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REDUCED-ORDER STATE ESTIMATION FOR LINEAR

TIME-VARYING SYSTEMS

In Sung Kim, Bruno O. S. Teixeira, Jaganath Chandrasekar, and Dennis S. Bernstein

ABSTRACT

We consider reduced-order and subspace state estimators for linear
discrete-time systems with possibly time-varying dynamics. The reduced-
order and subspace estimators are obtained using a finite-horizon minimiza-
tion approach, and thus do not require the solution of algebraic Lyapunov or
Riccati equations.

Key Words: Reduced-order Kalman filter, reduced-order state estimation,
linear time-varying systems.

I. INTRODUCTION

Because the classical Kalman filter provides opti-
mal least-squares estimates of all of the states of a lin-
ear time-varying system, there is longstanding interest
in obtaining simpler state estimators that estimate only
a subset of the system states. This objective is of partic-
ular interest when the system order is extremely large,
which occurs for systems arising from discretized par-
tial differential equations [1–3].

One approach to this problem is to consider
reduced-order Kalman filters, which provide state es-
timates that are suboptimal [4–6]. Variants of the
classical Kalman filter have been developed for com-
putationally demanding applications such as weather
forecasting [7–9]. A comparison of various techniques
is given in [10]. An alternative approach to reducing
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complexity is to restrict the data-injection subspace to
obtain a spatially localized state estimator [11, 12].

In the present paper we revisit the approach of
[4, 13], which considers the problem of fixed-order
steady-state reduced-order state estimation. For a linear
time-invariant system, the optimal steady-state fixed-
order state estimator is characterized in [4, 13] by cou-
pled Riccati and Lyapunov equations, whose solution
requires iterative techniques.

The contribution of the present paper is to derive
Kalman-like reduced-order state estimators that are ap-
plicable to time-varying systems, thus extending the re-
sults of [4, 13]. To do so, we adopt the finite-horizon
optimization technique used in [11]. This technique also
avoids the periodicity constraint associated with the
multirate state estimator derived in [14]. Related tech-
niques are used in [15].

Furthermore, we also present fixed-structure sub-
space observers constrained to estimate a specified col-
lection of states of a linear time-varying system. This
problem is considered in [5, 16] for linear time-invariant
systems. The difference between the reduced-order state
estimator and subspace observer is apparent in the dis-
tinct oblique projectors � and �, which characterize
the reduced-order state estimator and the subspace ob-
server gains, respectively. While the former estimates
a given partition of the state vector, the latter focuses
on a specific subspace of the state vector. Moreover,
for unstable time-invariant systems, reduced-order state
estimators may diverge since theymay fail to adequately
track the unstable modes, while subspace estimators
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circumvent this problem by including all of the unstable
modes within the observed subspace [5].

The paper is structured as follows. Section II
presents the one-step and two-step finite-horizon
reduced-order state estimators, while the infinite-
horizon reduced-order state estimator is revisited in
Section III. The one-step and two-step finite-horizon
subspace state estimators are derived in Section IV,
while Section V revisits the infinite-horizon subspace
state estimator. Two illustrative examples are investi-
gated in Sections VI and VII. Finally, concluding re-
marks are given in Section VIII. A preliminary version
of this paper appears as [17].

II. OPTIMAL FINITE-HORIZON
REDUCED-ORDER STATE ESTIMATOR

Consider the system

xk+1 = Akxk + D1,kwk, (1)

yk =Ckxk + D2,kwk, (2)

where xk∈Rnk is the state vector, yk∈Rpk is the mea-
sured output vector, and wk∈Rdk is a white noise
process with zero mean and unit covariance. Fur-
thermore, assume that Ak ∈ Rnk+1 × nk , Ck ∈ Rpk × nk ,
D1,k ∈ Rnk+1 × dk , and D2,k ∈ Rpk × dk are known. Note
that Ak need not be square and may have time-
varying size.

2.1 One-step state estimator

We consider a one-step reduced-order state esti-
mator with dynamics

xe,k+1 = Ae,k xe,k + Be,k yk, (3)

where xe,k∈Rne,k and 1≤ne,k≤nk . Define the aug-
mented state vector

x̃k�
[

xk
xe,k

]
, (4)

where ñk�nk + ne,k , and

Q̃k�E[x̃k x̃Tk ]. (5)

Consider the cost function

Jk(Ae,k, Be,k) � E[(Lk+1xk+1 − xe,k+1)
T

×(Lk+1xk+1 − xe,k+1)], (6)

where Lk+1 ∈ Rne,k+1 × nk+1 . Throughout this paper, L
determines components of the state x whose estimates

are desired. We assume that L has full row rank. It
follows from (5) and (4) that Jk is given by

Jk(Ae,k, Be,k) = tr(Q̃k+1 R̃k+1), (7)

where R̃k+1 ∈ R(nk+1+ne+1) × (nk+1+ne,k+1) is defined by

R̃k+1�
[
LT
k+1Lk+1 −LT

k+1

−Lk+1 Ine,k+1

]
. (8)

Note that (1) and (3) imply that

x̃k+1 = Ãk x̃k + D̃1,kwk, (9)

where

Ãk �
[

Ak 0nk+1 × ne,k

Be,kCk Ae,k

]
,

D̃1,k �
[

D1,k

Be,k D2,k

]
.

(10)

Therefore,

Q̃k+1 = Ãk Q̃k Ã
T
k + Ṽ1,k, (11)

where

Ṽ1,k�
[

V1,k V12,k B
T
e

BeV
T
12,k Be,kV2,k B

T
e,k

]
, (12)

and

V1,k � D1,k D
T
1,k, V12,k�D1,k D

T
2,k,

V2,k � D2,k D
T
2,k .

(13)

Partitioning Q̃k as

Q̃k =
⎡
⎣ Q̃1,k Q̃12,k

Q̃T
12,k Q̃2,k

⎤
⎦ , (14)

it follows from (11) that

Q̃1,k+1 = Ak Q̃1,k A
T
k + V1,k, (15)

Q̃12,k+1 = Ak Q̃1,kC
T
k B

T
e,k

+Ak Q̃12,k A
T
e,k+V12,k B

T
e , (16)

Q̃2,k+1 = Be,k(Ck Q̃1,kC
T
k + V2,k)B

T
e,k

+Ae,k Q̃
T
12,kC

T
k B

T
e,k + Be,kCk Q̃12,k A

T
e,k

+Ae,k Q̃2,k Ae,k . (17)
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Therefore, (7) and (8) imply that Jk can be expressed as

Jk(Ae,k, Be,k) = tr[Lk+1(Ak Q̃1,k A
T
k + V1,k)L

T
k+1]

−2tr[Be,k(Ck Q̃1,k A
T
k + V T

12,k)L
T
k+1]

−2tr[Ae,k Q̃
T
12,k A

T
k L

T
k+1]

+tr[Be,k(Ck Q̃1,kC
T
k + V2,k)B

T
e,k]

+tr[Ae,k Q̃2,k A
T
e,k]

+2tr[Ae,k Q̃
T
12,kC

T
k B

T
e,k]. (18)

Next, assuming that Q̃2,k is invertible, we define
Qk , Q̂k∈Rnk × nk , Ṽ2,k∈Rpk×pk , and Gk ∈ Rne,k×nk by

Qk � Q̃1,k − Q̃12,k Q̃
−1
2,k Q̃

T
12,k,

Q̂k � Q̃12,k Q̃
−1
2,k Q̃

T
12,k,

(19)

Ṽ2,k �CkQkC
T
k + V2,k, (20)

Gk � Q̃−1
2,k Q̃

T
12,k . (21)

We assume that Ṽ2,k is invertible.
The following result characterizes Ae,k and Be,k

that minimize Jk .

Proposition II.1. Assume that Q̃2,k and Ṽ2,k are in-
vertible and Ae,k and Be,k minimize Jk . Then, Ae,k and
Be,k satisfy

Ae,k = Lk+1(Ak − Qs,k Ṽ
−1
2,k Ck)G

T
k , (22)

Be,k = Lk+1Qs,k Ṽ
−1
2,k , (23)

where

Qs,k�AkQkC
T
k + V12,k . (24)

Proof. Setting �Jk
�Ae,k

= 0, �Jk
�Be,k

= 0 and using (19)–(21)

yield the result. �

Proposition II.2. Assume that Ae,k and Be,k satisfy
Proposition II.1. Then,

Lk+1 Q̃12,k+1 = Q̃2,k+1, (25)

Q̃12,k+1 = Q̂k+1L
T
k+1, (26)

Q̃2,k+1 = Lk+1 Q̂k+1L
T
k+1. (27)

Proof. Substituting (22) and (23) into (16) and (17)
yields

Q̃12,k+1 = [Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k]LT

k+1, (28)

Q̃2,k+1=Lk+1[Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k]LT

k+1.

(29)

Pre-multiplying (28) by Lk+1 yields Lk+1 Q̃12,k+1 =
Q̃2,k+1. Using (19) and Lk+1 Q̃12,k+1 = Q̃2,k+1 yields
Q̃12,k+1=Q̂k+1LT

k+1 and Q̃2,k+1=Lk+1 Q̂k+1LT
k+1. �

Next, define Mk+1 ∈ Rnk+1×nk+1 by

Mk+1�Ak Q̂k A
T
k + Qs,k Ṽ

−1
2,k Q

T
s,k, (30)

and define �k+1, �k+1⊥ ∈ Rnk+1×nk+1 by

�k+1�GT
k+1Lk+1, �k+1⊥�Ink+1 − �k+1. (31)

Proposition II.3. Assume that Ae,k and Be,k satisfy
Proposition II.1. Then, �2k+1 = �k+1, that is, �k+1 is an
oblique projector.

Proof. It follows from (30) that (28) and (29) can be
expressed as

Q̃12,k+1 = Mk+1L
T
k+1,

Q̃2,k+1 = Lk+1Mk+1L
T
k+1.

(32)

Hence, (31) implies that

�k+1 = Mk+1L
T
k+1(Lk+1Mk+1L

T
k+1)

−1Lk+1. (33)

Therefore, �2k+1 = �k+1. �

Proposition II.4. Assume that Ae,k and Be,k satisfy
Proposition II.1. Then,

�k+1 Q̂k+1 = Q̂k+1. (34)

Proof. It follows from (19) that

Q̂k+1 = Q̃12,k+1 Q̃
−1
2,k+1 Q̃

T
12,k+1. (35)

Substituting (32) into (35) yields

Q̂k+1 = Mk+1L
T
k+1

×(Lk+1Mk+1L
T
k+1)

−1Lk+1Mk+1. (36)

Hence, pre-multiplying (36) by �k+1 and substituting
(33) into the resulting expression yields (34). �
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Proposition II.5. Assume that Ae,k and Be,k satisfy
Proposition II.1. Then,

Qk+1 = AkQk A
T
k − Qs,k Ṽ

−1
2,k Q

T
s,k + V1,k+�k+1⊥

×[Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k]�Tk+1⊥, (37)

Q̂k+1 = �k+1[Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k]�Tk+1, (38)

�k+1 = Mk+1L
T
k+1(Lk+1Mk+1L

T
k+1)

−1Lk+1. (39)

Proof. It follows from (25) and (29) that

Lk+1 Q̂k+1L
T
k+1 = Lk+1[Ak Q̂k A

T
k

+Qs,k Ṽ
−1
2,k Q

T
s,k]LT

k+1. (40)

Pre-multiplying and post-multiplying (40) by GT
k+1 and

Gk+1, respectively, yields

�k+1 Q̂k+1�
T
k+1 = �k+1[Ak Q̂k A

T
k

+Qs,k Ṽ
−1
2,k Q

T
s,k]�Tk+1. (41)

Hence, (38) follows from Proposition II.4.
Since Q̃12,k+1 = Q̂k+1Lk+1, (28) and (31) imply

that

�k+1 Q̂k+1=�k+1[Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k]. (42)

Therefore, (38) imply that

�k+1[Ak Q̂k A
T
k + Qs,k Ṽ

−1
2,k Q

T
s,k]

= �k+1[Ak Q̂k A
T
k + Qs,k Ṽ

−1
2,k Q

T
s,k]�Tk+1. (43)

Hence, Q̂k+1 can be expressed as

Q̂k+1 = Ak Q̂k A
T
k+Qs,k Ṽ

−1
2,k Q

T
s,k−�k+1⊥

×[Ak Q̂k A
T
k + Qs,k Ṽ

−1
2,k Q

T
s,k]�Tk+1⊥. (44)

Furthermore, it follows from (15) and (19) that

Qk+1 = AkQk A
T
k+V1,k + Ak Q̂k A

T
k − Q̂k+1. (45)

Therefore, substituting (44) into (45) yields (37). �

Note that although Ae,k and Be,k depend on Q̃12,k

and Q̃2,k , it follows from Proposition II.2 that Q̃2,k

and Q̃12,k can be obtained from Qk and Q̂k . Hence, it
suffices to propagate Qk and Q̂k using (37) and (38),
respectively.

Finally, we summarize the one-step reduced-order
state estimator, whose state estimate update is given by

xe,k+1=Lk+1(Ak−KkCk)G
T
k xe,k+Lk+1Kk yk, (46)

and whose covariance update is given by

Qk+1 = AkQk A
T
k + V1,k − Qs,k Ṽ

−1
2,k Q

T
s

+�k+1⊥Mk+1�
T
k+1⊥, (47)

where

Gk = (Lk Q̂k L
T
k )−1Lk Q̂k, (48)

Kk = Qs,k Ṽ
−1
2,k , (49)

Mk+1 = Ak Q̂k A
T
k + Qs,k Ṽ

−1
2,k Q

T
s,k, (50)

�k+1 = Mk+1L
T
k+1(Lk+1Mk+1L

T
k+1)

−1Lk+1, (51)

Q̂k+1 = �k+1Mk+1�
T
k+1, (52)

Ṽ2,k is given by (20), and Qs,k is given by (24).

Remark II.1. Note that, since xe,k+1 in (46) does not
use the current measurement yk+1, (46)–(47) com-
prise predictor equations rather than filter equations.
The differences between predictors and filters are dis-
cussed in [18].
Remark II.2. As is commonly done in the Kalman
filtering literature, we can rewrite (46)–(47) as

xe,k+1 = Lk+1[AkG
T
k xe,k

+Kk(yk−CkG
T
k xe,k)], (53)

Qk+1 = AkQk A
T
k + V1,k − Kk Ṽ2,k K

T
k

+�k+1⊥Mk+1�
T
k+1⊥, (54)

where the Kalman gain is given by (49). Note that,
if Lk+1 = Ink+1 , then �k+1 = Ink+1 , �k+1⊥ = 0nk+1 ,
Gk+1 = Ink+1 , and Mk+1 = Q̂k+1, and we thus recover
the full-order Kalman predictor.

2.2 Two-step state estimator

We now consider a two-step state estimator. The
data assimilation step is given by

xdae,k =Cda
e,k x

f
e,k + Dda

e,k yk, (55)
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where xdae,k ∈ Rne,k is the reduced-order data assimila-

tion estimate of Lkxk , and x fe,k ∈ Rne,k is the reduced-
order forecast estimate of Lkxk . The forecast step or
physics update of the estimator is given by

x fe,k+1 = Af
e,k x

da
e,k . (56)

Remark II.3. For large-scale applications, the process-
ing time of xdae,k at time k using yk in (55) may not be
neglegible compared to the sample interval. We thus
present the forecast estimate x fe,k+1 as the final estimate
of the two-step predictor (55)–(56).

Now, define the augmented forecast state vector
x̃ fk ∈ Rñk and augmented data-assimilation state vector
x̃dak ∈ Rñk , respectively, by

x̃ fk�
[

xk

x fe,k

]
, x̃dak �

[
xk

xdae,k

]
. (57)

Also define,

Q̃f
k�E[x̃ fk(x̃ fk)T], Q̃da

k �E[x̃dak (x̃dak )T]. (58)

Defining the data assimilation cost

J dak (Cda
e,k, D

da
e,k)�E[(Lkxk−xdae,k)

T(Lkxk−xdae,k)], (59)

(58) implies that

J dak (Cda
e,k, D

da
e,k) = tr(Q̃da

k R̃k), (60)

where R̃k is defined by (8).
Next, it follows from (1), (55), and (57) that

x̃dak = Ãda
k x̃ fk + D̃da

1,kwk, (61)

where Ãda
k ∈Rñk×ñk and D̃da

1,k∈Rñk×dk are defined by

Ãda
k �

[
Ink 0nk×ne,k

Dda
e,kCk Cda

e,k

]
, D̃da

1,k�
[

0nk×dk

Dda
e,k D2,k

]
.

(62)

Therefore,

Q̃da
k = Ãda

k Q̃f
k( Ã

da
k )T + D̃da

1,k(D̃
da
1,k)

T. (63)

Hence, J dak can be expressed as

J dak (Cda
e,k, D

da
e,k) = tr[( Ãda

k Q̃f
k( Ã

da
k )T

+D̃da
1,k(D̃

da
1,k)

T)R̃k]. (64)

Finally, partition Q̃f
k as

Q̃f
k =

[
Q̃f

1,k Q̃f
12,k

(Q̃f
12,k)

T Q̃f
2,k

]
, (65)

so that substituting (62) into (64) yields

J dak (Cda
e,k, D

da
e,k) = tr[Lk Q̃

f
1,k L

T
k ]−2tr[Dda

e,kCk Q̃
f
1,k L

T
k ]

−2tr[Lk Q̃
f
12,k(C

da
e,k)

T]
+tr[Cda

e,k Q̃
f
2,k(C

da
e,k)

T]
+2tr[Dda

e,kCk Q̃
f
12,k(C

da
e,k)

T]
+tr[Dda

e,k(Ck Q̃
f
1,kC

T
k + V2,k)(D

da
e,k)

T]
. (66)

Assuming that Q̃f
2,k is invertible, define Q

f
k , Q̂

f
k ∈

Rnk×nk by

Qf
k � Q̃f

1,k − Q̃f
12,k(Q̃

f
2,k)

−1(Q̃f
12,k)

T,

Q̂f
k � Q̃f

12,k(Q̃
f
2,k)

−1(Q̃f
12,k)

T
(67)

Finally, define V da
2,k ∈ Rpk×pk by

V da
2,k�CkQ

f
kC

T
k + V2,k, (68)

and Gda
k ∈ Rne,k×nk by

Gda
k �(Q̃f

2,k)
−1(Q̃f

12,k)
T. (69)

We assume that V da
2,k is invertible.

The following result characterizes Cda
e,k and Dda

e,k

that minimize J dak .

Proposition II.6. Assume that Cda
e,k and Dda

e,k minimize

J dak , and assume that Q̃f
2,k and V

da
2,k are invertible. Then,

Cda
e,k = Lk(Ink − Qf

kC
T
k (V da

2,k)
−1Ck)(G

da
k )T, (70)

Dda
e,k = LkQ

f
kC

T
k (V da

2,k)
−1. (71)

Proof. Setting
�J dak
�Cda

e,k
= 0,

�J dak
�Dda

e,k
= 0 and using (67)–(69)

yields the result. �

Next, partition Q̃da
k as

Q̃da
k =

[
Q̃da

1,k Q̃da
12,k

(Q̃da
12,k)

T Q̃da
2,k

]
. (72)

Proposition II.7. Assume that xdae,k is given by (55),

and let Cda
e,k and Dda

e,k satisfy (70), (71). Then,

Q̃da
1,k = Q̃f

1,k, (73)
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Q̃da
12,k = (Q̂f

k + Qf
kC

T
k (V da

2,k)
−1CkQ

f
k)L

T
k , (74)

Q̃da
2,k = Lk(Q̂

f
k + Qf

kC
T
k (V da

2,k)
−1CkQ

f
k)L

T
k . (75)

Proof. It follows from (63) that Q̃da
1,k = Q̃f

1,k and

Q̃da
12,k = Q̃f

12,k(C
da
e,k)

T + Q̃f
1,kC

T
k (Dda

e,k)
T. (76)

Substituting (70) and (71) into (76) yields (74). Simi-
larly, it follows from (63) and (72) that

Q̃da
2,k =Cda

e,k Q̃
f
1,k(C

da
e,k)

T + Cda
e,k(Q̃

f
12,k)

TCT
k (Dda

e,k)
T

+Dda
e,kCk Q̃

f
12,k(C

da
e,k)

T

+Dda
e,k(Ck Q̃

f
1,kC

T
k + V2,k)(D

da
e,k)

T. (77)

Finally, substituting (70) and (71) into (77) yields (75).
�

Next, define Qda
k ∈ Rnk×nk and Q̂da

k ∈ Rnk×nk by

Qda
k � Q̃da

1,k − Q̃da
12,k(Q̃

da
2,k)

−1(Q̃da
12,k)

T,

Q̂da
k � Q̃da

12,k(Q̃
da
2,k)

−1(Q̃da
12,k)

T.
(78)

Corollary II.1. Assume that Cda
e,k and Dda

e,k satisfy
Proposition II.6. Then,

Lk Q̃
da
12,k = Q̃da

2,k, Q̃da
12,k = Q̂da

k LT
k ,

Q̃da
2,k = Lk Q̂

da
k LT

k .
(79)

Next, define Gf
k ∈ Rne,k×nk by

Gf
k�(Q̃da

2,k)
−1(Q̃da

12,k)
T. (80)

Also, define Mda
k ∈ Rnk×nk by

Mda
k �Q̂f

k + Qf
kC

T
k (V da

2,k)
−1CkQ

f
k, (81)

and �dak , �dak⊥ ∈ Rnk×nk by

�dak �(Gf
k)

TLk, �dak⊥�Ink − �dak . (82)

Proposition II.8. Assume that Cda
e,k and Dda

e,k satisfy

Proposition II.6. Then, �dak is an oblique projector.

Proof. The proof is similar to the proof of
Proposition II.3. �

Proposition II.9. Assume that Cda
e,k and Dda

e,k satisfy
Proposition II.6. Then,

�dak Q̂da
k = Q̂da

k . (83)

Proof. The proof is similar to the proof of
Proposition II.4. �

Proposition II.10. Assume that xdae,k is given by (55),

and let Cda
e,k and Dda

e,k satisfy Proposition II.6. Then,

Q̂da
k = �dak (Q̂f

k + Qf
kC

T
k (V da

2,k)
−1CkQ

f
k)(�

da
k )T, (84)

Qda
k = Qf

k−Qf
kC

T
k (V da

2,k)
−1CkQ

f
k

+�dak⊥(Q̂f
k+Qf

kC
T
k (V da

2,k)
−1CkQ

f
k)(�

da
k⊥)T. (85)

Proof. It follows from (75) and (79) that

Lk Q̂
da
k LT

k = Lk(Q̂
f
k+Qf

kC
T
k (V da

2,k)
−1CkQ

f
k)L

T
k . (86)

Pre-multiplying and post-multiplying (86) by (Gf
k)

T and
Gf

k , respectively, yields (84).
Next, it follows from (74), (79), and (82) that

�dak Q̂da
k = �dak (Q̂f

k + Qf
kC

T
k (V da

2,k)
−1CkQ

f
k). (87)

Therefore, Proposition II.9 and (84) imply that

�dak [Q̂f
k + Qf

kC
T
k (V da

2,k)
−1CkQ

f
k]

= �dak [Q̂f
k + Qf

kC
T
k (V da

2,k)
−1CkQ

f
k](�dak )T. (88)

Hence, Q̂da
k can be expressed as

Q̂da
k = Q̂f

k + Qf
kC

T
k (V da

2,k)
−1CkQ

f
k − �dak⊥

×[Q̂f
k+Qf

kC
T
k (V da

2,k)
−1CkQ

f
k](�dak⊥)T. (89)

Finally, note that (73) implies that Qda
k = Q̃f

1,k − Q̂da
k .

Hence, (89) yields (85). �

Next, we define the forecast cost J fk by

J fk(A
f
e,k) � E[(Lk+1xk+1 − x fe,k+1)

×(Lk+1xk+1 − x fe,k+1)
T]. (90)

Hence, it follows from (58) that

J fk(A
f
e,k) = tr(Q̃f

k+1 R̃k+1), (91)

where R̃k+1 is given by (8). It follows from (1) and (56)
that

x̃ fk+1 = Ãf
k x̃

da
k + D̃f

1,kwk, (92)
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where Ãf
k ∈ R ñk + 1×ñk and D̃f

1,k ∈ R ñk + 1 × dk are
defined by

Ãf
k �

[
Ak 0nk+1×ne,k

0ne,k+1×nk Af
e,k

]
,

D̃f
1,k �

[
D1,k

0ne,k+1×dk

]
. (93)

Therefore,

Q̃f
k+1 = Ãf

k Q̃
da
k ( Ãf

k)
T + D̃f

1,k(D̃
f
1,k)

T. (94)

Proposition II.11. Assume that Af
e,k minimizes J fk ,

and assume that Q̃da
2,k is invertible. Then

Af
e,k = Lk+1Ak(G

f
k)

T, (95)

where Gf
k is given by (80).

Proof. Setting
�J fk

�Af
e,k

= 0 yields the result. �

Proposition II.12. Assume that Af
e,k satisfies (95).

Then,

Lk+1 Q̃
f
12,k+1 = Q̃f

2,k+1, (96)

Q̃f
12,k+1 = Q̂f

k+1L
T
k+1, (97)

Q̃f
2,k+1 = Lk+1 Q̂

f
k+1L

T
k+1. (98)

Proof. The proof is similar to the proof of
Proposition II.2. �

Next, define M f
k+1 ∈ Rnk+1×nk+1 by

M f
k+1�Ak Q̂

da
k AT

k , (99)

and define �fk+1, �
f
k+1⊥ ∈ Rnk+1×nk+1 by

�fk+1�(Gda
k+1)

TLk+1, �fk+1⊥�Ink+1−�fk+1. (100)

Proposition II.13. Assume that Af
e,k satisfies (95).

Then, �fk+1 is an oblique projector.

Proof. The proof is similar to the proof of Proposition
II.3. �

Proposition II.14. Assume that Af
e,k satisfies (95).

Then,

�fk+1 Q̂
f
k+1 = Q̂f

k+1. (101)

Proof. The proof is similar to the proof of
Proposition II.4. �

Proposition II.15. Assume that Af
e,k satisfies (95).

Then,

Q̂f
k+1 = �fk+1Ak Q̂

da
k AT

k (�fk+1)
T, (102)

Qf
k+1 = AkQ

da
k AT

k + V1,k

+�fk+1⊥(Ak Q̂
da
k AT

k )(�fk+1⊥)T. (103)

Proof. The proof is similar to the proof of Proposition
II.5. �

Finally, we summarize the two-step reduced-order
state estimator, whose data-assimilation step is given by

xdae,k = Lk(Ink − K da
k Ck)(G

da
k )Tx fe,k

+LkK
da
k yk, (104)

Qda
k = Qf

k − K da
k (V da

2,k)(K
da
k )T

+�dak⊥Mda
k (�dak⊥)T, (105)

where

Gda
k = (Lk Q̂

f
k L

T
k )−1Lk Q̂

f
k, (106)

K da
k = Qf

kC
T
k (V da

2,k)
−1, (107)

Mda
k = Q̂f

k + K da
k V da

2,k(K
da
k )T, (108)

�dak = Mda
k LT

k (LkM
da
k LT

k )−1Lk, (109)

Q̂da
k = �dak Mda

k (�dak )T, (110)

and V da
2,k is given by (68), and whose forecast step is

given by

x fe,k+1 = Lk+1Ak(G
f
k)

Txdae,k, (111)

Qf
k+1 = AkQ

da
k AT

k + V1,k

+�fk+1⊥M f
k+1(�

f
k+1⊥)T, (112)

where

Gf
k = (Lk Q̂

da
k LT

k )−1Lk Q̂
da
k , (113)

M f
k+1 = Ak Q̂

da
k AT

k , (114)

�fk+1=M f
k+1L

T
k+1(Lk+1M

f
k+1L

T
k+1)

−1Lk+1, (115)

Q̂f
k+1 = �fk+1M

f
k+1(�

f
k+1)

T, (116)

and V1,k is given by (13).
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Remark II.4. Note that if we execute the forecast
step (111)–(116) before the data-assimilation step
(104)–(110), then we obtain the two-step reduced-
order Kalman filter. As discussed in [18], the Kalman
filter yields more precise estimates than the Kalman
predictor.

III. OPTIMAL INFINITE-HORIZON
REDUCED-ORDER STATE ESTIMATOR

REVISITED

Consider the LTI system

xk+1 = Axk + D1wk, (117)

yk =Cxk + D2wk, (118)

where xk∈Rn , yk∈Rp, and wk∈Rd is a white noise pro-
cess with zero mean and unit covariance. We consider
a infinite-horizon reduced-order predictor

xe,k+1 = Aexe,k + Beyk, (119)

where xe,k ∈ Rne , and the cost

J (Ae, Be)� lim
k→∞ E[(Lxk − xe,k)

T(Lxk − xe,k)]. (120)

If Ã�
[

Ae
BeC

0n×ne
Ae

]
is asymptotically stable, then

Q̃� lim
k→∞ E[x̃k x̃Tk ] (121)

exists, where x̃k ∈ Rñ is given by (4). Moreover, Q̃ and
its nonnegative-definite dual P̃ are the unique solutions
of the Lyapunov equations

Q̃ = ÃQ̃ ÃT + Ṽ , (122)

P̃ = ÃT P̃ Ã + R̃, (123)

where

Ṽ �
[

V1 V12B
T
e

BeV
T
12 BeV2B

T
e

]
,

R̃ �
[
LTL −LT

−L Ine

]
,

(124)

and

V1�D1D
T
1 , V12�D1D

T
2 , V2�D2D

T
2 . (125)

Proposition III.1. Assume that Ae and Be minimize
J (Ae, Be). Then, there exist nonnegative-definite ma-
trices Q, Q̂, P̂ ∈ Rn×n such that Ae and Be are given by

Ae = �[A − KC]GT, (126)

Be = �K , (127)

and Q, Q̂, P̂ satisfy

Q = AQAT + V1 − K Ṽ2K
T

+�⊥(AQ̂AT + K Ṽ2K
T)�T⊥, (128)

Q̂ = �(AQ̂AT + K Ṽ2K
T)�T, (129)

P̂ = �T[(A − KC)T P̂(A − KC) + LTL]�, (130)

where

rank(Q̂) = rank(P̂) = rank(Q̂ P̂) = ne, (131)

� � GT� = (Q̂ P̂)(Q̂ P̂)#, (132)

�GT = Ine, (133)

�⊥ � In − �, (134)

K � QsṼ2
−1

, (135)

Qs � AQCT + V12, (136)

Ṽ2 �CQCT + V2, (137)

and Ṽ2 is assumed to be invertible.

Note that P̂ and Q̂ yield � in (132). Also, from
� in (132) and from (133), we obtain G and �. Since
�GT = Ine , it follows that � is an oblique projector.
The notation ( )# indicates the group generalized in-
verse [19].
Remark III.1. Note that, unlike the finite-horizon
case, the infinite-horizon state estimator uses constant
gains; therefore, there is no advantage in recasting the
estimator as a two-step algorithm.

IV. OPTIMAL FINITE-HORIZON
SUBSPACE STATE ESTIMATOR

We now consider reduced-order state estimators
that focus on a specific subspace of the state. Without
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loss of generality, we partition the system (1), (2) as

[
xr,k+1

xs,k+1

]
=

[
Ar,k Ars,k

0ns,k+1×nr,k As,k

][
xr,k

xs,k

]

+
[
D1r,k

D1s,k

]
wk, (138)

yk = [Cr,k Cs,k]
[
xr,k

xs,k

]
+ D2,kwk . (139)

In this formulation the plant state xk is partitioned into
subsystems for xr,k ∈ Rnr,k and xs,k ∈ Rns,k . The state
xr,k may contain the components of xk of interest.

4.1 One-step subspace state estimator

We seek a one-step reduced-order subspace state
estimator of the form

xe,k+1 = Ae,k xe,k + Be,k yk, (140)

ye,k =Ce,k xe,k, (141)

that minimizes

Jk(Ae,k, Be,k,Ce,k+1)

�E([Lk+1xk+1 − ye,k+1]T

Rk+1[Lk+1xk+1 − ye,k+1]), (142)

where Rk+1 ∈ Rqk+1×qk+1 is a positive-definite weight-
ing matrix. Furthermore, the state weighting matrix
Lk ∈ Rqk×nk is partitioned as Lk�[L r,k Ls,k], where
Ls,k ∈ Rqk×ns,k and L r,k ∈ Rqk×nr,k is assumed to have
full column rank. The order ne,k of the estimator state
xe,k is chosen to be nr,k .

We define the error state zk�xr,k − xe,k , which
satisfies

zk+1 = (Ar,k − Be,kCr,k)xr,k − Ae,k xe,k

+(Aus,k − Be,kCs,k)xs,k

+(D1u,k − Be,k D2,k)wk . (143)

By constraining

Ae,k = Ar,k − Be,kCr,k, (144)

(143) becomes

zk+1 = (Ar,k−Be,kCr,k)zk+(Aus,k−Be,kCs,k)xs,k

+(D1u,k − Be,k D2,k)wk .

Furthermore, the estimation error in (142) becomes a
function of zk and xs,k by constraining

Ce,k = L r,k . (145)

Now, from (138)–(141) it follows that

x̃k+1 = Ãk x̃k + D̃kwk, (146)

where

x̃k �
[

zk

xs,k

]
,

Ãk �
[
Ar,k − Be,kCr,k Aus,k − Be,kCs,k

0ns,k+1×nr,k As,k

]
,

D̃k �
[
D1r,k − Be,k D2,k

D1s,k

]
.

(147)

Then, the problem can be restated as finding Be,k that
minimizes

Jk(Be,k) = tr(Qk+1 R̃k+1), (148)

where R̃k+1�LT
k+1Rk+1Lk+1 and Qk�E[x̃k x̃Tk ]∈Rnk×nk .

The structure of the augmented state x̃k shows that the
reduced-order subspace state estimator provides esti-
mates of all of the states in the subspace corresponding
to xr,k .

Following the procedure in Section 2.1, we obtain
the optimal finite-horizon reduced-order subspace state
estimator given by

xe,k+1 = �k+1(Ak − KkCk)F
T
k xe,k

+�k+1Kk yk, (149)

Qk+1 = AkQk A
T + V1,k − Kk V̂kK

T
k

+�k+1⊥Kk V̂kK
T
k �Tk+1⊥, (150)

where

�k � [Inr,k (LT
r,k Rk L r,k)

−1(LT
r,k Rk Ls,k)], (151)

�k � FT
k �k

=
[

Inr,k (LT
r,k Rk L r,k)

−1(LT
r,k Rk Ls,k)

0ns,k×nr,k 0ns,k

]
,
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�k⊥ � Ink − �k, (152)

Fk � [Inr,k 0nr,k×ns,k ], (153)

Kk � AkQkC
TV̂−1

k , (154)

V̂k �CkQkC
T
k + V2,k, (155)

V1,k , V2,k are given by (13), and V̂k is assumed to
be invertible. Note that Remark II.1 is also applicable
to (149).

4.2 Two-step subspace state estimator

Next, we consider the two-step state estimator. The
data-assimilation step is given by

xdae,k = Ada
e,k x

f
e,k + Bda

e,k yk, (156)

ydae,k =Cda
e,k x

da
e,k, (157)

where xdae,k ∈ Rne is the reduced-order data assimila-

tion estimate of the subspace xr,k , and x fe,k ∈ Rne is the
reduced-order forecast estimate of subspace xr,k , while
the forecast step is given by

x fe,k+1 = Af
e,k x

da
e,k, (158)

yfe,k+1 =C f
e,k+1x

f
e,k+1. (159)

Defining the data-assimilation cost J dak and the
forecast cost J fk+1 as

J dak (Ada
e,k, B

da
e,k,C

da
e,k) � E([Lkxk − ydae,k]T

Rk[Lkxk − ydae,k]), (160)

J fk+1(A
f
e,k,C

f
e,k+1) � E([Lk+1xk+1 − yfe,k+1]T

Rk+1[Lk+1xk+1−yfe,k+1]),
(161)

we obtain the two-step optimal finite-horizon subspace
state estimator, whose data-assimilation step is given by

xdae,k = �k(Ink − K da
k Ck)F

T
k x

da
k + �k K

da
k yk, (162)

Qda
k = Qf

k − K da
k V̂2,k(K

da
k )T

+�k⊥K da
k V̂2,k(K

da
k )T�Tk⊥, (163)

and whose forecast step is given by

x fe,k+1 = �k+1Ak F
T
k x

da
e,k, (164)

Qf
k+1 = AkQ

da
k AT

k + V1,k, (165)

where

K da
k = Qf

kC
T
k V̂

−1
2,k , (166)

V̂2,k =CkQ
f
kC

T
k + V2,k, (167)

�k = �k F
T
k , (168)

�k is given by (151), Fk is given by (153), V1,k , V2,k are
given by (13), and V̂2,k is assumed to be invertible. Note
that Remark II.3 and Remark II.4 are also applicable to
(162)–(165).

V. OPTIMAL INFINITE-HORIZON
SUBSPACE STATE ESTIMATOR REVISITED

For the LTI system (117), (118), the optimal one-
step infinite-horizon subspace state estimator can be ob-
tained by reformulating the cost

J (Be) � lim
k→∞ E([Lxk−ye,k]TR[Lxk−ye,k]), (169)

where we constrain

Ae � Ar − BeCr, (170)

Ce � L r, (171)

where Ar and Cr are the time-invariant counterparts
of Ar,k in (138) and Cr,k in (139), respectively. If

Ã
�=

[
Ar−BeCr
0ns×nr

Aus−BeCs
As

]
is asymptotically stable, then

Q� limk→∞ E[x̃k x̃Tk ] exists.
Proposition V.1. Assume that Be minimizes J (Be)

with constraints (170) and (171). Then there exist
nonnegative-definite matrices Q, P ∈ Rn×n such that
Ae and Be are given by

Ae = �(A − KC)FT, (172)

Be = �K , (173)

and Q and P satisfy

Q = AQAT+V1−K V̂ KT+�⊥K V̂ KT�T⊥, (174)

P = ATPA − Qa�
TPA − ATP�QT

a

+Qa�
TP�QT

a + LTRL, (175)
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where

� � [Inr P−1
1 P12], (176)

� � FT� =
[

Inr P−1
1 P12

0ns×nr 0ns×ns

]
, (177)

�⊥ � In − �, (178)

F � [Inr 0nr×ns], (179)

K � AQCTV̂−1, (180)

V̂ �CQCT + V2, (181)

Qa �CTV̂−1C, (182)

where
[

P1
PT
12

P12
P2

]
�P , P1 ∈ Rnr×nr , P12 ∈ Rnr×ns,

P2 ∈ Rns×ns , and V̂ is assumed to be invertible.

The infinite-horizon subspace state-estimation
problem with direct feedthrough in (141) is solved in
[13, Theorem 2.2], while the continuous-time case is
treated in [4].

VI. MASS-SPRING-DASHPOT SYSTEM

6.1 Asymptotically stable example

To illustrate the reduced-order state estimators
of Section II and the subspace state estimators of
Section IV, we consider a zero-order hold discretized
model of the mass-spring-dashpot structure consisting
of 10 masses shown in Fig. 1 for which n = 20. For
i = 1, . . . , 10, mi = 1.0 kg, while, for j = 1, . . . , 11,
k j = 1.0N/m and c j = 0.05N-s/m. We set the ini-
tial error covariance Q0 = 100In , and we assume that
V1,k = In , V2,k = Ip for all k�0. This example is also
investigated in [11] using a spatially localized state
estimator.

Let xi denote the position of the i th mass so that

x�[x1 ẋ1 · · · x10 ẋ10]T.

We assume that measurements of position and veloci-
ties of m1, . . . ,m4 are available so that Ck =[I8 08×12]
for all k�0. Next, we obtain state estimates from the
reduced-order estimator with ne = 8.Meanwhile, for the
subspace estimator, we consider a change of basis so
that the system has the block upper triangular structure
shown in (138). The costs for the estimators are defined
in (6) and (142) with Rk = I2. The ratio of the cost Jk
to the best achievable cost when a full-order Kalman

Fig. 1. Mass-spring-dashpot system.
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Fig. 2. Cost ratios for the (a) reduced-order state estimators and
(b) subspace state estimators for the asymptotically stable
mass-spring-dashpot system. Jred is the estimation cost for the
reduced-order state estimator, and Jfull is for the full-order sys-
tem. The plots also demonstrate that the one-step and two-step
estimators are not equivalent.

predictor is used is shown in Fig. 2. As indicated by
ratios greater than 1, the performance of the reduced-
order state estimator is never better than the full-order
state estimator.

Next, we assume that measurements of positions
and velocities of m1, . . . ,m8 are available so that
Ck =[I16 016×4] for all k ≥ 0. The performance of
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the reduced-order estimator with ne = 16 is shown in
Figure 2(a). The objective in both cases is to obtain es-
timates of Lxk , where, for i = 1, . . . , ne, j = 1, . . . , n,
the (i, j) entry of L ∈ Rne×n is given by

L(i, j)�
{
1, if i = j,

0.05, else.
(183)

The plots also demonstrate that the one-step and two-
step estimators are not equivalent.

6.2 Unstable example with rigid-body mode

We now consider a modification of the mass-
spring-dashpot structure in Fig. 1. Specifically, we
assume that both ends are free, that is, k1 = k11 = 0.0
and c1 = c11 = 0.0, and thus the structure has an unsta-
ble rigid-body mode. Let qi denote the position of the
i th mode in modal coordinates so that

x�[q1 q̇1 · · · q10 q̇10]T.

We consider only the subspace estimator with
xr =[q1 q̇1]T. We assume that measurements of the
position and velocity of m1 are available and L is given
by (183) in modal coordinates with ne = 4, 8. The
performance of the subspace estimator with ne = 4, 8
is shown in Fig. 3. The plots show that the subspace
estimator captures the unstable modes in the system.

VII. APPLICATION TO PERIODICALLY
TIME-VARYING MULTIRATE ESTIMATION

Consider the transverse deflection v(x, t) of a sim-
ply supported Euler–Bernoulli beam. The modal de-
composition of v(x, t) has the form

v(x, t) =
∞∑
r=1

Vr (x)qr (t),
∫ l

0
mV 2

r (x)dx = 1,

Vr (x) =
√

2

ml
sin

r�x

l
,

where the modal coordinates qr satisfy

q̈r (t) = 2��r q̇r (t) + �2
r qr (t)

=
∫ l

0
f (x, t)Vr (x)dx, r = 1, 2, . . . .

For simplicity we assume l = � and m = 2/� so that√
2
ml = 1. We assume that displacement sensors located

at x = 0.55� and x = 0.65� are sampled at 50Hz and
30Hz, respectively. Also, it is assumed that a white
noise disturbance of unit intensity acts on the beam at
x = 0.45�. For estimator design, we weight the perfor-
mance of the beam displacement at x = 0.65�. Finally,
retaining the first five modes and defining the plant
states as

x�[q1 q̇1 . . . q5 q̇5]T,

the resulting sampled-data continuous-time state-space
model is

A = block − diag
i=1,...,5

[
0 1

−�2
i −2��i

]
,

�i = i2, i = 1, . . . , 5, �= 0.005,

C =
[
0.9877 0 −0.3090 0 −0.8910 0 0.5878 0 0.7071 0

0.8910 0 −0.8090 0 −0.1564 0 0.9511 0 −0.7071 0

]
,

L = [0.8910 0 − 0.8090 0 − 0.1564 0 0.9511 0 − 0.7071 0],
D1 = [0 0.9877 0 0.3090 0 − 0.8900 0 − 0.5878 0 − 0.7071],

V2 =
[
0.01 0

0 0.01

]
,

where row1(C) accounts for sensor 1 sampled at 50Hz,
while row2(C) accounts for sensor 2 sampled at 30Hz.
Then one period of the periodic sequence of sensor in-
formation Ck is given by

Ck = {s1}, {s2}, {s1}, {s1}, {s1, s2}, {s1}, {s1, s2},

where s1 and s2 denote the signals from sensor 1
and sensor 2, respectively, while one period of the
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Fig. 3. Cost ratios of J for the subspace state estimator applied to the unstable mass-spring-dashpot system with a rigid body mode. The subspace
estimator can handle the unstable modes in its filter structure.
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Fig. 4. Performance comparisons of reduced-order state estimators when applied to the periodically time-varying multirate sampling system and
fixed sample-rate systems. (a) is for the one-step reduced-order state estimator, and (b) is for the two-step reduced-order state estimator.

periodically varying sample interval Tk is given by

Tk = 20, 40/3, 20/3, 20, 20/3, 40/3, 20,

where Tk is given in ms. This example is investigated
in [14] with sampling rates 60Hz and 30Hz using a
multirate state estimator.

The continuous-time model is discretized ac-
cording to the given sample rates, which yields the
time-varying system (1), (2), where Ak and Ck vary

periodically as

Ak = eTk A,

Ck =

⎧⎪⎨
⎪⎩
row1(C), if Ck ={s1},
row2(C), if Ck ={s2},
C, if Ck ={s1, s2}.

Figure 4 shows the evolution of the costs of
the one-step (Section 2.1) and two-step finite-horizon
reduced-order state estimators (Section 2.2) with
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n = 10, ne = 1. The performance of the finite-horizon
reduced-order state estimators for the multirate system
is compatible with the performance of the same estima-
tor applied to a single rate system where both signals
are sampled at 50Hz.

VIII. CONCLUSION

Using finite-horizon optimization, optimal
reduced-order state estimators and optimal fixed-
structure subspace state estimators were obtained in the
form of recursive update equations for time-varying
systems. These estimators are characterized by the
oblique projectors � and �, respectively. Moreover, we
derived one-step and two-step update equations for
each class of state estimator. When the order of each
estimator is equal to the order of the system, the oblique
projectors become the identity and the estimators are
equivalent to the classical optimal recursive full-order
state estimator. We demonstrated the performance of
the reduced-order and the subspace state estimators
for lumped structures. Moreover, an application of the
reduced-order state estimators to a multirate estimation
problem was investigated.
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