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Ahstraet-The Popov absolute stability criterion is tradition- 
ally proved using a Lyapunov function and the positive real 
lemma. In this paper a simplified proof of the multivariable 
Popov criterion is given for the case of one-sided, 
sector-bounded real parameter uncertainty. A loop-shifting 
transformation is then used to extend the Popov criterion to 
two-sided, sector-bounded uncertain matrices. Specialization 
of this result to norm-bounded uncertain matrices leads to an 
upper bound for the structured singular value for 
block-structured, real parameter uncertainty. 

1. Introduction 
Absolute stability theory has traditionally been used to 
analyze the stability of systems with unknown, sector- 
bounded nonlinearities represented as feedback elements 
(Hsu and Meyer, 1968; Narendra and Taylor, 1973; Khalil, 
1992). In particular, the positivity and Popov criteria 
(Haddad and Bernstein, 1991) provide sufficient conditions 
for the stability of a linear system in a negative feedback 
interconnection with a nonlinear element. In the scalar case 
both of these absolute stability criteria guarantee stability by 
restricting the Nyquist plot of the nominal linear system to a 
specified region of the complex plane. In particular, positivity 
requires that the Nyquist plot he in a half-plane that depends 
upon the uncertain sector containing the nonlinearity, while 
the less conservative Popov criterion utilizes a frequency- 
dependent multiplier to restrict the Nyquist plot to a 
frequency-dependent, rotated half-plane. 

An alternative view of absolute stability theory has led to 
its use in robust stability analysis and synthesis (Haddad and 
Bernstein, 1991; Haddad, et al., 1992; Chiang and Safonov, 
1992; How and Hall, 1993). By specializing the nonlinear 
elements in the feedback path to the linear case, absolute 
stability theory provides sufficient conditions for robust 
stability with real parameter uncertainty. The connection 
between the Popov criterion and the structured singular 
value as a measure of robustness to constant, real parameter 
uncertainty was discussed in How and Hall (1992). 

In this paper the uncertain system is represented as a 
nominal transfer function in a negative feedback intercon- 
nection with a matrix representing the uncertain parameters. 
The multivariable Popov criterion is proved for one-sided, 
sector-bounded, symmetric uncertain matrices. Whereas the 
Popov criterion is traditionally proved using a Lyapunov 
function and the positive real lemma, here the proof is based 
upon frequency-domain arguments. A loop-shifting transfor- 
mation is used to extend the Popov criterion to two-sided, 
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sector-bounded uncertain matrices. Finally, an upper bound 
for the structured singular value for robust stability with 
respect to real parameter uncertainty is formulated by 
specializing the shifted Popov criterion to block-structured, 
norm-bounded uncertain matrices. 

2. The Popov criterion 
In this section we prove the multivariable Popov criterion 

for the case of real, symmetric, sector-bounded parameter 
uncertainty. Consider a square nominal transfer function 
G(s) in a negative feedback interconnection with a real, 
square, uncertain matrix F as shown in Fig. 1, where F 
belongs to the set of symmetric, sector-bounded matrices 

where M E Rmxm is positive-definite. This type of sector 
bound is referred to as one-sided to denote the fact that the 
lower bound is zero. The following result provides alternative 
characterizations of 9. 

Lemma 2.1. Let F E Rmxm by symmetric. Then the following 
statements are equivalent: 

(i) OSFSM; 
(ii) FM-IF 5 F; 

(iii) umax(M-‘“FM-“” - $1) (: 4. 

Proof. (i) *(ii): Suppose 05 F 5 M, so that 05 
M-lRFM-‘” 5 I. Since M-‘nFM-“Z is symmetric, there 
exist an orthogonal matrix S and a real diagonal matrix 
A = diag (A,, . . , A,,,) such that 0 5: SASr = M-‘nFM-“2 I 
I, so that 05 A, 5 1, i = 1,. . , m. Hence, since A* 5 A, it 
follows that 

and thus FM-IF 5 F. 
(ii) + (iii): Suppose FM-‘F 5 f-‘, so that 

M-“2FM-‘/2M-1/2FM-l/2 < ,,,-“2FM~ ,,2 _ 

Adding fI to each side and rearranging yields 

@-‘“FM-“* _ ~~)(M~“*FM~ “* - :I) 5 tz, 

which is equivalent to v,,&M-“*FM-“* - $1) 5 3. 
(iii)+(i): Suppose o,,,,,(M-“~FM-“~ - fl) 5 $. Then 

Q,,-‘I*FM~‘I* _ $I)(M-~~ZFM-~)~ - $1) 5 $1. 

Rearranging yields 

so that 05 (M-“ZFM-“2)(M-~/2FM-“2) 5 ,j-“2FM-“*, 
Since M-‘nFM-‘” is symmetric, there exist an orthogonal 
matrix S and a real diagonal matrix A = diag (A,, , A,,,) 
such that SAST = M-1’2FM-“2. It follows that 0 5 SA2ST 5 
SAST, so that OsA2sA and thus O<A,sl, i=l,...,m. 
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Fig. 1. Interconnection of transfer function G(s) with real 
uncertain matrix F. 

Hence O~ShST~ I, so that OS M-“*FM-“2~ Z and hence 
O=FsM. 0 

For robust stability, we consider the set of real, symmetric, 
block-structured matrices &c 8 defined by 

.?$,~~{Fo%:F=block-diag(Z,,@Z$ ,..., I),@&), 

F. = FT E iR”i”“i, i = 1, . , r}, I t 

where A 63 B denotes the Kronecker product of the matrices 
A and B, and where the dimension mi X mi of each block and 
the number of repetitions Zj of each block are given. 

For the following lemma, define the set 

~~{N~R~~“‘:N=block-diag(N,@Z,,, ,,..., N,@Z,,,), 
N=Nr~Hli~l, i=l 1 I > . I 4 

Note that if N EK and FE .9& then FN= NF=block- 
diag(N,@e,..., N,@Z$); that is, every element of K 
commutes with every element of 5&. Finally, the Hermitian 
part of G is denoted by He G A &(G + G*). 

Lemma 2.2. Let o E R. If there exists N E Ksuch that 

He [M-’ + (I + joN)G(jw)] > 0 (1) 

then det (I + G(jo)F) # 0 for all F E .Y,,,. 

Proof: Suppose that there exists F E .‘%& such that 
det II + G(io)Fl = 0. Then there exists x E C”. x # 0. such 
that [I + >G&)]x = 0. Hence x = -FG(jo)x and’ x* = 
-x*G*(jo)F. Since, by Lemma 2.1, FM-IF s F, it follows 
that 

2x*M-‘x = 2x*G*(jo)FM-‘FG(jo)x 

sx*G*(jo)FG(jo)x + x*G*(jw)FG(jo)x 

= -x*[G*(jo) + G(jo)Jx, 

so that x*[2M-’ + G*(jo) + G(jo)l.x 5 0. 
Next note that, since (1) is equivalent to 

2M-’ + G*(jo) + G&J) + jo[NG(jo) - G*(jo)N] >O, 

it follows that 

x*[2M-’ + G*(jo) + G(jo)Jr 

> -jox*[NGcjo) - G*(jo)N]x, 

= -jw[x*NG(jo)x -x*G*(jo)Nx] 

= jw[x*G*(jw)FNG(jo)x - x*G*(jo)NFG(jo)x] 

= jox*G*(jo)(FN - NF)G(jo)x. 

Now FN = NF implies that x*[2M-’ + G*(jo) + G(jo)Jx > 
0, which is a contradiction. Hence det [I + GCjw)F] # 0 for 
all F E gbs. 0 

We now prove the multivariable Popov criterion for 
one-sided, sector-bounded, uncertain matrices. 

Theorem 2.1. Let G(s) be an asymptotically stable transfer 
function. If there exists N E Xsuch that 

He [M-’ + (I + sN)G(s)] > 0 (2) 

for all s = jo than the negative feedback interconnection of 
G(s) and F is asymptotically stable for all F E SW 

AB 
Proof: Let F E S& and G(s) - C o , where A HI 

so that the negative feedback interconnection of G(s) and F 
is 

[I + G(s)F]-‘G(s) - [ -1. 

Suppose that 
G(s)F]-‘G(s) 

there exists F E Sk such that [I+ 
is not asymptotically stable. Since A is 

Hurwitz, there exists E E (0, 11 such that A - eBFC has an 
eigenvalue j& on the imaginary axis. 

Next note that 

det [I + &G(s)F] = det [I + &C(sZ - A)-‘BF] 

=det[Z+eBFC(sZ-A)-‘] 

= det (sZ - A)-’ det [sZ - (A - eBFC)). 

Hence 
det [I + cG(jO)F] = det (j6Z - A)-’ 

det [j&jZ - (A - EBFC)] = 0. 

However, since EF E f&, Lemma 2.2 implies that det [I + 
&GCjD)F] # 0, which is a contradiction. Cl 

Remark 2.1. The set of matrices X defined here is huger 
than that used by Haddad and Bernstein (1991), Haddad er 
al. (1992) and How and Hall (1993), who proved the Popov 
criterion by constructing a suitable Lyapunov function. In 
that case the matrices N must be nonnegative-definite so that 
the parameter-dependent Lyapunov candidate xTPx + 
xTCTFNCx is positive-definite. 

By setting N = 0, we obtain the multivariable positivity 
criterion for one-sided, sector-bounded uncertain matrices. 

Corollary 2.1. Let G(s) be an asymptotically stable transfer 
function. If 

He [M-’ + G(s)] > 0, (3) 

for all s = jo then the negative feedback interconnection of 
G(s) and F is asymptotically stable for all F E S&. 

3. Extension to two-sided uncertainty 
In this section we use a loop-shifting transformation to 

extend the Popov criterion from the case of one-sided, 
sector-bounded, block-structured uncertain matrices to 
two-sided, sector-bounded, block-structured uncertain mat- 
rices. Let MI and M2 be symmetric, block-structured matrices 
such that M = M2 - M, is positive-definite. Then consider the 
set of real, symmetric, block-structured, two-sided, sector- 
bounded matrices defined by 

Hence F E Sb if and only if A = F + M, E Ah. Note that if 
AaAbs then OSA-M,SM~-M,, and thus M1~A5M2, 
which is a two-sided sector bound. 

Next define the shifted transfer function G,(s) by 

G,(s) $ [I + G(s)M,]-‘G(s). 

Then the asymptotic stability of G(s) in a negative feedback 
interconnection with the uncertainty A E Abs is equivalent to 
the asymptotic stability of GJ(s) in a negative feedback 
interconnection with the uncertainty F E ?&. This equi- 
valence can be seen from Fig. 2 (for details see Vidyasagar, 
1993, pp. 340-341). 

We now state the muhivariable Popov criterion for the 
case of two-sided, sector-bounded uncertain matrices as a 
corollary to Theorem 2.1. 

Corollary 3.1. Suppose G,(s) is asymptotically stable. If there 
exists N E Ksuch that 

He [(Mz - Ml)-’ + (I + sN)G,(s)] > 0 (4) 

for all s = jw than the negative feedback interconnection of 
G(s) and A is asymptotically stable for all A E Abs. 

Proof. Since G,(s) is asymptotically stable and there exists 
N E J such that He [(M2 - MI)-’ + (I + sN)G,(s)] > 0 for all 
s=j,, it follows from Theorem 2.1 that the negative 
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Fig. 2. Loop-shifting transformation. 

feedback interconnection of G,(s) and F is asymptotically 
stable for all F E &. By writing F = A - M,, it follows from 
the loop-shifting transformation shown in Fig. 2 that the 
negative feedback interconnection of G(s) and A is 
asymptotically stable for all A E Abs. 0 

4. Specialization to norm-bounded, block-structured 
uncertainty 

Next we specialize the Popov criterion for two-sided, 
sector-bounded, block-structured uncertainty to the case of 
norm-bounded, block-structured uncertainty in order to 
obtain a bound on the structured singular value for real 
parameter uncertainty. Letting Mu = - y-‘I and M2 = y-‘Z, it 
follows that M = 2y-‘I, so that M-’ = $yZ. The sets 9, & 
and A& thus become 

9={F E lRmx”’ :OsFs2y-‘I}, 

&i,{FERmxm. . F = block-diag (I,, @F,, . , Z!, @ &), 

0 5 6 I2y-‘I,,, i = 1, . . , r}, 

Abs = {A E Rmxm :A + y-‘I E .&}. 

Furthermore, since - y-‘Z 5 A 5 y-‘Z, it follows that 

Abs={A E Rmxm: A = block-diag (4, @ A,, . , Z,, @ A,), 
A z AT E Rmix+ ‘ 8 , u,,,(AJ 5 y-‘, i = 1,. , r}. 

In addition, the shifted transfer function G,(s) becomes 

G,(s) = [I - y-‘G(s)]-‘G(s). 

We now state the Popov criterion for the case of 
norm-bounded, block-structured uncertain matrices as a 
corollary to Corollary 3.1. 

Corollary 4.1. Let y > 0 and suppose G,(s) is asymptotically 
stable. If there exists N E K such that 

He [fyZ + (I + sN)G,(s)] > 0 (5) 

for all s = jo then the negative feedback interconnection of 
G(s) and A is asymptotically stable for all A E A,. 

Proof This follows by letting M’ = -y-‘I and M, = y-‘I in 
Corollary 3.1. 0 

Remark 4.1. A special case of the sets Abs and N is worth 
noting. Specifically, let mi = 1, i = 1,. , r, so that Abs is the 
set of diagonal matrices with possibly repeated real scalar 
elements given by 

Abs={A~Wmxm: A = block-diag (6’Z,,, . , 6,Z,,,,), 

16J 5 y-l, i = 1,. . , r}. 

Then X is the set of real, symmetric, block-structured 
matrices given by 

X={N E Rmxm: N = block-diag (N,, . , N,), 

N = NT E R’i”‘~, i = 1, , r}. I L 

In this case NA = AN = block-diag (6, N,, . . , 6,N,). 

5. Real structured singular value upper bound 
We now obtain an upper bound on the structured singular 

value for real parameter uncertainty. This bound is based 
upon the Popov criterion specialized to norm-bounded, 
block-structured uncertain matrices given in the previous 

section. The structured singular value (Doyle, 1985) of a 
complex matrix G(jo) for real parameter uncertainty is 
defined by 

CL(G’U)) ’ min {o,&A!): A E A,,O}’ 
where 

A bs,O 5 {A E A,,:det [I + G(jo)A] = 0). 

If AbO is empty then k( G(jo)) p 0. 
Next, define p ~opov(W~)) by 

ppopov(G(j~)) +$ inf {y > 0: there exists N E X such that 

He [$yZ + (I + joN)G,(jo)] > 0). 

To show that p Popov(G(j~)) is an upper bound on p(G(j~)), 
we require the following intermediate result. 

Lemma 5.1. Let OJ E R. If pp,,,(G(jo)) < y then there 
exists N E X such that 

He [$yZ + (I + joN)G,(jo)] > 0. (6) 

Furthermore, det [I + G(jo)A] # 0 for all A E A,,_ 

ProoJY Since p Po&G(j~)) < y, there exists yl satisfying 
ppopov(G(j~)) < y1 < y and such that there exists N E X 
such that He [$+Z + (I + joN)G,(jw)] > 0. Then He [hyZ + 
(I + jwN)G&jo)] = $(y - y,)Z + He [$y’Z + (I + joN)G,(jo)) 
> 0, which proves (6). 

Next choose 9 >pp,&G(j~)) such that 9 is not an 
eigenvalue of G&J). Applying Lemma 2.2 with M = 29-‘1 
and G&J) replaced by &jo) A [I - y-‘G&J)]-‘G+), the 
conditiot (6) with y and G, replaced by 9 and 6, implies that 
det [I + G,(jo)F] # 0 for all F E &. Now let A E A& Since 
A = F - y-‘Z, where F E f&, it thus follows that 

det [I + G(jo)A] 

= det [Z + G(jo)(F - 9-‘Z)] 

= det [I - 9-‘G(jo) + G(jo)F] 

= det [I - 9-‘G(jo)] det {Z + [I - -j-‘G(jo)]-‘G(jo)F} 

= det [I - p~‘G@)] det [I + &(jo)F] 

# 0. 

Hence, det [I + GCjw)A] # 0 for all A E Ah 

Theorem 5.1. Let 0 E R. Then 

0 

&GCjo)) 5 ~~opov(Gf_i~)). (7) 

Proof Suppose p P,,pov(G(j~)) < p(GCjo)). By the definition 
of &G&U)), there exists A,, E Ab,0 such that v,,,,..&) = 
l/~~(Gtio)). Therefore u,,,~,&) < l/ppO ,(G(_io)). Now, 
let y satisfy a,,,(&) < l/y < l/ppopov(G&)). Then, since 
pp, ,,(G(jo)) < y and & E A&, Lemma 5.1 implies that 
det FZ + G&J)&] # 0, which contradicts the fact that 
det [I + G&J)&] = 0. I3 

6. Summary and conclusions 
An alternative, simplified proof has been given of the 

multivariable Popov absolute stability criterion for symmet- 
ric, block-structured, one-sided, sector-bounded uncertain 
matrices. A loop-shifting transformation is used to transform 
the Popov criterion to two-sided, sector-bounded uncertain 
matrices. Specialization to norm-bounded, block-structured 
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uncertain matrices leads to a robust stability test for real 
parameter uncertainty. Finally, the Popov criterion has been 
used to formulate an upper bound for the structured singular 
value for real parameter uncertainty. 
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