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Abstract-In this paper we investigate the closed-loop 
performance of a sampled-data control system by utilizing 
exact discretization techniques. In particular, for an H2 
performance measure we give exact expressions for the 
closed-loop cost for a given sample interval h. After 
applying discrete-time LQG synthesis to the sampled-data 
system, the achievable performance is evaluated for fast 
sampling near continuous time, h +O, and slow sampling 
near open loop, h-t m. Connections between the 
continuous-time Riccati equation for the analog control 
system and the discrete-time Riccati equation for the 
sampled-data system are investigated. Finally, several 
numerical examples are given to illustrate the convergence 
from sampled-data control to continuous-time control and 
open-loop. 

1. Introduction 
One of the first design decisions a control engineer must 
make concerns the capabilities of the real-time feedback 
processor. Assuming that the controller will be implemented 
digitally, it is useful to understand how processor capabilities 
affect the stability and achievable performance of the 
closed-loop system, including intersample behavior (De 
Souza and Goodwin, 1984; Lennartson and SBderstrGm 1989; 
Leung et al., 1991). Although it seems reasonable to 
conjecture that closed-loop performance improves as 
processor speed increases, there exist relatively few results 
that rigorously document this fact. 

The goal of this paper is to develop a sampled-data design 
formulation that accounts precisely for all sampling effects, 
including intersample behavior. A unique feature of our 
approach is its unified treatment of both continuous-time and 
discrete-time controllers. Thus, by appropriate choice of 
analog-to-digital (A/D) and digital-to-analog (D/A) devices, 
we expect to recover continuous-time controller performance 
as the sample interval h approaches zero and open-loop 
performance as h approaches infinity. To the best of our 
knowledge, this paper presents the first attempt to provide a 
‘seamless’ treatment of these two extreme cases in the 
context of dynamic compensation with white measurement 
noise. 
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An immediate benefit of our approach is the ability to 
carefully examine the effect of increasing or decreasing the 
sample rate. For example, although specific choices of the 
sampling interval will result in the loss of controllability and 
thus degraded performance, by increasing h above these 
values one can recover controllability and thereby improve 
performance. We believe that the quantification of this 
observation in terms of achievable closed-loop performance 
will be useful in applications such as the control of flexible 
structures that possess modes with frequencies above the 
Nyquist rate of any sampled-data controller. The results we 
obtain are developed for an LQG-type control problem. 

The problem of exactly discretizing a sampled-data system 
has also been considered in Khargonekar and Sivashankar 
(1991) and Bamieh and Pearson (1992) through the use of a 
zeroth-order hold and impulse sampler. However, in 
Khargonekar and Sivashankar (1991), the continuous-time 
measurement noise is directly replaced by a discrete-time 
measurement noise because of the ill-posedness of impulsive 
sampling of white noise. In Bamieh and Pearson (1992) this 
difficulty is overcome through the assumption that the 
measurement is noiseless. In the present paper the white 
noise difficulty is overcome through the use of an 
averaging/resetting A/D device to allow an exact treatment 
of the sampled-data problem with measurement noise. 

The contents of the paper are as follows. In Section 2 we 
state the sampled-data control problem along with all 
assumptions concerning A/D and D/A devices. Of special 
interest is the choice of sampling device as in Astriim (1970), 
Shats and Shaked (1989) and Bernstein et al. (1986), which 
permits the unified treatment of analog and digital 
controllers without recourse to ‘fictitious’ discrete-time white 
measurement noise. In Section 3 we state the LQG control 
problem for the equivalent discrete-time problem. In 
Sections 4 and 5 we examine the dependence of the 
closed-loop performance on the sample interval h as h 
approaches both zero and infinity. Finally, in Section 6 we 
illustrate these results by means of several examples, 
including both open-loop stable and open-loop unstable 
plants. The main feature of interest here is the dependence 
of the achievable closed-loop performance on h. 

2. Derivation of the exact discrete-time model 
Consider the continuous-time system 

i(t) = Ax(t) + Bu(t) + D,w(t), (1) 

y(t) = Cx(t) + Du(t) + D*w(t), (2) 

z(t) = .&x(t) + &u(t), (3) 

where x E Rn, u E R”, y E RI, w E Rd and z E Rp are the 
state, input, measurement, disturbance and performance 
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respectively. The disturbance w is a standard zero-mean 
white noise process. By forming zrz, the cost to be 
minimized is 

J(G,) = fiiI g 
II 

f ‘[x.r(s)R,x(s) + 2rT(s)R,&) 
0 

+ uT(s)Rzu(s)] d.r 
i 

. (4) 

where G, denotes a feedback controller, g denotes 
expectation, and R, 2 ETE,. RIz 2 E:EZ and R, k EzE2. 
Throughout this paper, we assume that (A, B) and 
(A - V,,V;‘C, (V, - V,,V, ‘VTz)“‘) are stabilizable, and 
(C,A) and ((R, - R12R~‘RT2)“‘, A - BR,‘RTZ) are 
detectable. 

In (4) G, denotes a continuous-time controller, whereas 
Gc,h will represent a discrete-time controller with sampling 
interval h. For the sampled-data controller, the measure- 
ments are given by an averaging/resetting A/D device of the 
form 

y’(k) A 1 
I 

kh 

h (k-I),, 
.v(s) d.s. (5) 

This device, which was studied by Astrom (1970) and Shats 
and Shaked (1989), recognizes the fact that the A/D 
operation is not instantaneous. Moreover, (5) circumvents 
difficulties that arise from direct sampling of continuous-time 
white noise and, as will be seen, allows a smooth transition 
from continuous-time to sampled-data controllers. Finally, to 
obtain continuous-time control signals, we employ a D/A 
zeroth-order hold of the form 

u(t) = u(kh). kh 5 t < (k + 1)h. (6) 

The corresoondine discretized state. measurement and cost 
expressions a;e thus”given by (Bernstein et al., 1986) 

.f(k + 1) =&(k) + &t’(k) + G(k), 

y’(k) = b(k). 

(7) 

(8) 

(9) 

J(G,,,) = S,, + /JIII S@T(k)k,a(k) 

+ 2f’r(k)R,,uf(k) + u”(k)R;u’(k)], 

where 

x’(k) Ax(kh). u’(k) g u(kh), A’ 2 eAh, 

B’ A H(h)B, H(s) L 1: e”‘dr. 

C+X(h). D$C ‘H(s)dsB+D. 
I 0 

I al I 
h 

v,z =- 
h (1 

eA”V,H(s) & C’ + iH(h)V,z. 

1 
P(s) d.s CT + - v 

h 
*1 

e”“R,e”’ & 

R; “;BT I 
h 

0 
HT(s)R,H(s)&B +;B’ 

I 

h 

ffT(s) ds RIZ 
0 

+;R:, 
I 

h 

H(s) ds B + RZ, 
0 

V,AD,D:, V,,AD,D;, V,bD,D:, 

eaSVIeA~r, ds dt R, 1 
For computational purposes, the method given by Van Loan 
(1978) can be used to evaluate these integrals. For details see 
Bernstein et al. (1986) and Osburn and Bernstein (1993). 

3. Continuous-time and sampled-data LQG control 
In this section we apply standard LQG theory to obtain 

optimal stabilizing controllers. Consider the nth-order strictly 
proper continuous-time dynamic compensator G, with 
realization 

f,(t) = A,x,(t) + B,y(t), u(t) = C&t). 

The optima1 LQG controller GZP’ is given by 

A, = A + BC, - B,C. B, = (QC’ + V,,)V,‘, 

C, = - Ry ‘(BTP + R&), 

where P and Q are the unique nonnegative-definite matrices 
satisfying the continuous-time Riccati equations 

0 = AQ + QAT + V, - (I’,, + QCT)V,‘(V,, + QCT)T, (10) 

O=A’P+PA+R,-(R,z+PB)R~‘(R,Z+PB)T. (11) 

With the continuous-time LQG controller, the optimal cost is 
given by 

J(G:p’) = tr [QR, + i)(R, + 2CfR12 + CTR,C,)], (12) 

where 0 satisfies 

0 = (A + BC,)o + i)(A + BC,)T 

+ (V,, + QCT)V,‘(V,, + QCT)T. (13) 

Now we consider the problem of obtaining an (n + I)th- 
order strictly proper discrete-time dynamic compensator Gc,h 
with realization 

*c.htk + I) =.&r,,,,(k) + B,,&(k), u’(k) = Cc,,,r&). 

The optimal discrete-time LQG controller G?$ for the 
sampled-data system with sampling interval h as given by 
Bernstein et al. (1986) and Dorato and Levis (1971) is 

A r,,r = A + BC,,, - B& B,,, = AQhCT(C~,CT)-I, 

Cc,h = -(R; + bTP,,&‘(BTP,A + I?&), 

where the nonnegative-definite matrices Qh and P,, satisfy the 
discrete-time Riccati equations 

Q~ =AQ~AT-_Q~~T(~Q~~T)-~~Q~AT+ v, (14) 

P,, = ATP,ii - (BTPhA + i?T2)T(R; + BTP,,e)-’ 

x (BTP*A + &) + A,. (15) 

With the discrete-time LQG controller, the optimal cost is 
given by 

J(C:.X’) = & + tr [Q,~I + &@I + 2C$12 + C’&,R;C,,dl, 
(16) 

where 0, satisfies 

0, = (A: + &,,,)&,(A + fiC,,,)T + (/iQhCT) 

x (CQ,,CT)-‘(AQhCT)T. (17) 
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4. Analysis of optimal performance as h -+ 0 
In this section we consider the case of fast sampling, that 

is, h+O. Ideally, one would expect the optima1 coat for 
sampled-data control to approach the optimal cost for 
continuous-time control. Since the sampled-data problem 
involves an augmented plant of order n + 1, in contrast to 
the continuous-time plant, which is of order n, it is not 
apparent that the optima1 continuous-time control cost will 
be recovered in the limit. Nevertheless, in this section we 
shall show that, in fact, the optima1 cost for sampled-data 
control converges to the optimal cat for continuous-time 
control. Before proceeding, it is useful to define 

as in Salgado et al. (1988), and Middleton and Goodwin 
(1990). Note that fz A,, = A and liO B,, = B. 

Theorem 1. Let Q be the unique nonnegative-definite 
solution to the continuous-time Riccati equation (lo), and 
suppose there exists a unique nonnegative-definite solution 

Qh = [ ;& pd:] E R(n+‘)x(=+f) 

to * the discrete-time Riccati equation (14). Assume 
Q = tr Q, exists. Then 

exists and is given by 

lim Q,s = VI2 + QCT, 
h-0 

lim hQs = V,. 
h-0 

Proof. See Osbum and Bernstein (1993). 0 

Theorem 2 Let P be the unqiue nonnegative-definite 
solution to the continuous-time Riccati equation (ll), and 
suppose there exists a unique nonnegative-definite solution 

to the discrete-time Riccati equation (15). Then P12=0, 
P2 = 0, and trno hP, = P. 

Proof. See Osbum and Bernstein (1993). cl 

Theorems 1 and 2 show that Qa- m and PI + m, and thus 
the discrete-time Riccati equations become numerically 
ill-conditioned for fast sampling. Salgado et al. (19@3), have 
shown that this problem can be overcome using normalizing 
methods. 

Corollary 1. The discrete-time LQG gain C,,, has the form 
C,,h = [C, 01, where C, E R’,‘“” satisfies lim C, = C,. 

h-0 

‘% 

.’ 1 
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Theorem 3. Let 

satis 
8 

the discrete-time Lyapunov equation (17). Then 
lim , 

h-0 
= 0, where & satisfies the continuous-time Lyapunov 

equation (13). 

Corollary 2. The discretixation cost 8, satisfies !i 8, = 0. 

Corollary 3. Consider the discrete-time optimal cost J(G:r$) 
given by (16) and the continuous-time optima1 cost J(G:*) 
given by (12). Then liiJ(G$) =J(Gy). 

Proof. See Osbum and Bernstein (1993). 

5. A~lpis of optimal performance as h + m 

•1 

In thii section we consider the asymptotic dependence of 
optima1 performance on the sampling period h for slow 
sampling, that is, for h+ m. As the plant approaches 
open-loop conditions, one would expect the cost to approach 
the open-loop cost. 

Proposition 1. The discretixation cost S,, is a monotonically 
increasing function of h. 

Theorem 4. tit 6, k Fh &, which may or may not he finite, 

and assume that !& Q, and ,lii_ Q, exist. Then 

Furthermore, 6, is finite if and only if every eigenvalue of A 
in the closed right half-plane is either uncontrollable by 
disturbance or unobservable by weighting. If, in particular, A 
is Hurwitx them lim J(G$) = S, < 01. 

h-u- 

proot See Osbum and Bernstein (1993). 

6. Numerical examples 

0 

Example 1. Consider the lightly damped system 

1 1 -0.02 ’ 
B=E*=D;= ;, [I 

and D = 0. The eigenvalues of A are -0.01 f 3j, and R,2 = 0 
and V,, = 0. The continuous-time LQG controller yields the 
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cost J(GzP’) = 0.5948, while the open-loop cost for the plant 
is J(0) = 2.7777. The optimal cost as a function of h is shown 
in Fig. 1, with the state and control costs J, and J, as 
described in Osbum and Bernstein (1993). It can be seen that 
as h +O, J(Gz,f) approaches its continuous-time coun- 
terpart. Similarly, as h-+ m, the cost approaches the 
open-loop cost J(0). In Fig. 1 it can be seen that the cost 
J(GEph’) jumps to the open-loop cost at integer multiples of 
the Nyquist period. At these points the state cost rises to 
open loop and the control drops to zero. 

Example 2. Next we turn our attention to an unstable plant. 
Consider the plant given in Example 1 with the eigenvalues 
reflected across the imaginary axis into the right half-plane. 
The optimal continuous-time LQG cost is J(G:P’) = 0.7569. 
Since the eigenvalues are reflected, it can be seen from Fig. 2 
that the critical values of h are the same as those in Example 
1. At these critical values the cost is infinite, corresponding to 
an unstable svstem. For small h the discretized costs 
approach the corresponding continuous-time 
expected. 

Example 3. Consider the lightly damped system 

0 1 0 0 

A= 
-9.0004 -0.04 0 0 

0 0 0 1 
0 0 -2.2501 -0.02. 

costs, as 

c=[l 0 1 01, D=O, 

E,=D;= 
0 [I 1 

The eigenvaues of A are -0.02 f 3j and -0.01 f 1Sj. The 
locations of the maxima in Fig. 3 correspond to the loss of 
controllability predicted by Kalman et al. (1963), with the 
exception of additional maxima due to interactions of modes 
having approximately equal real part. Hence, although loss 
of controllability does not occur, the cost has a local 
maximum at the intermediate sampling intervals h = $kz 
This point will be further explored in the next example, 
where all eigenvalues of the plant have equal real part. 

Example 4. In Example 3 we observed local cost maxima at 
certain intermediate sampling periods. To explain this effect 
and further explore the modal interactions predicted by 
Kalman et al. (1%3), we consider a system of the form given 
in Example 3 that has two lightly damped modes with 
eigenvalues -0.01 f 3j and -0.01 f 1.5j. This case is similar 

to that in Example 3, except that the eigenvalues now have 
equal real part. As seen in Fig. 3, all of the maxima are 
located at h = :kz and h = $kz, which is precisely where loss 
of controllability is predicted by Kalman et al. (1963). 
Comparing the cost plots in Fig. 3, it can be seen that the 
locations of the maxima agree, although some of the peaks 
are more pronounced, owing to loss of controllability. 

When sampling faster than the Nyquist frequency, one 
might expect that performance gains can always be obtained 
by increasing the sampling rate. However, it can be shown 
that this is not true in general (Osburn and Bernstein, 1993). 
Thus, even below the Nyquist sampling rate, improved 
performance sometimes can be achieved by using a slower 
sample rate. 

7. Conclusion 
In this paper we have investigated the achievable 

performance of an exactly discretized sampled-data system 
with an LQG compensator for small and large sampling 
periods. We have shown that, with this exact conversion, the 
achievable performance of the sampled-data system ap- 
proaches the continuous-time LQG cost when h --) 0 and the 
open-loop cost when h-+ m. We have also shown by 
examples that the achievable performance is not necessarily 
monotonic with respect to the sampling interval, even below 
the Nyquist rate. 
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