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Abstract

This paper considers "xed-structure H
2
-optimal relative degree two controller synthesis. The problem is presented in a decentra-

lized static output feedback framework developed for "xed-order (i.e., full- and reduced-order) dynamic controller synthesis.
A quasi-Newton/continuation algorithm is used to compute solutions to the necessary conditions. To demonstrate the approach,
a #exible structure example is considered. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that modern multivariable control
design frameworks such as H

2
and H

=
control yield

dynamic compensators with relative degree zero or one.
Hence, the structure of the dynamic feedback controller
is such that the measured system output appears explici-
tly in the control signal or the measured system output
appears explicitly in the control rate signal (MacFarlane
and Karcanias, 1976). In the single- input/single-output
system case, the resulting controller transfer function is
non-strictly proper or strictly proper with relative degree
zero or one. In this case, the Bode plot of the controller
transfer function at best rolls o! at 20 dB per decade.
Alternatively, for relative degree r controllers, the Bode
plot of the compensator has a high-frequency roll-o! of
20r dB per decade.

High-frequency roll-o! is particularly useful when the
system under consideration is a lightly damped #exible
structure. Since #exible structure models are by necessity
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truncated to a "nite number of modes, it is desirable for
the frequency response to roll-o! as quickly as possible
after the gain crossover frequency so that unmodeled
high-frequency system dynamics are not excited by the
controller dynamics.

For single-input/single-output systems, where the
H

2
norm corresponds to the area under the Bode plot

and the H
=

norm corresponds to the maximum magni-
tude of the Bode plot, roll-o! rates cannot be speci"ed by
minimization techniques on these norms. Loop shaping
weighting functions can be used in the controller design
process, but these specify the frequency where the roll-o!
starts, not the roll-o! rate. Furthermore, these techniques
also tend to result in high-order controllers when fre-
quency weighting is included in the design process. In this
paper we extend the "xed-structure controller design
framework of Bernstein et al. (1989) and Erwin et al.
(1996) to design H

2
-optimal relative degree two control-

lers for multi-input/multi-output systems. Since we cast
the relative degree two design problem within the "xed-
structure control framework, "xed-order (i.e., full- and
reduced-order) controllers can be designed with in-
creased roll-o! rates at the gain crossover frequency.
Even though the proposed framework can be easily
extended to include desired weighting functions for
loop shaping, we do not do so here to facilitate the
presentation. Finally, we note that this is the "rst
paper that addresses H

2
-optimal control with relative

degree two.
The proposed H

2
-optimal relative degree two control-

ler design technique is applied to a structural control
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problem, showing that the resulting relative degree two
controller incurs minimal increase in H

2
performance

over the optimal LQG controller while enforcing a 20 dB
per decade increase in the roll-o! rate at the gain cross-
over frequency.

2. H
2
-optimal relative degree two control

In this section we state the H
2
-optimal relative degree

two control problem. Speci"cally, given the nth-order
stabilizable and detectable plant

xR (t)"Ax(t)#Bu(t)#D
1
w(t), t3[0, R) (1)

with noisy measurements

y(t)"Cx(t)#D
2
w (t) (2)

and performance variables

z(t)"E
1
x (t)#E

2
u (t), (3)

where u (t)3Rm, y(t)3Rl, z (t)3Rp, and w (t)3Rd, where
w(t) is a unit-intensity, zero-mean, Gaussian white noise
signal, and where ET

1
E

2
"0, determine an n

#
th-order

relative degree two dynamic compensator

xR
#1

(t)"A
#1

x
#1

(t)#B
#1

y (t), (4)

xR
#2

(t)"A
#2

x
#2

(t)#B
#2

v(t), (5)

v(t)"C
#1

x
#1

(t), (6)

u(t)"C
#2

x
#2

(t), (7)

where x
#1

(t)3Rnc1, x
#2

(t)3Rnc2, and n
#
On

#1
#n

#2
, such

that the H
2

performance criterion

J(A
#
, B

#
, C

#
)O lim

t?=

1

t
EP

t

0

[xT(s)R
1
x(s)#uT(s)R

2
u (s)] ds,

(8)

where E denotes expectation, is minimized.
Note that the dynamic controller (4)}(7) corresponds

to a cascade interconnection of the two controllers in the
feedback loop (see Fig. 1) so that the controller transfer
function realization is given by

G
#
(s)"G

#2
G

#1
(s)\C

A
#

B
#

C
#

0 D, (9)

where

A
#
"C

A
#1

0
B
#2

C
#1

A
#2
D, B

#
"C

B
#1
0 D,

C
#
"[0 C

#2
]. (10)

Note that since B
#2

is always multiplied with C
#1

, B
#2

C
#1

can be considered a single free parameter, thus leaving
only "ve controller gains over which to optimize, instead

Fig. 1. Relative degree two controller set-up.

of six. Finally, we note that this framework can be easily
extended to address the design of relative degree r con-
trollers by considering a cascade interconnection of r
dynamic controllers in the feedback loop.

3. Decentralized static output feedback formulation

In this section we re-cast the relative degree two dy-
namic compensation problem as a decentralized static
output feedback problem using the "xed-structure con-
troller synthesis framework of Bernstein et al. (1989) and
Erwin et al. (1996). Speci"cally, consider the 6-vector-
input, 6-vector-output decentralized system shown in
Fig. 2. By treating A

#1
, A

#2
, B

#1
, B

#2
C

#1
, and C

#2
as

decentralized static output feedback gains, we can rewrite
the closed-loop system dynamics (1)}(7) as

xJQ (t)"AxJ (t)#
5
+
i/1

B
ui
u
i
(t)#B

w
w (t), t3[0, R), (11)

y
i
(t)"C

yi
xJ (t)#D

ywi
w(t), i"1,2 , 5, (12)

z(t)"C
z
xJ (t)#

5
+
i/1

D
zui

u
i
(t), (13)

u
1
(t)"A

#1
y
1
(t), u

2
(t)"A

#2
y
2
(t), u

3
(t)"B

#1
y
3
(t),

(14)
u
4
(t)"B

#2
C

#1
y
4
(t), u

5
(t)"C

#2
y
5
(t),

where

xJ (t)O
x(t)

x
#1

(t)
x
#2

(t)
, AO

A 0 0
0 0 0
0 0 0

,

B
u1
O

0
I
n#1
0

, B
u2
O

0
0

I
n#2

, B
u3
O

0
I
n#1
0

,

B
u4
O

0
0

I
n#2

, B
u5
O

B
0
0

, B
w
O

D
1

0
0

,
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Fig. 2. Decentralized static output feedback framework.

C
y1
O [0 I

n#1
0], C

y2
O [0 0 I

n#2
],

C
y3
O [C 0 0], C

y4
O [0 I

n#1
0],

C
y5
O [0 0 I

n#2
], D

yw1
O 0, D

yw2
O 0,

D
yw3
OD

2
, D

yw4
O 0, D

yw5
O0,

C
z
O [E

1
0 0], D

zu1
O 0, D

zu2
O 0,

D
zu3
O 0, D

zu4
O 0, D

zu5
OE

2
.

It is important to note that the decentralized architecture
(12), (13) is used here only as a detail in the derivation of
the results and does not limit the applicability of the
proposed methodology. In particular, as shown in
Bernstein et al. (1989), a "xed-order centralized dynamic
compensation problem can always be reduced to a de-
centralized static output feedback problem by a suitable
plant augmentation. Next, de"ning

u' (t)O [uT
1
(t) uT

2
(t) uT

3
(t) uT

4
(t) uT

5
(t)]T,

y' (t)O [yT
1
(t) yT

2
(t) yT

3
(t) yT

4
(t) yT

5
(t)]T,

Eqs. (11)}(13) can be rewritten as

xJQ (t)"AxJ (t)#B
u
u' (t)#B

w
w(t), t3[0, R), (15)

y' (t)"C
y
xJ (t)#D

yw
w (t), (16)

z(t)"C
z
xJ (t)#D

zu
u' (t), (17)

where

B
u
O [B

u1
B

u2
B

u3
B

u4
B

u5
],

D
zu
O [D

zu1
D

zu2
D

zu3
D

zu4
D

zu5
],

C
y
O [CT

y1
CT

y2
CT

y3
CT

y4
CT

y5
]T,

D
yw
O [DT

yw1
DT

yw2
DT

yw3
DT

yw4
DT

yw5
]T.

Furthermore, by rewriting the decentralized control
signals (14) in the compact form u' (t)"Ky' (t), where
KO block-diag(A

#1
, A

#2
, B

#1
, B

#2
C

#1
, C

#2
), the closed-

loop system is given by

xJR (t)"AI xJ (t)#BI
w
w (t), t3[0, R), (18)

z(t)"CI
z
xJ (t), (19)

where AI OA#B
u
KC

y
, BI

w
OB

w
#B

u
KD

yw
, and

CI
z
OC

z
#D

zu
KC

y
.

Now, if AI is asymptotically stable for a given feedback
gain K3R(2nc`m)](2nc`l) it follows that the H

2
perfor-

mance criterion (8) is given by

J(A
#
, B

#
, C

#
)"EGI

zw
(s)E2

2
"tr PI BI

w
BI T
w
, (20)

where PI is the unique, nJ ]nJ nonnegative-de"nite solution
to the algebraic Lyapunov equation

0"AI TPI #PI AI #CI T
z
CI

z
, (21)

where nJ O n#n
#1
#n

#2
. Now, the necessary conditions

for optimality can be derived by forming the Lagrangian

L(PI , QI , K)"trMPI BI
w
BI T
w
#QI [AI TPI #PI AI #CI

z
TCI

z
]N,

(22)

where QI 3RnJ ]nJ is a Lagrange multiplier. The gradient
expressions with respect to the free parameters in Eq. (22)
are given by

LL
LPI

"AI QI #QI AI T#BI
w
BI T
w
,

LL
LQI

"AI TPI #PI AI #CI T
z
CI

z
, (23)

LL
LA

#1

"BT
u1

PI QI CT
y1

,
LL
LA

#2

"BT
u2

PI QI CT
y2

,

LL
LB

#1

"BT
u3

PI BI
w
DT

yw3
#BT

u3
PI QI CT

y3
, (24)

LL
LC

#2

"BT
u5

PI QI CT
y5
#DT

zu5
CI

z
QI CT

y5
,

LL
LB

#2
C

#1

"BT
u4

PI QI CT
y4

. (25)

4. Quasi-Newton/continuation algorithm

To solve the nonlinear optimization problem posed
in Section 3, a general-purpose BFGS quasi-Newton
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algorithm is used. The line-search portions of the
algorithm were modi"ed to include a constraint-checking
subroutine which decreases the length of the search
direction vector until it lies entirely within the set of
parameters that yield a stable closed-loop system. This
modi"cation ensures that the cost function J remains
de"ned at every point in the line-search process. Numer-
ical experience indicates that this subroutine is usually
invoked only during the "rst few iterations of a synthesis
problem.

One requirement of gradient-based optimization
algorithms is an initial stabilizing design. This was
accomplished by using a balanced truncation to ob-
tain a reduced-order LQG controller corresponding
to the controller in the feedback loop with the lower
order. Note that since two controllers are being syn-
thesized, it is not necessary for this "rst truncated
controller to stabilize the system. This controller was
augmented to the plant. If G

#1
is designed "rst, the

augmented realization is

G] (s)\

A 0

B
#1

C A
#1

B

B
#1

D

D
D
D
D

D
1

B
#1

D
2

0 C 0 D
D
D

0
} } } } } } } } } } } } }

E
1

0 E
2

D E
0

, (26)

whereas if G
#2

is designed "rst, the augmented realization
is

GI (s)&

A BC
#2

0 A
#2

0

B
#2

D
D
D
D

D
1

0

C DC
#2

0 D
D
D

D
2

} } } } } } } } } }

E
1

E
2
C

#2
0 D E

0

. (27)

Note that in the "rst case, the D]
2

term is identically zero,
whereas in the second case, the E]

2
term is zero. Thus

these augmented matrices result in a singular control
problem. This was overcome by replacing these terms
with nonzero matrices structured such that D]

1
D] T

2
"0 or

E] T
1
E]
2
"0, as appropriate. Once an LQG controller was

designed on this &&arti"cial'' system, the dynamics of the
original system were tested, and if the closed loop was
asymptotically stable, these designed controllers were
used as the initial controllers for the gradient search
algorithm. For details of the algorithm, see Erwin et al.
(1996).

5. Illustrative numerical example

Consider a two-mass}spring}damper system with a
colocated sensor/actuator pair and state space reali-

zation in real normal coordinates given by

xR (t)"

!0.0002 0.2208 0 0
!0.2208 !0.0002 0 0

0 0 !0.0103 1.4320
0 0 !1.4320 !0.0103

) x (t)#

!0.1439
0.2168

!0.0426
1.1890

u (t),

y(t)"C!0.0545 0.0819 !0.0352 0.8181Dx (t).

The weighting matrices D
1
, D

2
, E

1
, and E

2
were chosen

so that LQG synthesis would place a notch at the second
mode. This is accomplished when (Friedman and
Bernstein, 1993)

D
1
"

0 0
1 0
0 0
0 0

, D
2
"[0 1],

E
1
"C

1 0 0 0
0 0 0 0D, E

2
"C

0
1D.

For this system, the G
#1

and G
#2

controllers in the feed-
back loop were chosen to be of order two. Initializing
reduced-order LQG controllers were designed, and the
gradient search algorithm was initiated. The Bode plots
of the loop gain of the full-order LQG controller and of
the relative degree two controller, along with dotted lines
representing the respective high-frequency asymptotes,
are shown in Fig. 3. The H

2
-optimal LQG cost is 3.9734

and the H
2
-optimal relative degree two controller is

4.0743 which corresponds to only a 2.5% increase over
the H

2
-optimal LQG controller cost. This marginal in-

crease in the H
2

cost is not surprising since H
2
-optimal

relative degree two controllers are sought.
The transfer function for the LQG controller is

G
#(LQG)

(s)"

!0.9090s3!0.1073s2!1.8660s!0.1817

s4#0.3629s3#1.2425s2#0.6170s#0.1443
,

which has natural frequencies at 0.345 and 1.10 rad/s.
The relative degree two controller transfer function is
given by

G
#(R%-.D%'.2)

(s)"

!99.9827s2!2.0960s!205.2481

s4#64.6193s3#46.1170s2#34.9138s#77.6907
.

This transfer function has a natural frequency at
1.02 rad/s and break frequencies at 0.862 and 0.015 rad/s.
Thus it is seen in this case that constraining the controller
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Fig. 3. Bode plots of LQG and relative degree two controllers [LQG: Dashed, Relative Degree Two: Solid].

to be of relative degree two does not push the controller
poles out to such high frequencies that the extra 20 dB/
decade roll-o! is not useful.

6. Conclusions

In this paper we proposed a scheme to synthesize H
2
-

optimal relative degree two controllers by cascading two
controllers in the feedback loop and optimizing over the
"ve free controller parameters. The problem was for-
mulated in a decentralized static output feedback
framework, which facilitated the use of a quasi-Newton
optimization algorithm. This technique was applied to
a #exible structure example. It was shown that con-
straining the controller to have a relative degree of at
least two only marginally increased the H

2
cost of the

closed-loop system.
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