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Two algorithms for the combined state and parameter estimation (CSPE) of a linear, time-invariant system are

presented.Retrospective cost subsystem estimation is formulated under the assumption that the initial state is known.

A smoother algorithm based on this formulation is developed for the case in which the initial state is unknown. It is

numerically demonstrated that these algorithms aremore accurate forCSPE than the extendedKalman filter and the

unscented Kalman filter.

I. Introduction

T HE classical Kalman filter is applicable to state estimation for systems with known linear dynamics [1,2]. In the case in which some of the
entries of the dynamic matrix are uncertain, however, the simultaneous estimation of both the states and uncertain parameters entails a

nonlinear estimation problem. This is the combined state and parameter estimation (CSPE) problem.A fundamental question concerningCSPE is
to determine whether or not the unmeasured states and unknown parameters can be estimated. This problem can be recast as an identifiability
problem, and conditions are given in [3–5].

The classical approach to CSPE is to apply the extendedKalman filter (EKF) [6]. Alternatively, the unscentedKalman filter (UKF) can be used
[7] and applied to CSPE in [8]. Yet, another approach to CSPE is based on the polynomial-chaos series expansion [9,10].

The present paper has two objectives. The first objectivewas to apply the EKF and UKF to numerical examples, and assess the effectiveness of
these methods for CSPE.Within the context of the present paper, the EKF and UKF are used as nonlinear observers in the absence of process and
sensor noise. The goal was thus to determine their effectiveness on the specific quadratic nonlinearity that arises in the state and parameter
estimation problem. The effect of disturbances and sensor noise on these estimates is also of interest in practice, but is outside the scope of this
investigation. The second objectivewas to apply retrospective cost subsystem estimation (RCSE) [11,12] to CSPE, and compare the performance
to the EKF and UKF. The idea behind RCSE is to view the uncertain entries of the dynamic matrix as an uncertain subsystem connected in
feedback. A performance metric based on the difference between the outputs of the true system and the model is then recursively optimized to
update the estimates of the unknown parameters.

The first main contribution of the present paper is the formulation of RCSE under the assumption that the initial state of the system is known.
Although this assumption is often unrealistic in practice, the accuracy of the resulting estimates is notable because knowledge of the initial state
does not improve the performance of either EKF or UKF. In any event, this initial formulation motivates the development of the RCSE smoother
(RCSES), which estimates both the unknown entries of the dynamic matrix and the unknown components of the initial state. Consequently, the
second main contribution of the present paper is the development and assessment of RCSES.

The contents of the paper are as follows. The CSPE problem is stated in Sec. II. Next, the EKF and UKF are applied to second-order CSPE
problems in Secs. III and IV. Section V shows that the accuracy of the UKF for CSPE can be enhanced by using a state-dependent coefficient
formulation of the system dynamics. This approach is taken in [13] for nonlinear systems, and applied to second- and third-order CSPE problems.
RCSE is formulated in Secs. VI and VII, and is applied to third- and eighth-order CSPE problems in Sec. VIII. RCSES is formulated in Sec. IX,
and applied to second- and third-order CSPE problems in Sec.X. Finally, in Sec. XI, theUKFandRCSES are applied to aCSPEproblembased on
a linearized fourth-order longitudinal aircraft dynamic model, and the results are compared.

II. Combined State and Parameter Estimation

Consider the discrete-time, linear time-invariant system:

x�k� 1� � Ax�k� (1)

x�0� � x0 (2)

y0�k� � Ex�k� (3)

in which n ≥ 2

x�k� �

2
64
x1�k�
..
.

xn�k�

3
75 ∈ Rn; A �

2
64
a11 · · · a1n
..
. . .

. ..
.

an1 · · · ann

3
75 ∈ Rn×n (4)

The variable y0�k� ∈ R is the measurement, and
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E � �e1 · · · en� ∈ R1×n (5)

We assume that E is known, but A has structured uncertainty in the sense that some entries of A are known and others are unknown. We can
thus write

A � A0 � ΔA (6)

in whichA0 is the nominal dynamic matrix, andΔAmodels the uncertain entries ofA. Note that the assumption thatE is known fixes the basis, in
which A0 and the uncertainty ΔA are represented. Also, the fact that some entries in A are unknown makes it impossible to transform A into a
canonical form. The objective is to use the measurement y0�k�, in which k ≥ 0, to estimate the unknown entries of A and the components
x1�k�; : : : ; xn�k� of the state x�k�. This is the CSPE problem.

If the state x�k� is known for all k ≥ 0, then it is straightforward to estimate the uncertain entries of A. Likewise, if all of the entries of A are
known, then standard techniques can be used to estimate the state. The difficulty of the CSPE problem stems from the specific quadratic
nonlinearity arising from the fact that both states and parameters are unknown. In fact, this problem is solvable only in certain special cases, as
discussed in the previous section. Note that this problem formulation does not include either process noise or sensor noise, and thus, the problem is
deterministic. The focus is thus on nonlinear observers; extensions to nonlinear estimation are mentioned in the Conclusions.

III. Extended Kalman Filter

To provide a baseline for later developments, in this section, we apply the EKF to the CSPE problem.
Example 1: n � 2 and Two Unknown Entries in a Single Row
Consider Eqs. (1–3) with

A �
�
0.27 1.17

−0.8 0.2

�
; x0 �

�
−23
17

�
; E � � 1 0 � (7)

and assume that the entries a11 � 0.27 and a12 � 1.17 of A are unknown. To apply the EKF, we first augment the dynamics (1) with additional
equations that represent the fact that the unknown parameters are constant. The augmented system has the form

X�k� 1� � ~AX�k� (8)

X�0� � X0 (9)

y0�k� � ~EX�k� (10)

in which

~A ≜

2
664

a11 a12 0 0

−0.8 0.2 0 0

0 0 1 0

0 0 0 1

3
775; ~E ≜ �E 01×2 �; X�k� ≜

2
664
x1�k�
x2�k�
a11
a12

3
775 (11)

Forming the Jacobian matrix of Eq. (8) yields the augmented estimator system:

X̂�k� 1� � ~̂A�k�X̂�k� (12)

X̂�0� � X̂0 (13)

ŷ0�k� � ~E X̂�k� (14)

in which

~̂A�k� ≜

2
6664
â11�k� â12�k� x̂1�k� x̂2�k�
−0.8 0.2 0 0

0 0 1 0

0 0 0 1

3
7775; X̂�k� ≜

2
6664

x̂1�k�
x̂2�k�
â11�k�
â12�k�

3
7775 (15)

Thevariables x̂1�k�, x̂2�k� denote estimates of x1�k�, x2�k�, and the variables â11�k�, â12�k� denote estimates of a11, a12. TheKF is then applied
to Eqs. (12–14).

To evaluate the accuracy of the EKF, we define the relative initial estimation errors:

ξx ≜
kx̂2�0� − x2�0�k

kx2�0�k
; ξa ≜

kâ�0� − ak
kak (16)

in which the true parameter vector a and its estimate â are defined as
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a ≜
�
a11
a12

�
; â ≜

�
â11
â12

�
(17)

Note that ξx � 0 if and only if x̂2�0� � x2�0�, and ξa � 0 if and only if â11�0� � a11 and â12�0� � a12.
To assess the performance of the EKF, we consider 10,000 randomly generated initial estimates of the unmeasured state and the uncertain

entries of A. Because x1 is measured, we set x̂1�0� � x1�0�, and we choose initial estimates �x̂2�0�; â11�0�; â12�0��, such that ξx, ξa ∈ �0; 4�.
Using the notation of [6], we set the initial covariance matrix to beP�0� � 10;000I4, and choose the tuning parametersQ � 10−2I2lx andR � 0.
Figure 1 shows that, for all 10,000 initial estimates, none of the estimates â�1000� are within 10% of the true parameter a.

IV. Unscented Kalman Filter

In this section, we apply the UKF to the CSPE problem.
Example 2: Example 1 Revisited
In example 1, the first rowof the Jacobianmatrix (15) gives an erroneous factor of 2 as compared to ~A, which is consistentwith the resulting poor

performance. Therefore, we revisit example 1 by defining

~A�k� ≜

2
6664
â11�k� â12�k� 0 0

−0.8 0.2 0 0

0 0 1 0

0 0 0 1

3
7775 (18)

for Eqs. (12–14) and applying the UKF to the augmented system. To assess the performance of the UKF with Eq. (18), we consider 10,000
randomly generated initial estimates of the unmeasured state and the uncertain entries ofA. Because x1 is measured, we set x̂1�0� � x1�0�, andwe
choose initial estimates �x̂2�0�; â11�0�; â12�0��, such that ξx, ξa ∈ �0; 4�. Using the notation of [7], we set the initial covariance matrix to be
P�0� � 10;000I4, and choose the tuning parameters α � 1, κ � 0, β � 2, Q � 10−2I2lx , and R � 0. Figure 2 shows that, for all 10,000 initial
estimates, none of the estimates â�1000� are within 10% of the true parameter a.

V. UKF with State-Dependent Coefficients

In this section, we consider an extension of the UKF.

A. Example 3: Example 1 Revisited

We revisit example 1 by defining the state-dependent matrix:

~A�k� ≜

2
6664
α1â11�k� α2â12�k� �1 − α1�x̂1�k� �1 − α2�x̂2�k�
−0.8 0.2 0 0

0 0 1 0

0 0 0 1

3
7775 (19)

Fig. 1 Application ofEKF to example 1;EKF is appliedwith 10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0��using themeasurements
y0�k� � x1�k� for k ∈ �0; 1000�; trials in which EKF estimates both components of a within 10% relative error at step k � 1000 are labeled with cyan;
trials in which EKF estimates exactly one component of a within 10% relative error at step k � 1000 are labeled with black; and trials in which EKF
estimates neither of the components ofawithin 10%relative error at step k � 1000 are labeledwith red; 100%of the trials are red; note: in all subsequent
examples, cyan, black, and red indicate, respectively, trials in which all, at least one, and none of the components of a satisfy the accuracy specification.
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for Eqs. (12–14), in which α ∈ R, and applying UKF with Eq. (19). Note that Eq. (18) corresponds to setting α1 � α2 � 1. The use of the state-
dependentmatrix (19) based on the additional parameter a is a standard technique in the literature on the state-dependent Riccati equation [14,15].
However, this technique is ad hoc, and there are no guarantees that it may be effective for a given problem.

To assess the performance of the UKF with Eq. (19), we reconsider the 10,000 randomly generated initial estimates, initial covariance, and

tuning parameters as in example 2. Settingα1 � α2 � 0.5, Fig. 3 shows that, for all 10,000 initial estimates, all of the estimates â�1000� arewithin
10% of the true parameter a.

To test the effect of α1 and α2, we consider 11 linearly spaced values of α1 ∈ �−3; 3� and 11 linearly spaced values of α2 ∈ �−3; 3�. For each
choice of α1, α2, we record the number of 10,000 trials for which theUKFwith Eq. (19) estimates awithin 10% relative error. Figure 4 shows that,

generally, if α1 < 1 and α2 < 1, all of the estimates â�1000� are within 10% of the true parameter a. Otherwise, none of the estimates â�1000� are
within 10%of the true parametera. This example shows that, compared to example 2, the state-dependent coefficient can significantly improve the

performance of the UKF depending on the choice of α1 and α2.
In all subsequent UKF examples, we set α1 � · · ·� αp � 0.5, in which p is the number of unknown entries in A.

Fig. 2 Application of UKF with Eq. (18) to example 2; UKF with Eq. (18) is applied with 10,000 randomly generated initial estimates
�x̂2�0�; â11�0�; â12�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 1000�; 100% of the trials are red.

Fig. 3 Application of UKF with Eq. (19) to example 3; UKF with Eq. (19) is applied with 10,000 randomly generated initial estimates
�x̂2�0�; â11�0�; â12�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 1000�; 100% of the trials are cyan.
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B. Example 4: n � 3 and One Unknown Entry

Consider Eqs. (1–3) with

A �
2
4 0.51 −0.285 0.05

−0.012 0.34 1

0.03 −0.88 0.34

3
5; x0 �

2
4−23

67

−31

3
5; E � � 1 0 0 � (20)

and assume that one entry in the first row of A is unknown. To apply the UKF, we define the augmented system (12–14) with ~A constructed as in

Eq. (19) and X, ~E constructed as in Eq. (15). Let x̂1�k�, x̂2�k�, x̂3�k� be estimates of x1�k�, x2�k�, x3�k�, and, for i ∈ f1; 2; 3g, let â1i�k� be an
estimate of a1i. Define

ξx ≜
kx̂u�0� − xu�0�k

kxu�0�k
; ξa ≜

kâ1i�0� − a1ik
ka1ik

(21)

in which the unmeasured states and their estimates are defined by

xu ≜
�
x2
x3

�
; x̂u ≜

�
x̂2
x̂3

�
(22)

Using the same UKF tuning parameters as in example 3, we consider 10,000 randomly generated initial estimates �x̂2�0�; x̂3�0�; â1i�0�� such
that ξx, ξa ∈ �0; 2�. Figure 5a shows that 72.53% of the estimates â11�1000� are within 10% of the true parameter a11. In contrast, Figs. 5b and 5c
show that 4.68 and 6.09% of the estimates â12�1000� and â13�1000� are within 10% of the true parameters a12 and a13, respectively.

Note that both examples 3 and 4 involve a total of three unknownquantities inA and x0. It is thus reasonable to expect that the performance of the

UKF would be similar for both examples. However, example 3 involves two unknown constants and one unmeasured state, whereas example 4

involves one unknown constant and two unmeasured states. This distinction is consistent with the fact that the UKF performsworse for example 4

than for example 3.

C. Example 5: n � 3 and Three Unknown Entries in a Single Row

We revisit example 4 by assuming that all of the entries in the first row of A are jointly unknown. To apply the UKF, we define the augmented

system (12–14) with ~A constructed as in Eq. (19) and X, ~E constructed as in Eq. (15). Let x̂1�k�, x̂2�k�, x̂3�k� denote estimates of x1�k�, x2�k�,
x3�k�, and let â11�k�, â12�k�, â13�k� denote estimates of a11, a12, a13. Define the true parameter vector a, its estimate â, the unmeasured state xu,
and its estimate x̂u as

xu ≜
�
x2
x3

�
; x̂u ≜

�
x̂2
x̂3

�
; a ≜

2
4a11
a12
a13

3
5; â ≜

2
4 â11
â12
â13

3
5 (23)

As in the case of example 4 and using the same tuning parameters for the UKF with Eq. (19), we consider 10,000 randomly generated initial

estimates �x̂2�0�; x̂3�0�; â11�0�; â12�0�; â13�0��, such that ξx, ξa ∈ �0; 4�.

Fig. 4 Application of UKFwith Eq. (19) to example 4; α1 and α2 are varied from−3 to 3 in increments of 0.6; for each pair of values �α1;α2� and 10,000
randomly generated initial estimates �x̂2�0�; â11�0�; â12�0��, UKFwith Eq. (19) is applied using themeasurements y0�k� � x1�k� for k ∈ �0; 1000�; a cyan
dot indicates that UKF estimates both components of awithin 10% relative error at step k � 1000 in 100% of the trials, and a red dot indicates that UKF

estimates neither of the components of a within 10% relative error in 100% of the trials; all of the trials are either cyan or red.
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Figure 6 shows that the UKF with Eq. (19) estimates at least one component of a within 10% error in 0.20% of the trials and none of the
components ofawithin 10%error in 99.80%of the trials. Note that, whereas examples 4 and 5 concern the same unknown entries, the three entries
in example 5 are estimated concurrently, whereas the three entries in example 4 are estimated separately, assuming the remaining entries are
known. This distinction is consistent with the fact that the UKF with Eq. (19) performs worse for example 5 than for example 4.

D. Deficiencies of the UKF

Examples 3–5 suggest that, although the UKFwith Eq. (19) can achieve a reasonably accurate parameter estimation for CSPEwith n � 2, the
performance deteriorates drastically for CSPE with n � 3. This motivates the need to develop parameter estimation algorithms that are more
effective for CSPE problems with n ≥ 3.

VI. Subsystem Estimation Framework

Consider the main system G shown in Fig. 7 with the realization:

x�k� 1� � A0x�k� � Bu�k� �Dw�k� (24)

y�k� � Cx�k� (25)

y0�k� � Ex�k� (26)

Fig. 6 Application of UKF with Eq. (19) to example 5; KF with Eq. (19) is applied with 10,000 randomly generated initial estimates
�x̂2�0�; x̂3�0�; â11�0�; â12�0�; â13�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 1000�; 0.20% of the trials are black and 99.80% of the trials

are red.

Fig. 5 Application of UKF with Eq. (19) to example 4: a) UKF with Eq. (19) is applied with 10,000 randomly generated initial estimates
�x̂2�0�; x̂3�0�; â11�0��; b) UKF with Eq. (19) is applied with 10,000 randomly generated initial estimates �x̂2�0�; x̂3�0�; â12�0��; c) UKF with Eq. (19) is
applied with 10,000 random initial estimates �x̂2�0�; x̂3�0�; â13�0��; in all three cases, KF with Eq. (19) uses the measurements y0�k� � x1�k� for

k ∈ �0; 1000�; 72.53, 4.68, and 6.09% of the trials in a), b), and c), respectively, are cyan.
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in which x�k� ∈ Rlx is themain system state, y�k� ∈ Rly is themain system output, u�k� ∈ Rlu is themain system input,w�k� ∈ Rlw is the known
excitation signal, and y0�k� ∈ Rlz is the main system measurement. The matrix A0 is the nominal dynamic matrix. The main system (24–26) is

interconnected with the unknown subsystem Gs modeled by

xs�k� 1� � Asxs�k� � Bsy�k� (27)

u�k� � Csxs�k� �Dsy�k� (28)

in which xs�k� ∈ Rlxs is the unknown subsystem state. Together, Eqs. (24–28) represent the true system.
Next, the main system model Ĝ has the realization:

x̂�k� 1� � A0x̂�k� � Bû�k� �Dw�k� (29)

ŷ�k� � Cx̂�k� (30)

ŷ0�k� � Ex̂�k� (31)

in which x̂�k� ∈ Rlx is the main systemmodel state, ŷ�k� ∈ Rly is the main systemmodel output, û�k� ∈ Rlu is the main systemmodel input, and

ŷ0�k� ∈ Rlz is the main system model measurement. The main system model is interconnected with the subsystem model:

û�k� � Ĝs�q�ŷ�k� (32)

in which q is the forward shift operator. Equations (29–32) together represent the modeled system. The subsystem estimation problem is
represented by the block diagram in Fig. 7, in which the goal is to estimate the subsystem model Ĝs by minimizing a cost function based on the

performance variable:

z�k� ≜ ŷ0�k� − y0�k� ∈ Rlz (33)

For the subsystem estimation problem, we assume that the unknown subsystem input y and the unknown subsystem output u are not measured,
and thus,Gs is inaccessible. The input ŷ of the subsystemmodel Ĝs is computed, and the input û of themain systemmodel Ĝ is estimated. Then, û
and ŷ are used to construct Ĝs, which is an estimate of Gs.

For parameter estimation, we assume that Gs � Ds is static, and thus, Eqs. (27) and (28) become

u�k� � Dsy�k� (34)

In this case, x satisfies

x�k� 1� � Ax�k� �Dw�k� (35)

in which the dynamic matrix of the true system is given by

A � A0 � BDsC (36)

Note that the decomposition (36) represents the matrix A in examples 1–5, in which the uncertain entries of A are the entries of Ds and the
corresponding entries of A0 are set to zero. However, Eq. (36) can be used to model uncertain entries in Awith nonzero nominal values, in which

case each entry ofDs represents an offset from the nominal value. Consequently, the nominal values of the uncertain entries ofA, which are given

Fig. 7 Subsystem estimation framework for RCSE.
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by the corresponding entries of A0, can be viewed as estimates of the uncertain entries of A that correspond to Ds � 0. Finally, if w � 0, then
Eqs. (24–28) are equivalent to the CSPE problem (1–3). We thus assume for the remainder of this paper that w � 0.

Letp be the number of uncertain entries inA; let q be the number of rows ofA, in which they appear; and let r be the number of columns ofA, in
which they appear. The expression (36) can be used to represent uncertain entries inA if and only ifp � qr. This condition is equivalent to saying
that, by reordering the rows and columns of A, the uncertain entries of A form a square or rectangular block of A. For example, uncertainty in a11
and a13 for a third-order system, which corresponds to p � 2, q � 1, and r � 2, can be represented using

B �
2
4 1

0

0

3
5; C �

�
1 0 0

0 0 1

�
; Ds ∈ R1×2 (37)

However, uncertainty in a11 and a23, which corresponds to p � 2, q � 2, and r � 2, cannot be represented by Eq. (36). In the case in which
p ≠ qr, Eq. (36) can be replaced by

A � A0 � �B1 · · · Bl �

2
64
Ds;1 · · · 0

..

. . .
. ..

.

0 · · · Ds;l

3
75
2
64
C1

..

.

Cl

3
75 � A0 � BDsC (38)

in which l ≥ 2. Note thatDs in Eq. (38) has a block-diagonal structure, and thus, the estimation ofDs entails the estimation ofDs;1; : : : ; Ds;l and

all of the off-block-diagonal zero entries. In this case, we treat the block-diagonal matrix as fully populated, and we ignore the estimates of the

off-block-diagonal entries, which are known to be zero.

VII. Retrospective Cost Subsystem Estimation

In this section, we formulate the RCSE algorithm for parameter estimation.

A. Subsystem Model

For static parameter estimation, the subsystem model is given by

û�k� � D̂s�k�ŷ�k� (39)

We rewrite Eq. (39) as

û�k� � Φ�k�θ̂�k� (40)

in which the regressor matrix Φ�k� is defined by

Φ�k� ≜ ŷ�k�T ⊗ Ilu ∈ Rlu×lθ (41)

and the unknown entries of A are written as

θ̂�k� ≜ vec�D̂s�k�� ∈ Rlθ (42)

in which lθ ≜ luly,⊗ is the Kronecker product, and vec is the column-stacking operator.

B. Retrospective Performance Variable

We define the retrospective input:

~u�k − 1� � Φ�k − 1�θ̂ (43)

and the corresponding retrospective performance variable

ẑ�k� ≜ z�k� �Φf�k − 1�θ̂ − ûf�k − 1� (44)

in which θ̂ ∈ Rlθ is determined by optimization, and Φf�k − 1� ∈ Rlz×lθ and ûf�k − 1� ∈ Rlz are filtered versions of Φ�k − 1� and û�k − 1�,
respectively, defined by

Φf�k − 1� ≜ Gf�q�Φ�k − 1�; ûf�k − 1� ≜ Gf�q�û�k − 1� (45)

The filter Gf has the form:

Gf�q� ≜ D−1
f �q�Nf�q� (46)

in which Df and Nf are polynomial matrices, and Df is monic. The choice of these filters is discussed next.
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C. Retrospective Cost Function

Using the retrospective performance variable ẑ�k�, we define the retrospective cost function:

J�k; θ̂� ≜
Xk
i�1

ẑT�i�Rzẑ�i� �
�
θ̂ − θ�0�

�
T
Rθ

�
θ̂ − θ�0�

�
(47)

in which Rz and Rθ are positive definite. The following result is a restatement of standard recursive least-squares optimization. The update
equation (49) can be viewed as a Riccati equation for the discrete-time KF in the case, in which the dynamic matrix is the identity and the output
matrix is a data regressor.

Proposition: Let P�0� � R−1
θ . Then, for all k ≥ 1, the retrospective cost function (47) has a unique global minimizer θ�k�, which is given by

θ̂�k� � θ̂�k − 1� − P�k − 1�ΦT
f �k − 1�Γ−1�k − 1�

h
Φf�k − 1�θ̂�k − 1� � zf�k� − uf�k − 1�

i
(48)

P�k� � P�k − 1� − P�k − 1�ΦT
f �k − 1�Γ−1�k − 1�Φf�k − 1�P�k − 1� (49)

in which

Γ�k − 1� ≜ R−1
z �Φf�k − 1�P�k − 1�ΦT

f−1�k − 1� (50)

D. Online Update of Gf

Note that the retrospective performance variable (44) can be rewritten as

ẑ�k� � z�k� −Gf�q�μ̂�k − 1� (51)

in which

μ̂�k − 1� ≜ û�k − 1� − ~u�k − 1� (52)

The signal μ̂ can be viewed as a virtual exogenous input, as shown in Fig. 8.
It can be seen fromEq. (51) that ẑ is the residual of the fit between z and the output ofGf with input μ̂. However, the actual transfer function from

μ̂ to z is given by

~Gŷ0μ̂�q� ∼
�
A0 � BD̂sC B

E 0

�
(53)

Consequently, minimizing ẑ produces the value of θ̂, and thus, the value of D̂s that optimally fits ~Gŷ0μ̂ toGf. Therefore, a desirable choice of
Gf is

~G��q� ∼
�
A0 � BDsC B

E 0

�
(54)

Because Ds is unknown, however, Eq. (54) cannot be implemented in practice. Thus, in all subsequent applications of RCSE, we use the
time-varying filter:

Fig. 8 Subsystem estimation framework showing the virtual exogenous input μ̂.
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Gf�q; D̂s�k − 1�� ∼
�
A0 � BD̂s�k − 1�C B

E 0

�
(55)

Note that, if D̂s�k − 1� � Ds, then Gf�q; Ds� � ~G��q�.

E. Data-Window Reiteration

To enhance the accuracy of the estimate D̂s�k� ofDs, RCSE is applied multiple times to a given data set consisting of kf data points. In the first

iteration, we apply RCSE with Gf�q; D̂s�k − 1�� given by Eq. (55) initialized with D̂s�0� � 0. In addition, the entries of the nominal dynamic

matrixA0 in both Eq. (55) and themodel (29) are set to the initial estimates of the unknownparameters. In subsequent iterations,we applyRCSE to

the same data set with D̂s�0� given by D̂s�kf� from the previous iteration and with A0 replaced by A0 � BD̂s�kf�C.

VIII. RCSE with a Known Initial State

In this section, we apply RCSE to the CSPE problem assuming the initial state is known. This assumption is removed in the next section.

A. Example 6: n � 3 and Three Unknown Entries in a Single Row

We revisit example 5 with RCSE assuming that the initial state is known. We thus set x̂�0� � x0, which implies ξx � 0, and we choose 100
initial estimates �â11�0�; â12�0�; â13�0��, such that ξa ∈ �0; 2�. For all trials, the tuning parameters are Rθ � Ilθ , kf � 100, and nu � 4. Figure 9

shows that, in all trials, the RCSE estimates of both components ofa arewithin 10% error. Figure 10 shows how theRCSE estimates evolve for the
case, inwhich ξa � 0.53. As described in Sec.VII.E,RCSE is applied to the same kf � 100 data pointsmultiple times. By the second application,

RCSE is able to accurately estimate all three unknown parameters.
Next, the tuning parameters are changed to Rθ � 0.1Ilθ and Rθ � 10Ilθ , thus spanning two orders of magnitude. Figures 11 and 12 show that

the accuracy of RCSE is unchanged.

B. Example 7: n � 8 and Eight Unknown Entries in a Single Row

Consider Eqs. (1–3) with

A �

2
66666666664

0.29 0.43 0.26 1.6 0.22 −1.02 −0.35 −1.31
0.04 0.57 0.56 0.92 −0.81 −0.12 0.13 −0.9
0.14 0.49 1.43 0.55 −0.22 −0.71 −0.53 −1.05
−0.33 −0.12 −0.31 −1.18 0.77 0.34 0.72 1.3

−0.59 0.51 0.32 0.97 0.31 −0.06 −0.45 −0.89
0.49 −0.48 −1.19 −2.08 0.55 1.36 0.43 1.88

0.16 −0.48 −1.39 −1.68 0.58 0.8 1.12 1.98

0 0.6 0.2 0.27 −0.21 −0.27 −0.83 0.27

3
77777777775
; x0 �

2
66666666664

−23
67

−31
5

44

−81
41

−17

3
77777777775

E � � 1 0 0 0 0 0 0 0 � (56)

and assume that the entries a11 � 0.29, a12 � 0.43, a13 � 0.26, a14 � 1.6, a15 � 0.22, a16 � −1.02, a17 � −0.35, and a18 � −1.31 of A are
unknown. Define

Fig. 9 Application of RCSE to example 6 assuming the initial state is known; RCSE is applied with 100 randomly generated initial estimates
�â11�0�; â12�0��; â13�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 100�, and setting x̂�0� � x0 andRθ � Ilθ , respectively; 100% of the trials are
cyan.
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xu ≜

2
64
x2
..
.

x8

3
75; x̂u ≜

2
64
x̂2
..
.

x̂8

3
75; a ≜

2
64
a11
..
.

a18

3
75; â ≜

2
64
â11
..
.

â18

3
75 (57)

Assuming the initial state is known, we set x̂�0� � x0, which implies ξx � 0, and choose 100 initial estimates

�â11�0�; â12�0�; â13�0�; â14�0�; â15�0�; â16�0�; â17�0�; â18�0��, such that ξa ∈ �0; 2�. For all trials, we use the tuning parameters

Rθ � 10;000Ilθ , kf � 25, and nu � 80. Figure 13 shows that, in 97% of the trials, the RCSE estimates of all of the components of a are

within 10% error.

C. Example 8: n � 2, Two Unknown Entries in a Single Row, and an Unknown Initial Condition

We revisit example 6 with RCSE assuming the initial conditions are unknown. Because x1 is measured, we set x̂1�0� � x1�0� and choose

10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0��, such that ξx, ξa ∈ �0; 2�. For all trials, we use the tuning parameters Rθ � 1,
kf � 100, and nu � 4. Figure 14 shows that, as ξx increases, the performance of RCSE degrades. In addition, 31.75% of the estimate â is within

10% of both components of the true parameter a, 36.42% is within 10% of exactly one component of a, and 31.83% is within 10% of none of the

components of a.

D. Deficiencies of RCSE

Figure 6 suggests that the UKF is not improved using knowledge of the initial conditions. In contrast, examples 6–8 show that, if x0 is known
and we set x̂�0� � x0, then RCSE performs well. Note, however, that the accuracy of RCSE degrades as the uncertainty in x0 increases. This
motivates the development of a variation of RCSE that simultaneously estimates the unknown initial state and the unknown parameters.

Fig. 10 Evolution of parameter estimates using RCSE for example 6 assuming the initial state is known; RCSE is applied to a case, in which ξa � 0.53
using the measurements y0�k� � x1�k� for k ∈ �0; 100�, and setting x̂�0� � x0 and Rθ � Ilθ , respectively; RCSE is able to accurately estimate every
unknown parameter.
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IX. RCSE Smoother

It was shown in the previous section that the RCSE estimates are reasonably accurate in the case, in which the initial state is known. To take
advantage of this observation,we now formulate theRCSES algorithm for simultaneously estimating the unknownparameters and the initial state.

A. Augmented Subsystem Estimation Framework

Let δ�k� be the unit impulse function, and define δ0�k� ≜ δ�k� 1�, which represents a unit impulse at step k � −1. Furthermore, define

A ≜
�

A x0
01×lx 0

�
; D ≜

�
0lx×1
1

�
; E ≜ �E 0 �; X ≜

�
x
δ0

�
(58)

Fig. 11 Application of RCSE to example 6 assuming the initial state is known; RCSE is applied with 100 randomly generated initial estimates

�â11�0�; â12�0��; â13�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 100�, and setting x̂�0� � x0 and Rθ � 0.1Ilθ , respectively; as in the case of
Fig. 9, in which Rθ � Ilθ , 100% of the trials are cyan.

Fig. 12 Application of RCSE to example 6 assuming the initial state is known; RCSE is applied with 100 randomly generated initial estimates
�â11�0�; â12�0��; â13�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 100�, and setting x̂�0� � x0 and Rθ � 10Ilθ , respectively; as in the case of
Fig. 9, in which Rθ � Ilθ , and Fig. 11, in which Rθ � 0.1Ilθ , 100% of the trials are cyan.
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Then, for all k ≥ −2, Eqs. (1–3) can be rewritten as the augmented system:

X�k� 1� � AX�k� �Dδ�k� 2� (59)

X�−2� � 0 (60)

y0�k� � EX�k� (61)

Note that k is chosen to begin at step −2 so that X�0� � �x0 0�T . Equations (63–65) are therefore a representation of Eqs. (1–3) with known
zero initial state and an augmented dynamic matrixA, which includes the uncertain entries ofA as well as the unknown components of the initial
state x0.

Fig. 14 Application of RCSE to example 8; RCSE is applied with 10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0�� using the
measurements y0�k� � x1�k� for k ∈ �0; 100�; 31.75, 36.42, and 31.83% of the trials are cyan, black, and red, respectively.

Fig. 13 Application of RCSE to example 7 assuming the initial state is known; RCSE is applied with 100 randomly generated initial estimates
�â11�0�; â12�0�; â13�0�; â14�0�; â15�0�; â16�0�; â17�0�; â18�0�� using the measurements y0�k� � x1�k� for k ∈ �0; 25� and setting x̂�0� � x0; 97% of the
trials are cyan.
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Now, assume that the mth component of E is 1 and all other components of E are zero, let x̂0 be the nominal initial state, and define

A0 ≜
�

A0 x̂0
01×lx 0

�
; B ≜

�
B B0

01×lu 01×�n−1�

�
; C ≜

�
C 0ly×1

01×lx 1

�
(62)

in which B0 is In with the mth column removed. Then, Eqs. (59–61) can be written in the form of Eqs. (24–26) as

X�k� 1� � A0X�k� � Bu�k� �Dδ�k� 2� (63)

y�k� � CX�k� (64)

y0�k� � EX�k� (65)

with a known initial state X�−2� � 0. Using Eq. (34), it follows that the augmented dynamic matrix of the true system is given by

A � A0 � ΔA � A0 � BDsC (66)

Note that Eq. (66) has the same form as Eq. (38) with A replaced by A and A0 replaced by A0. Furthermore, the matrix Ds in ΔA � BDsC
models the uncertain entries ofA, which include the uncertain entries of A as well as the unknown components of the initial state x0 of Eq. (1).
Consequently, the estimation of Ds is a smoothing problem.

To construct an estimator based on Eqs. (63–65), we define

X̂ ≜
�
x̂
δ0

�
(67)

and rewrite Eqs. (29–31) as

X̂�k� 1� � A0X̂�k� � Bû�k� �Dδ�k� 2� (68)

ŷ�k� � CX̂�k� (69)

ŷ0�k� � EX̂�k� (70)

in which the initial state X̂�−2� � 0. For example, consider the case, in which n � 2, a11 is unknown, and y�k� � x1�k�, and thus, x2�0� is
unknown. Let the (1, 1) entry of A0 be zero and set x̂2�0� � 0. Then

B �
�
1

0

�
; C � � 1 0 �; B0 �

�
0

1

�
; D̂s �

�
θ̂1 θ̂2
θ̂3 θ̂4

�
(71)

in which θ̂1 and θ̂4 are estimates of a11 and x2�0�, respectively, and θ̂2 and θ̂3 are estimates of zero entries that will be ignored. Note that, for this
smoother problem, Ds has the block-diagonal structure shown in Eq. (38).

B. Data Update

For concurrent parameter and initial state estimation, we apply RCSE to Eqs. (68–70). At each step k, RCSE produces D̂s, which contains
estimates of the unknown components of A and x0. Next, ŷ�k� and ŷ0�k� are computed using

ŷ�k� � C�A0 � BD̂s�k�C�k�1D; ŷ0�k� � E�A0 � BD̂s�k�C�k�1D (72)

Because the values of ŷ and ŷ0 at previous steps are computed from prior estimates of Â and x̂�0�, there may be a mismatch between P�k − 1�
andΦf�k − 1� in Eq. (49). To rectify this, at each step k, we use constant values of θ � θ�k − 1� to recompute ŷ, ŷ0, û, andΦf from steps −2 to
k − 1. Then, we rerun Eqs. (48) and (49) from steps −2 to k with these updated values to obtain θ�k� and P�k�.

X. RCSES with an Unknown Initial State

In this section, we apply RCSES to the CSPE problem in the case, in which the initial state is unknown.

A. Example 9: n � 2 and Two Unknown Entries in a Single Row

We reconsider example 1 using RCSES. In this case, B and C are given by Eq. (62) with

B �
�
1

0

�
; B0 �

�
0

1

�
; C �

�
1 0

0 1

�
; D̂s �

"
θ̂1 θ̂2 θ̂3
θ̂4 θ̂5 θ̂6

#
(73)

In this case, lθ � 6, in which θ̂1 and θ̂2 are estimates of a11 and a12, respectively; θ̂6 is an estimate of x2�0� − x̂2�0�; and θ̂3, θ̂4, and θ̂5 are
estimates of zero entries that will be ignored. Note that, for this smoothing problem, Ds has the block-diagonal structure shown in Eq. (38).

14 Article in Advance / YU AND BERNSTEIN

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
Se

pt
em

be
r 

23
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

05
81

 



For all trials, we use the tuning parameters kf � 50 and nu � 10, and we choose Rθ � diag�1; 1; 108; 108; 108; 1�, in which the large entries
correspond to the components of θ that are known to be zero. Figure 15 shows that, in all trials, RCSES estimates both components of a within
10% error.

Next, consider the same example with Rθ � diag�0.1; 0.1; 107; 107; 107; 0.1� and Rθ � diag�10; 10; 109; 109; 109; 10�, respectively.
Figures 16 and 17 demonstrate the insensitivity of RCSES to variations in Rθ.

B. Example 10: n � 3 and Three Unknown Entries in a Single Row

We revisit example 6withRCSES.Once again, the uncertain entries inAmust be representedwith Eq. (38). In this case, lθ � 12, inwhich three
components of θ are estimates of unknown parameters, two components are estimates of the unknown components of the initial state, and seven
components are estimates of the known value zero, and thus, are ignored. For all trials, we use the tuning parameters kf � 50, nu � 10, and set
Rθ � diag�100; 100; 100; 108; 108; 108; 108; 10−4; 108; 108; 108; 10−4�. As in example 9, the largest diagonal entries of Rθ correspond to the
components of θ that are zero. Figure 18 shows that 70.92%of the estimate â iswithin 10%of all three components of the true parametera, 11.62%
of â is within 10% of at least one component of a, and 17.46% of â is within 10% of none of the components of a.

Fig. 15 Application of RCSES to example 9; RCSES is applied with 10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0�� using the
measurements y0�k� � x1�k� for k ∈ �0;50� and setting Rθ � diag�1;1;108;108;108;1�; 100% of the trials are cyan.

Fig. 16 Application of RCSES to example 9; RCSES is applied with 10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0�� using the
measurements y0�k� � x1�k� for k ∈ �0; 50� and setting Rθ � diag�0.1; 0.1; 107; 107; 107; 0.1�; 98.87 and 1.13% of the trials are cyan and red,
respectively.
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Examples 10 and 3 show that RCSES performs as well as the UKF with Eq. (19) in the case, in which n � 2 and one row of A is unknown.
Examples 11 and 5 show that RCSES performs better than the UKF with Eq. (19) for the case, in which n � 3 and one row of A is unknown.

XI. Application to Linearized Longitudinal Aircraft Dynamics

In this section, we consider the CSPE problem for linearized longitudinal aircraft dynamics. Consider the continuous-time linearized
longitudinal aircraft dynamic matrix:

Ac �

2
64

−0.0505 −9.49 −0.0127 −32.2
−0.00236 −2.45 0.962 0

0.0179 −42.0 −3.44 0

0 0 1 0

3
75 (74)

Discretizing the dynamics with the time step Ts � 0.01 s yields the discrete-time linearized longitudinal aircraft dynamic matrix:

Fig. 17 Application of RCSES to example 9; RCSES is applied with 10,000 randomly generated initial estimates �x̂2�0�; â11�0�; â12�0�� using the
measurements y0�k� � x1�k� for k ∈ �0; 50� and setting Rθ � diag�10; 10; 109; 109; 109; 10�; 99.58 and 0.12% of the trials are cyan and black,

respectively.

Fig. 18 Application of RCSES to example 10; RCSES is applied with 10,000 randomly generated initial estimates �x̂2�0�; x̂3�0�; â11�0�; â12�0�; â13�0��
using the measurements y0�k� � x1�k� for k ∈ �0; 50�; 70.92% of the trials are cyan, 11.62% of the trials are black, and 17.46% of the trials are red.
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A �

2
664

0.999 −0.0934 −0.00216 −0.322
−1.49 × 10−6 0.974 0.00933 2.86 × 10−7

0.000176 −0.408 0.964 −2.85 × 10−5

8.86 × 10−7 −0.00206 0.00982 1

3
775 (75)

Uncertain entries of Eq. (75) can be viewed as arising from uncertain stability derivatives [16].

A. Example 11: UKF with Two Unknown Entries

Consider Eqs. (1–3) with

x0 �

2
664
−50
30

−10
95

3
775; E � � 1 0 0 0 � (76)

and assume that the entries a11 � 0.999 and a12 � −0.0934 ofA are unknown. To apply the UKF, we define the augmented system (12–14) with
~A constructed as in Eq. (19) and X, ~E constructed as in Eq. (15). Furthermore, define the true parameter vector a, its estimate â, the unmeasured

state xu, and its estimate x̂u as

xu ≜

2
4 x2
x3
x4

3
5; x̂u ≜

2
4 x̂2
x̂3
x̂4

3
5; a ≜

�
a11
a12

�
; â ≜

�
â11
â12

�
(77)

As in example 4, we consider 10,000 randomly generated initial estimates �x̂2�0�; x̂3�0�; x̂4�0�; â11�0�; â12� with the UKF, such that ξx,
ξa ∈ �0; 2�. Using the notation of [7], we set the initial covariance matrix to be P�0� � 10−4I4, and choose the tuning parameters α � 1, κ � 0,
β � 2,Q � 10−2I2lx , andR � 0. Figure 19 shows that 0.04% of the estimate â is within 10% of both components of the true parameter a, 2.76%
of â is within 10%of at least one component of a, and 97.20%of â is within 10%of none of the components ofa. Inmost of the trials, inwhich the

estimation of the unknown entries is successful, the estimates converge within approximately 500 time steps, that is, 5 s.

B. Example 12: RCSES with Two Unknown Entries

We revisit example 11 with RCSES. Once again, the uncertain entries in A must be represented with Eq. (38). In this case, lθ � 12, two
components of θ are estimates of the unknown parameter, three components are estimates of the unknown components of the initial state, and

seven components are estimates of the knownvalue zero, and thus, are ignored. For all trials, we use the tuning parameters kf � 25, nu � 20, and
set Rθ � diag�0.1; 0.1; 108; 108; 108; 0.1; 108; 108; 0.1; 108; 108; 0.1�, in which the largest entries correspond to the components of θ that are

zero. Figure 20 shows that 2.23% of the estimate â is within 10%of both components of the true parameter a, 58.79%of â is within 10%of at least

one component of a, and 38.98% of â is within 10% of none of the components of a.
Examples 11 and 12 show that RCSES performs better than the UKF for the case, in which two entries in the dynamic matrix of a linearized

longitudinal aircraft model are unknown.

Fig. 19 Application of KF with Eq. (19) to example 11; KF with Eq. (19) is applied with 10,000 randomly generated initial estimates
�x̂2�0�; x̂3�0�; x̂4�0�; â11�0�; â12�0��using themeasurements y0�k� � x1�k� fork ∈ �0;1000�; 0.04%of the trials are cyan, 2.76%of the trials are black, and
97.20% of the trials are red.
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XII. Conclusions

Combined state and parameter estimation (CSPE) is a specialized problem in nonlinear estimation, and thus, it is amenable to the standard
extended Kalman filter (EKF) and unscented Kalman filter (UKF). However, low-order numerical examples show that the performance of the
EKF and UKF is unsatisfactory. With this motivation, retrospective cost subsystem estimation (RCSE) was applied, and it was found that, in the
case inwhich the initial condition is known, it is possible to obtain highly accurate estimates of the unknown entries of the dynamicmatrix for both
low- and high-order cases. Because the initial condition is usually unknown in practice, the retrospective cost subsystem estimation smoother
(RCSES) was developed to estimate the unknown parameters as well as the unknown components of the initial state. RCSES was shown
numerically to outperform the EKF and UKF. It is clear, however, that this estimation problem remains challenging, and there is a significant
opportunity to refine RCSES and develop alternative methods that can offer an improved performance. Extensions of this problem to include
process and sensor noise as considered in [10] are also of interest.
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