ������ ��	 �� ���� (7)

Define the set

�� ��� �
�
��� ��
 	 ��� � ��	

���
�

��� �
��
�
��� � �� � �	

���
�

��� � ����
���
�
�� � � ����� ���

�



�

�
� �
�
� (8)

We will show that the elements of the set �� ��� are constant feedback gains � associated
with � that stabilize the origin of equation (5).

%��������  . (Definition 3.5 in Khalil, 1996) Consider the time-varying nonlinear
differential equation

� � � ��	 � (9)

where � 	 �� � ��� � ��� and assume � ��	 �� � � for all � 	 �. The equilibrium  � � is
globally exponentially stable if there exist � 
 � and � 
 � such that, for all �� 	 � and for
all initial states ���� � ��� ,


���
 � �
����
��� ������ 	 � 
 ��� (10)

�����  . �� ��� is not empty. Furthermore, let �� � �� ���. Then, with � � �� and
� � ����, the origin of equation (5) is globally exponentially stable.

-��. The constraint inequality ��� � �� in the definition (8) of �� ��� provides an
upper bound on ���. The remaining inequalities can be restated as upper bounds on ���
given by

��� � � �

���

���
�
��� � ��

�
	 ��� � � � � �

��

�
�� �

������� � � ���
� ���

�
� (11)
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Since ��� and ��� are bounded from above only it follows that �� ��� is not empty.
Write �� � ���� ��� 
 and define�� 	 ��	��� �� and �� 	 ��	��� �� by

�� ��� � � ���� ���� 	 ����� � ����� ���� � (12)

The closed-loop system (5) can be written in the form

� �

	
�

�����
�
������� ��� ����

� 

� (13)

Define

�� � �
�
�� �

���
�
���� �

��
�
����

�
(14)

and � 	 ��	��� �� by

���� � ���
�

����� �
��
�
�� ���� �� � �� � (15)

Define

�� �

�� ���
�

��� � ���� �
�

�
� �

�

�
� �

��
�
�� � � ���� �� ���

��� 	 (16)

�� �

�� ���
�

��� � ���� �
�

�
� �

�

�
� �

��
�
�� � � ���� �� ���

��� � (17)

Note that since �� � �� ��� it follows that �� ��� 
 �, ����� 
 �, and � � � ���� � � � for all
� � ��	��. Furthermore, �� 
 �, and �� and �� are positive definite. Let � 
 � satisfy

� � ���� ����	 (18)

� � ���� ����	 (19)

where ���� ��� denotes the smallest eigenvalue of the argument matrix.
Consider the Lyapunov candidate for equation (5) given by

��� �
�

�
	 ��

�

�
��

�
� 	 (20)

which is positive definite, continuously differentiable, and radially unbounded. The time
derivative ����� of ���� � ������ along the system trajectory is given by

����� � 	 ��� ��� ��

� ���� � ������ � �

�
����� � ����

�
������ � ��� ���

�
� ����
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�
�� 	 �� � �
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�
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����	 �� � �

� ��	 � (21)

Since �	  is positive definite, it follows from Corollary 3.4 in Khalil (1996) that  � � is
globally exponentially stable. �

Let�� denote the set of constant gains� that render the equilibrium  � � of the closed-
loop system (5) globally asymptotically stable with � � ����. Hence, �� ���  �� .

.! �%�-�"�* 	���"�",��"�#

Next we consider an adaptive stabilizer for equation (1) which operates with reduced
parametric information. We assume that the functions � and � are globally piecewise
uniformly continuous (see Appendix A) and bounded, � is positive, and � is non-zero.
The globally piecewise uniformly continuous function class, a subset of the piecewise
continuous functions class, includes certain discontinuous functions such as piecewise
constant functions. For this case, the only parametric information required is knowledge
of ������. Unlike the fixed-gain case, implementation of the adaptive algorithm does not
require knowledge of �, �, �, and upper and lower bounds on � and �.

The control law

���� � ����� ���� � ����� ����� � � ���	 (22)

where the gains �����, ����� and the parameter � ��� are adapted, will be used to obtain
����� � and ������ � as ���.

Define the state  as in equation (3), and the gain matrix

���� � ������ �����
 � (23)

Dynamic variables will henceforth be written without a time-dependence argument.
Equations (1) and (22) written in state form yield equation (5), where now � and � are
time-dependent.
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Next let � �
�
�� ���
��� ��

�
be positive definite with ��� 
 � and consider the adaptation

law

�� � ���� ��� (24)

�� � ���� �� (25)

where � � ����� is positive definite, and � � �� is positive. Define �
 �
�

�
��� ���

�
The equilibrium set of equations (5), (24), and (25) is

� � ��	 �	 � � � ��� � ����� � �� 	  � ��	 �

�
	 � � �����	 � � ������

Define the subsets of equilibria

�� � ��	 �	 � � � � 	 � � ���

and

�� ��� � ��	 �	 � � � �� 	 � � �� �����

������  ! Every element of �� ��� is a uniformly Lyapunov stable equilibrium
(Definition 3.2 in Khalil, 1996) of the closed-loop system (5), (24), and (25). Furthermore, let
�	 �	 � � be a solution of equations (5), (24), and (25). Then ���� ��	 �


�, ���� converges,
and � ���� ���� as ���.

-��. Let
�
�� �


�
	 �� 	����

�
� �� ���, where �� � ���� ��� 
 � �� . Define

��� � �� � ��� 	 ��� � �� � ��� 	 �� � �� �� 	 �� � � � ���	 (26)

and�� 	 ��	��� �� and �� 	 ��	��� �� by equation (12). The closed-loop system (5), (24),
and (25) can be written in the form

� �

	
�

�����
�
���� ��� � ������ ��� ����

� 

	 (27)

��� � ���� ���	 (28)

��� � ���� �� � (29)

Let �� be given by equation (14), and let � 	 ��	�� � �� be given by equation (15). Let
��	 �� � ����� be given by equations (16) and (17). As in Lemma 1, note that since

��� �� ��� it follows that �� ��� 
 � and ����� 
 � for all � � ��	��, �� 
 �, and ��
and �� are positive definite. Let � 
 � satisfy equations (18) and (19).

Consider the Lyapunov candidate for the system (27)–(29) given by
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�
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which is positive definite, continuously differentiable, and radially unbounded. The time
derivative ����� of ���� � �����	 �����	 � ���� along the system trajectory is given by
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�
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�� � � � ��� �� ���

�
��	 �� 	 �

� ���
�
��� � � ��� � 

�
� � � ��� �

�
��
�
�� � � � ��� �� ���

�
��	 �� � �

�

� ����	 �� 	 �

����	 �� � �

� ���
� �� (31)

Hence � � ���� � ���� for all � 
 �. Let 
 � 
� denote the Euclidean norm. Since � is
quadratic and positive definite, there exist ��	 �� 
 � such that

��

�����	 ��	� ������
�
� ��	 ��	 �� � � ��

�����	 ��	� ������
�
	 (32)

for all �	 ��	 � � � ��� � ����� � ��. Hence, for all � 
 �,����� ��� 	 �� ��� 	 ����
������

�
�
�
�
� �

�
�����

�
�
� �

�
�����

�
� �
� �

������ ��� 	 �� ��� 	 ����
�����

�
	

(33)
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which implies����� ��� 	 �� ��� 	 � ���
�����

�
�
�
� �
� �

������ ��� 	 �� ��� 	 � ���
�����

�
� (34)

It follows from Lemma 3.3 in Khalil (1996) that
�
�� �


�
	 �� 	����

�
is a uniformly

Lyapunov stable equilibrium of equations (5), (24), and (25). Furthermore, since ���� is
bounded and ��	 ��	 �� � is radially unbounded, it follows that ���, ����, and � ��� are
bounded. Theorem 4.4 in Khalil (1996) implies that ����� ��� � � as � � �. Hence
���� �


� as ���.
Since ���� � as ��� it follows from equation (24) that ������ � as ���. Since

���� is bounded for all � 
 � it follows that ���� converges as ���.
Since , �, � , �, and � are bounded, it follows from equation (5) that � is bounded.

Hence, since  is continuous, it follows that  is uniformly continuous. Since  is uniformly
continuous and ���� � as ���, it follows that ������

� �
�
���� �� exists. Since � and �

are globally piecewise uniformly continuous, it follows from equation (5) that � is globally
piecewise uniformly continuous. Hence, Lemma 2 (see Appendix B) implies that ���� � �
as ���. Since ���� � and ����� � as ���, and ����, � ���, and ���� are bounded, it
follows from equation (5) that � ���� ���� as ���. �

Note that the bounds ��, ��, � �, and � � for � and � defined by equation (6) are used
only in the proof of Theorem 1 and need not be known in order to implement the adaptive
controller (24), (25).

For the case in which equation (1) is time invariant, Theorem 1 specializes to
Corollary 3.1 in Hong and Bernstein (2001), where the matrix �was obtained as the solution
to the Lyapunov equation  �� ��� ��� � �, and where  � �  ���� and � is an arbitrary
positive-definite matrix. It can be seen that when  � is in companion form, the ��	 �� entry of
� is always positive. Hence, the requirement ��� 
 � represents no loss of generality when
Theorem 1 is applied to linear time-invariant plants.

/! #&0*$"��� *)�0-�*	

*1�����  ! We begin with a simple introductory example problem to demonstrate the
controller. Consider the system (1) with sinusoidally varying stiffness � ��� � � ������� and
damping ���� �  ��� ! �� and with parameters � � �, � � �, and constant disturbance
� � �. Choose the controller parameters

� �

�
� ���
��� �

�
	� �

�
� �
� �

�
	 � � � (35)

Figure 1 shows the system trajectory in the �	 �� plane and Figure 2 shows the time history
of ��, ��, and � . The system is first simulated uncontrolled, and then the adaptive controller
is activated at � � ��. The controlled response indicates that � and �� converge to zero, the
gains �� and �� converge, and � converges to ���

*1����� '! Next we consider a system that is non-periodic and continuous with
discontinuous derivative. This demonstrates that the controller does not require a basis
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������ �� 	�
������ �� �� �� �� ��
�� ��� ��
���� �� ����
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�� � � �� �� � �� �� � ��

�� � �� 
�� � � �� 	�� ����������� �������� �� ����� �� �� �
���� ����� 
�� �� ��������� ��������

�� ����� �� �� ����� �����

������ �� 	��� ������ �� ��� ��� 
�� � ��� ��
���� �� 	�� ������ ����� �� 
���
�� 
 � � ���
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������  � 	���!�
����� �������� 
�� �
����� ����������� ��� ��
���� ��

expansion for the time variation. Consider the system given by equation (1) where the
continuous piecewise linear functions � ��� and ���� are shown in Figure 3. In this example
the stiffness � ��� varies between � and 5 and the damping ���� varies between 0 and 6. Let
� � �, � � �, and � � �. Choose controller parameters as in equation (35). Figure 4 shows
the system trajectory in the �	 �� plane and Figure 5 shows the time history of ��, ��, and � .
Following activation of the adaptive controller at � � ��, � and �� converge to zero, the gains
�� and �� converge, and � converges to ��.

*1����� .! Finally, we consider a system with discontinuous time variation to
demonstrate that continuity is not required for stability and convergence. Consider the system
given by equation (1) with discontinuous coefficient functions � ��� � �� ���������� and
���� �  �� ����!"��!��� shown in Figure 6. Let� � �, � � �, and � � �. Again, choose
controller parameters as in equation (35). Figure 7 shows the system trajectory in the �, ��
plane and Figure 8 shows the time history of ��, ��, and � . As before, we allow the system
to propagate uncontrolled until � � �� in order to demonstrate the uncontrolled behavior of
the system. After the control is activated at � � ��, � and �� converge to zero, the gains ��
and �� converge, and � converges to ��.

2! ��#��&	"�#

In this paper we have adaptively stabilized a class of second-order linear time-varying
systems. We have proven closed-loop Lyapunov stability and convergence of the plant states.
Future work will include extension to higher-order plants, more general basis representations,
and nonlinear time-varying plants.
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�� � ��� ��
���� �� 	�� ������ ����� �� 
���
�� 
 � � ���
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������ $� %����������� �������� 
�� �
����� ���������� �������� ��� ��
����  �

������ &� 	�
������ �� �� �� �� ��
�� ��� ��
����  � ����
� ��������� 
�� � � �� �� � �� �� � ��

�� � �� 
�� � � �� 	�� ����������� �������� �� ����� �� �� �
���� ����� 
�� �� ��������� ��������

�� ����� �� �� ����� �����
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������ '� 	��� ������ �� ��� ��� 
�� � ��� ��
����  � 	�� ������ ����� �� 
���
�� 
 � � ���

�--*#%") �

%�������� '. Let " 	 ��	��� ��� and let �������� be an increasing sequence in ��	�� such
that �� ���� ���	� � �� � 
 �. Let 
 � 
 denote a norm on ��� . Then " is ��'���� "����/���
�	�$��#�� ��	
�	���� if there exists � 	 ��	�� � ��	�� such that, for every # � �	 and
$ 
 �, 
"���� "�� ��
 � $ for all �	 � � � ��� 	 ��	� � such that ��� � �� � ��$�.

�--*#%") �

����� '. Let " 	 ��	�� � ��� be globally piecewise uniformly continuous and assume
that

��
�
"��� �� exists. Then "���� � as ���.

-��. It suffices to consider % � �. Let �������� be the increasing sequence of points of
discontinuity of " as in Definition 2. Define & � �� ���� ���	���� �, and let ' 	 ��	��� �	
be given by

'��� � #	 �� � � � ��	� 	 # � �	� (36)

The function '��� gives the index of the interval in which � resides. Next, we note that� �

�

"��� �� �
��
���

#� 	 (37)

where
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#� �
� � ���

� �

"��� �� 	 # � �	� (38)

Since
��

��� #� exists, it follows that #� � � as #��.
Next, define the piecewise constant function ( 	 ��	��� �� by

( ��� � #����

�����	� � �����
	 � � ��	��� (39)

Note that � � �

�

( ��� �� �

� � �

�

"��� �� 	 # � �	� (40)

Define the piecewise linear function ) 	 ��	��� �� by

)��� � #����

�� �����
�����	� � �����

	 (41)

and note that � �

�

( ��� �� �

� � � �� �

�

( ��� �� � )���	 � � ��	��� (42)

Since � � )��� � #���� and � � &( ��� � #���� for all � � ��	��, and ��� ��� #���� �
������ #� � �, it follows that

���
���

)��� � �	 ���
���

( ��� � �� (43)

Hence, equations (43), (42), and (36) imply

���
���

� �

�

( ��� �� � ���
���

�� � � �� �

�

( ��� �� � )���

�

� ���
���

� � � �� �

�

( ��� �� � ���
���

� � �

�

( ��� �� � (44)

It follows from equations (44), (39), and (37) that

���
���

� �

�

( ��� �� � ���
���

� � �

�

( ��� �� �
��
���

#� � ���
���

� �

�

"��� �� 	 (45)

which implies � �

�

�"���� ( ���� �� � �� (46)
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Define * 	 ��	��� �� by

*��� � "���� ( ���	 (47)

so that
� �
�
*��� �� � �. We wish to show that *��� � � as � � �. Since " is globally

piecewise uniformly continuous and ( is piecewise constant, it follows that * is globally
piecewise uniformly continuous. Hence, there exists � 	 ��	�� � ��	�� such that, for
every # � �	 and $� 
 �, �*����*�� ��� � $� for all �	 � � � ��� 	 ��	� � such that ���� �� � ��$��.

Choose $ 
 �. Let $� 
 � satisfy $� � $��, and let � 
 � satisfy � � �����$��	 & �.
Since

��
�
*��� �� � �, it follows that there exists &� 
 � such that����� �

�

*��� ��

���� � �$

�
for all � 
 &�� (48)

Hence, ����� � 	 �

�

*��� ��

���� � �$

�
for all � 
 &�� (49)

Let # � �	, # 	 '�&�� and let � 
 &� satisfy �� � � � ��	� � �. Note that

�*���� � $� � �*�� ��� � �*����� $� for all � � �� � �� �� (50)

Suppose �*���� 
 $�. Then equations (50) and (49) imply� � 	 �

�

��*���� � $�� �� �
����� � 	 �

�

*��� ��

���� � �$

�
� (51)

Hence,

�*���� � $

�
� $�	 (52)

and it follows from equation (50) that

�*�� ��� � �
� $
�
� $�

�
� $ for all � � � � � �� �� (53)

On the other hand, suppose �*���� � $�. Then

�*�� ��� � �$� � $ for all � � � � � �� �� (54)

It follows from equations (53) and (54) that *��� � $ for all � 
 &�. Hence *��� � � as
���. Since ( ���� � as ���, it follows that "���� � as ���. �

��0	�/��-#�	
�� ���� �������� /�� ��""��
�- �	 "��
 '� 
�� ��� 1���� 2$$��� �$ ����	
�$�� �������� �	-��
��	
 1( 3��4 �5�5���6 �	- � 1��	7���58����� 9�	��- 1��	-�
��	 1����/���"�
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