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Asymptotic Smooth Stabilization of the
Inverted 3D Pendulum

Nalin A. Chaturvedi, N. Harris McClamrochrellow, |IEEE, and Dennis S. Bernsteifrellow, |EEE

Abstract—The 3D pendulum consists of a rigid body, supported Pendulum models are useful for both pedagogical and
at a fixed pivot, with three rotational degrees of freedom; itis research reasons. They represent simplified versions of me-
acted on by gravity and it is fully actuated by control forces The  ~panical systems arising in robotics and spacecratt. litiadd

3D pendulum has two disjoint equilibrium manifolds, namely to thei le ind trating the f dati f i
a hanging equilibrium manifold and an inverted equilibrium 0 their role In demonstrating the toundations of nonlinear

manifold. The contribution of this paper is that two fundamental ~dynamics and control, pendulum models have motivated re-
stabilization problems for the inverted 3D pendulum are pogd search in nonlinear dynamics and nonlinear control. In,[19]
and solved. The first problem, asymptotic stabilization of a controllers for pendulum problems with applications totcoh

specified equilibrium in the inverted equilibrium manifold, is Nt ; _ ;
solved using smooth and globally defined feedback of angular (r::e(t)ﬁglcljlatlons have been presented using the speed-gtadie

velocity and attitude of the 3D pendulum. The second problem ] o ]
asymptotic stabilization of the inverted equilibrium manifold, is The 3D pendulum is a rigid body supported at a fixed
solved using smooth and globally defined feedback of angular pivot point with three rotational degrees of freedom. It is
velocity and a reduced attitude vector of the 3D pendulum. acted on by a uniform gravity force and, perhaps, by control
These control problems for the 3D pendulum exemplify attitude and disturbance forces. The 3D pendulum was introduced

stabilization problems on the configuration manifold SO(3) in . I e
the presence of potential forces. Lyapunov analysis and néinear " [20], and preliminary stabilization results were preisen

geometric methods are used to assess global closed-looppeo  IN [21]. The 3D pendulum has two equilibrium manifolds,
ties, yielding a characterization of the almost global domim of namely, the hanging and inverted equilibrium manifoldsisTh

attraction for each case. paper treats two stabilization problems for stabilizatidrihe
Index Terms—3D pendulum, equilibrium manifold, attitude inverted 3D pendulum. The first part of the paper studies
control, gravity potential, almost global stabilization. stabilization of a specified inverted equilibrium in the in-

verted equilibrium manifold using angular velocity andtatte
feedback. The second part of the paper studies stabilizatio
of the inverted equilibrium manifold using angular velgcit
ENDULUM models have provided a rich source of exand reduced attitude feedback. These control problems for
amples in nonlinear dynamics and, in recent decades,tive 3D pendulum exemplify attitude stabilization problesns
nonlinear control. The most common rigid pendulum modéhe configuration manifol§O(3) in the presence of potential
consists of a mass particle attached to one end of a masslésses. Stabilization of the inverted equilibrium mandais
rigid link; the other end of the link is fixed to a pivot pointdistinct, in terms of the physical meaning and in terms of the
that provides a rotational joint for the link and mass pé&etic nonlinear control details, from the problem of stabiliziag
If the link and mass particle are constrained to move withinequilibrium that lies in the inverted equilibrium manifold
fixed plane, the system is a planar 1D pendulum. If the link The controllers designed for each case provide asymptotic
and mass particle are unconstrained, the system is a sphestabilization with local exponential convergence. Anedysf
2D pendulum. Control problems for planar and spherictiie closed-loops shows that the domains of attraction are
pendulum models have been studied in [1]-[11]. almost global. By almost global, we mean that the domain
Numerous extensions of simple pendulum models have begfnattraction of the equilibrium is open and dense. In [18]
proposed. These include various elastic pendulum models aimost global stability of the inverted equilibrium of a sim
multi-body pendulum models. Interesting examples of multple planar pendulum was studied. The proposed controller
body pendulum models are: a pendulum on a cart, an acrobiovolved a switching strategy; however unlike previousies
a pendubot, a pendulum actuated by a reaction wheel, the nonlinear controller renders the inverted equilibrinot
Furuta pendulum, and pendula consisting of multiple cadipl@nly attractive, but also stable. As mentioned in [18], trlasld
bodies. Dynamics and control problems for these multi-bodnly be carried out for a simple planar pendulum because of
pendulum models have been studied in [10], [12], [13], [14its simple phase space given By x S*. In this paper, we
[15], [16], [17], [18]. present a single smooth nonlinear controller, which ineslv
no switching, that achieves almost global asymptotic &tabi
N. A. Chaturvedi is with the Research and Technology CerfttteoRobert  of the 3D inverted pendulum.

Bosch LLC, Palo Alto, CA, 94304, e-mail: nalin.chaturvedigbosch.com. . .

N. H. McClamroch and D. S. Bernstein are with the Departmeht o It may be noted that the_work in _[22]' [2_3]’ Whe_re'n
Aerospace Engineering, University of Michigan, Ann Arbd8109-2140, controllers for systems evolving on Riemannian manifolds
(734) 763-2355, e-mail{nhm, dsbaerp@umich.edu. were proposed, does not directly apply to the stabilizatibn

Manuscript received June 26, 2006; revised December 147.2ZR8com- ilibri ifold of the 3D dul Furth
mended by Associate Editor, C. Y. Su. Research supportedrinbly NSF an equilibrium manitold ot the pendulum. Furthermore,

under grant ECS-0244977 and grant CMS-0555797. in contrast with the controllers in [22], [23] that geneyall

I. INTRODUCTION



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2

give a conservative estimate of the domain of attraction, weheree; = [0 0 1]". The rotational kinematics equation is
provide almost global asymptotic stabilization results thee . -
3D pendulum. Indeed, one of the aims of this paper is to give R = Ro, @
a complete picture of the global dynamics for the close@loguhere R € SO(3), w € R? and
3D pendulum.

This paper arose out of our continuing research on a lab- R 0 —ws w
oratory facility, namely, the Triaxial Attitude Control 3ted w=1 @s 0 —wr . ©)
(TACT). The TACT provides a testbed for physical experi- Tw2 Wl 0
ments on attitude dynamics and attitude control. This devifjote thata x b = ab.

is supported by a spherical air bearing that serves as ah idearhe equations of motion (1) and (2) for the 3D pendulum
frictionless pivot, allowing nearly unrestricted motianthree model has dynamics that evolve on the tangent bufi8ie(3)
degrees of freedom. Issues of nonlinear dynamics for t{@s]. Note that since:s = [0 0 1]” denotes the unit vector in
TACT have been treated in [24], [25], [26], and stability an¢he direction of gravity in the specified inertial fram@es in
control issues have been treated in [27], [28], [29], [3BL][ (1) denotes the dimensionless unit vector in the directibn o
[32]. The present paper is partly motivated by the realmati gravity resolved in the body-fixed frame.

that the TACT is, in fact, a physical implementation of a 3D |n the case where the center of mass of the 3D pendulum
pendulum. is located at the pivotp = 0, equation (1) simplifies to the
Euler equation with no gravity terms. In the context of the
3D pendulum, this is referred to as the balanced case. In this
paper we focus on the more interesting unbalanced casegwher

The 3D pendulum is a rigid body supported by a fixed, £ 0.
frictionless pivot, acted on by constant uniform gravity as
well as control forces. Two Euclidean reference frames arg|. EQUILIBRIUM STRUCTURE OF THEUNCONTROLLED
introduced. An inertial frame has its origin at the pivoteth 3D PENDULUM
first two axes lie in the horizontal plane while the third aisis
vertical and points in the direction of gravity. A secondnfia
with origin at the pivot point is fixed to the pendulum bod
In this body fixed frame, the moment of inertia matrix of th
pendulum is constant.

Rotation matrices, which provide global representatioins
attitude, are used to describe the attitude of the 3D penaul
In this paper, we follow the convention in which a rotatio
matrix maps representations of vectors resolved in the bo . ; :
fixed frame to representations resolved in the inertial #am omentum about the vertlt.:al axis through the pivot.
Although attitude representations such as exponentiai- coo Proposition 1 ([20], [26]): Let w = 0 in (1). The total
dinates, quaternions, and Euler angles can be used, eacRWHOYE = S w'Jw —mgp'Rles and the component of the
these representations has a disadvantage due to an ambiguigular momentum vector about the vertical axis through the
or singularity [33]. Therefore, the attitude of the 3D peluthn  pivot given byh = w'JR'e3 are constant along motions of
is represented by a rotation mat viewed as an element ofthe 3D pendulum given by (1) and (2).
the special orthogonal grou§O(3). The angular velocity of  To further understand the dynamics of the 3D pendulum,
the 3D pendulum with respect to the inertial frame, resolmed we study the equilibria of (1) and (2). Equating the RHS of
the body-fixed frame, is denoted hyin R?. Although global (1) and (2) to zero with: = 0 yields
representations are used, the feedback controllers pedpos
in this paper could be expressed in terms of feedback using
any other attitude representation, such as Euler angle or ReWe = 0. (5)
quaternions. L ) ) _ Now R.&, = 0 if and only if w, = 0. Substitutingw, = 0 in

The constant inertia matrix, resolved in the body-flxe&l), we obtain
frame, is denoted by/. The vector from the pivot to the px Rlez =0 (6)
center of mass of the 3D pendulum, resolved in the body-fixed et '
frame, is denoted by. The symbolg denotes the constantHence,

II. MATHEMATICAL MODELS OF THE3D PENDULUM

In this section, we sett = 0 and obtain two integrals
of motion for the uncontrolled 3D pendulum. These integrals
expose the unforced dynamics of the 3D pendulum and can
e used to construct control-Lyapunov functions.
There are two conserved quantities for the 3D pendulum.
irst, the total energy, which is the sum of the rotationakkic
nergy and the gravitational potential energy, is conskerve
%—\e other conserved quantity is the component of angular

Jwe X we +mgp X Ries =0, (4)

acceleration due to gravity. Rles = L7 (7)
Standard techniques yield the equations of motion for the el

3D pendulum. The dynamics are given by the Euler-Poincefe p

equation which includes the moment due to gravity and a Ries = —m- (8)

control momentu, € R which represents the control torque

applied to the 3D pendulum, resolved in the body-fixed frame, Hence an attitudez. is an equilibrium attitude if and only
if the direction of gravity resolved in the body-fixed frame,

Jw=Jwx w+mgp x R'ez + u, (1) Ries, is collinear with the vectop. If Rles is in the same
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direction as the vectop, then(0, R.) where R, satisfies (7), A. Equilibrium Structure of the Closed-Loop

is a hanging equilibrium of the 3D pendulum; ifie; is in In this section, we study the equilibria iIFSO(3) of the

the opposite direction as the vectarthen (0, R.) whereR.  ¢|osed-loop system consisting of (1), (2) and (13). Define
satisfies (8), is an inverted equilibrium of the 3D pendulum.

According to (7) and (8), there is a smooth manifold a= [ az g, (14)
of hanging equilibria and a smooth manifold of inverteq,nere
equilibria, and these two equilibrium manifolds are clgarl
distinct. The former is the hanging equilibrium manifoltgt as 2 as + k= myllp|
latter is the inverted equilibrium manifold. @’ (trace(A — ARdRT))

> as. (15)

Since (0, Rq) lies in the inverted equilibrium manifold, it
IV. ASYMPTOTIC STABILIZATION OF A SPECIFIED follows from (8) thatRjes = P Then, substituting (13)

pll
INVERTED EQUILIBRIUM in (1) and (2), and simplifying, we can express the closegplo

Let (0, Rq) denote a specified equilibrium in the invertedYSteM as

equilibrium manifold of the 3D pendulum given by (1) and 7., _ 7., « o, (W) + @’(trace(A _ ARdRT))Qé(R)’
(2). In this section we present controllers that stabilizis t
specified equilibrium(0, Ry). R = Ri.
Let @ : [0, 00) — [0, 00) be aC? function such that (16)
Lemma 1: Consider the closed-loop system (16) of a 3D

®(0) =0 and ®'(x) > 0 for all z € [0, 0). (9) pendulum given by (1) and (2), with controller (13), where
the functions® and ¥ satisfy (9) and (10)x > mgl||p| and

Let U : R3 — R3 be aC! function satisfying A defined in (12) satisfieg;,as < a3 wherea; anda, are
distinct positive numbers. Then, the closed-loop syste) (1
U’(0) is positive definite } (10) has four equilibrium solutions given by
T 3
P(z) < 27 ¥(2) < of|a]]) for all z € R, & ={(w,R) € TSO() :w =0, R = MRy, M €M},
where 2 : R® — R is a positive definite function and(-) is where (17
a classX function [36]. Givena = [a; as a3]" € R3, denote
M, 2 {diag(l, 1,1), diag(~1,1,—1),diag(1, —1, —1),
Qa(R) 2> a; [( 4€i) X (RTei)] (11) diag(—1, -1, 1)}. (18)
i=1
Proof: To obtain the equilibria of the closed-loop system,
Further, letA € R**3, be a diagonal matrix defined as equate the RHS of (16) to zero, which yields= 0 and
A £ diag(a). (12) Qa(R)= alfﬁe\lRTﬁ + GQ@RT@ + ﬁgfi??,RTes =0.
(19)
We study controllers of the form Next multiplying both sides byRq and using the equality
Re; = Re; R" [37], we obtain
_ T T
u=—Y(w)+ ”(( aes) x (R 63)) a161RqRe1 + ag&3RqR ey + asé3RqRes = 0. (20)

+@’(trace(A—ARdRT))Qa(R), (13) writing RaR™ = [rilije1.2,3), equation (20) can be ex-
pressed AB2T32 = a3Tre3, A1T31 = G3T13, A1T21 = Q2T12.
wherex > mgl||pl|. Then, sincea;, a; and az are positive, the rotation matrix
The controller (13) requires measurements of the angulR;R™ can be expressed as
velocity and attitude, in the form of the rotation matiik of
the 3D pendulum. The angular velocity dependent térfw)
in (13) provides damping, while the attitude dependent tierm
(13) can be viewed as a modification or shaping of the gravity
potential. For the control law (13), no knowledge is reqdireThen it follows from orthogonality of rotation matrices and
of the moment of inertia or of the location of the center ddilgebraic manipulations that
mass of the 3D pendulum relative to the pivot. However, the

R4R™ = (21)

a

T2 Tz T3
as as

o T13  G.T23 733

T11 T12 13
)

2 =2
constants is an upper bound on the gravity moment about the <1 — a—§> 2, + (1 — a—g) r2y =0,
pivot. Hence a bound omygl||p|| must be known. ‘f% g
_ We subsequently show th_éw_, R) = (0,R4) is an equili_b-_ (1 _ a_g) r2, + (1 _ ‘l_g) 12y =0, (22)
rium of the closed-loop consisting of (1), (2) and (13), and i ay a3
almost globally asymptotically stable with locally expatial . a_% 2 (1 @ 20
convergence. az) 2 ) B
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Sinceas > a3 > a1, as, thereforea,,as andas are distinct where
positive integers and hence it can be easily show that the
solution to (22) is given by2 = r13 = re3 = 0. Hence K= @’(trace(A—ARdR;))
from (21), RqR" is one of the four matrices given in (18

Remark 1: Note that the desired equilibriui®, R4) € &. — —
Each of the other three equilibrium solutionsdncorresponds —azRjes Ries —azRies Ries
to an attitude configuration formed by the desired attitije
followed by a rotation about one of the three body fixed axesdas is give/n\in (15) withR = R.. SinceM = R.R] € M.,
by 180 degrees. the equalityRe; = Re;R", whereR € SO(3) [37], yields

— —
- CLleel RTeel

; (31)

— o — L
R;ei Rlei = R;M@i RTeei = ReMei eiRe,

B. Local Analysis of the Closed-Loop fori € {1,2,3}. Using the above, the expression oiin (31)

Consider a perturbation of the initial conditions about agan be written as
equnlprlum (0,R.) € & given in (17) in terms of a per- K — @’(trace(A—ARde))RlQRc, (32)
turbation parameter € R. We express the perturbation in
the rotation matrix using exponential coordinates [35F][3 where
[38]. Let the perturbation in the initial condition for attdle — —
be given asR(0,e) = R.e“®°, where R.R] € M, and Q=-aiMeier —azMez ez — azMeses (33)
O € R? is a constant vector. The perturbation in the initiaghng 17 — R.R}, € M., as in (18).

condition for angular velocity is given as(0,e) = ewo, Lemma 2: Consider the closed-loop model of a 3D pen-
Wherewo S Rg is a constant vector. Note thatdf= 0 then, dulum given by (1) and (2)’ with controller (13)' where the
(w(0,0), R(0,0)) = (0, R.) and hence functions® and ¥ satisfy (9) and (10)x > mgl|p| and A
defined in (12) satisfieg;, a2 < az wherea;,a; andas are
(w(t,0), R(t,0)) = (0, Re) (23)  gistinct positive numbers. Then the closed-loop equilitri

for all time ¢ € R. This simply represents the unperturbeﬁO’Rd) € & Is asymptotically stable and the convergence is

o . ocally exponential.
equilibrium solution. y exp

Proof: Combini ti 1), (2 d (13), btai
Next, consider the solution to the perturbed equations H-foo ombining equations (1), (2) and (13), we obtain

. _ e closed-loop system given by (16). Next, we linearize
?rgtlgicgﬁr;;e closed-loop 3D pendulum given by (16). The%ﬁe dynamics of (16) about the equilibriu(®, R4) yielding

equation (30) wherdz, = Rgq.
) _ _ Now ¥’(0) is positive definite and/ is the identity matrix.
Jw(t,e) = Jw(t,e) X w(t,e) — Y(w(t,e)) Hence, from (33)
+ o (trace(A — AR4R'(t, 5)))95(R(t, 2), (24)
R(t,e) = R(t,e)d(t,¢). 25
(t.¢) (t,€)(t, €) (25) is positive definite. Next, sincé’(-) is positive andK is a

Differentiating both sides with respect toand substituting Similarity transform ofQ, K'in (32) is positive definite. Thus,

e =0, yields sinceK and ¥’(0) are positive definite, linear theory guaran-
tees that the linearized system given by (30) is asympibtica
Jwe(t,0) = =0’ (0)we(t,0) stable. Hence, the equilibriunf0, Rq) of (16) is locally

+ @ (trace(A — AR4R"))Qa(R-(t,0)), (26) asympt(_)tically stabl_e_ with local exponential convergenas
. Consider the equilibri&0, R,) of the closed-loop (16) such

Re(t,0) = Reloe(t,0), (27) that R, # Rq. From Lemma 1, we express the three equilibria
0, R.) € & such thatR, # Rq asR.; = M;Rq,t € {1,2,3},
t t ( ’ 3 ) <
A dwlt,e) andR.(t,0) £ 8R(§ ,€) where M, M, and M5 are
e=0 € e=0

Define linearization variableAw, A® € R® as Aw(t) £  diag(l,—1,-1), diag(-1,1,-1), diag(-1,-1,1), (34)
w.(t,0) and AG(t) £ RIR.(t,0). Then from (27) we obtain

wherew,(t,0)

respectively. We next show that the above three equilibria
(0,Re ), i € {1,2,3} of the closed-loop (16) are unstable
and present local properties of the closed-loop trajessori
Lemma 3: Consider the closed-loop model of a 3D pen-
dulum given by (1) and (2), with controller (13), where the
JAG = —U' (0)Aw + @' (trace(A — ARG RY))Qa(R.AO).  functions® and ¥ satisfy (9) and (10)x > myg||p| and A
(29) defined in (12) satisfies;, a2 < a3 wherea; and ay are
Combining (28) and (29) and simplifying, we obtain thdlistinct positive numbers. Consider an equilibrigm R, ;) €
linearization of (16) as &, such thatR.; # Ra, ¢ € {1,2,3}. Then, (0, R.;) Is
unstable. Furthermore, there exist an invariant 3-dinteragi
JAG + v'(0) AO + KAO =0, (30) submanifold and an invariant 4-dimensional submanifoid (

AO = Aw, (28)

and from (26), we obtain
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andM5), and an invariant 5-dimensional submanifits in local exponential convergence. Furthermore, there exist a
TSO(3) with zero Lebesgue measure, such tfe) for all invariant manifoldM c T'SO(3), whose Lebesgue measure
initial conditions(w(0), R(0)) € M;, ¢ € {1,2,3}, the closed- is zero and whose complement is open and dense such that
loop solutions converge to the equilibriui®, R, ;) and(b) for for all initial conditions (w(0), R(0)) € TSO(3)\M, the

all initial conditions(w(0), R(0)) € TSO(3)\M;, the closed- solutions of the closed-loop system given by (16) satisfy
loop solutions do not converge to the equilibriy R ;), tlif& w(t)=0 andtlirgo R(t) = Rq4. For all other initial con-
i€{1,2,3}. ditions (w(0), R(0)) € M, the solutions of the closed-loop
Proof: Combining equations (1), (2) and (13), we obtaigystem given by (16) satisfyim (w(t), R(t)) € &\{(0, Rq)}.
the closed-loop system given by (16). Next, we linearize thg . consider the closed-loop system consisting of (1), (2)
dynamics of (16) about the equilibriu0, Rei), i € {1,2,3} 5,4 (13) given by (16). Then, it immediately follows from
yielding equation (30). Sincef.,; # L, the three equilibria | omma 5 thato, Ry) is an asymptotically stable equilibrium
are given by(0, Re;) = (0, MiRa), whereM;, i € {1,2,3} 4 e closed-loop (16) with local exponential convergence

is as given in (34). ) _ ) Next, we propose the following candidate Lyapunov func-
Next, we compute the matri®; using (33) correspondlngtion

to the three equilibrig0, M;Rq), i € {1,2,3}. This yields

1
V(w,R) = inJw + (k —mgllp||)(1 — e§RaR"e3)

Q, = diag(az — as, —a1 — a3, —a1 + az), + @(trace(A - ARdRT)). (35)
Q3 = diag(—az + as, —a1 + az, —a1 — az).

Ql = diag(—ag - C_Lg, a] — C_Lg, a; — ag),

] o . Note thatV(w,R) > 0 for all (w,R) € TSO(3) and
SinceOay,as < ag < ag anda; anday are distinct positive V(w, R) = 0 if and only if (w, R) = (0, Rq). ThusV (w, R)
numbers, all eigenvalues &f;, Q; and Q3 lie in R\{0} and 5 4 positive definite function oSO(3).
eac_h ofQ,, Q» and Qg_has a negative eigenvalue. . We show that the Lie derivative of the Lyapunov function

SinceR.; € SO(3), it follows from (32) that corresponding 41ong any solution of the closed-loop vector field of (16) is

to Q;, 9, andQ3, all eigenvalues of the matrices;, Kz, and  pegative semidefinite. Denote the closed-loop vector fidld o
Ks lie in R\{0} and each of,,K; and K3 has a negative (16) by 7. Then,

eigenvalue. Now, it follows from [38] that (30) is unstable.
Hence, each equilibriun(0, R..;), ¢ € {1, 2,3} of the closed- Jztb(trace(A — ARdRT))
loop (16) is unstable.
Next, since,¥’(0) is positive definite and all eigenvalues = —‘I"(trace(A - ARdRT))[traCG(ARd(R@)T)],
of the matricesK;, Ky and K3 lie in R\{0}, it follows that ,
each equilibrium(0, R.;) € &, i € {1, 2,\?{,}}0f (16) is hyper- =—° (trace(A B ARdRT))wTQa(R)'
bolic. Theorem 3.2.1 in [39] guarantees that each equilibrium e derivative of the Lyapunov function along a solution of
(0, Re,;) € & of (16) has a nontrivial unstable manifoldl‘.  the closed-loop is
Let W7 denote its corresponding stable manifold. The tangent )
space to the stable manifoldf® at the equilibrium(0, R, ;) is V(w, R) = w'J& — (k — mgl|p|)esRaR es

tangent to the stable eigenspace of the linearized systém (3 @ tI)(t A — ARAR" )
and hence is 3-dimensional and 4-dimensional for eithigr Lz race( aB)),
or W3, and is 5-dimensional fofV;. =w'{Jw X w—+mgp x Rez +u} + (k — mg||p|)es RaDR"es
Since, the equilibria are hyperbolic, there are no center ( T)
. . . + Z70(t A— AR4R")),
manifolds. Then, all trajectories ne@, R, ;) other than those 2@ | trace( aft’)

in W# diverge from that equilibrium. Since the dimension

of the submanifoldiV’# is less than the dimension of the =« |t~ A(Faes x Rles) — &' (trace(A a ARdRT)) %a(B)

tangent bundlg’SO(3), the Lebesgue measure of the global (36)

invariant submanifoldV? is zero [40]. Denoting\; £ W7,

i € {1,2,3}, the result follows. B Substituting (13) into (36), we obtaii(w, R) = —w'¥(w) <
—Z(||wl||). Thus, the derivative of the Lyapunov function

C. Global Analysis of the Closed-Loop along a solution of the closed-loop system is negative sefnid

. inite.
. In the last subsection, we presented res_ults fo_r_loc_:al PFOPE Recall that®(-) is a strictly increasing monotone func-
ties of the closed-loop (16) near each of its equilibria.Hist . .
. ) . tion and SO(3) is compact. Hence, for anfw(0), R(0)) €
subsection, we describe the global convergence propM|e%SO(3) the set
closed-loop trajectories. '
Theorem 1: Consider the closed-loop model of a 3D pen- - _ {(w,R) € TSO(3) : V(w,R) < V(w(O),R(O))},
dulum given by (1) and (2), with controller (13), where N
the functions® and ¥ satisfy (9) and (10)x > mg|lp|| is a compact, positively invariant set of the closed-loop.
and A defined in (12) satisfiesi;,a2 < as where a; By the invariant set theorem, it follows that all solytiohatt
and ay are distinct positive numbers. Thefl), Rq) is an begin in.# converge to the largest invariant set W *(0)

asymptotically stable equilibrium of the closed-loop (W8)h contained inZ". Now, sinceZ? is a positive definite function,
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V(w, R) = 0 impliesw = 0. Substituting this into the closed-which is the unit vector that expresses the direction of igyav

loop system (16), it can be shown that in the body-fixed coordinate frame.
. Specifically, letII, denote thAeS1-group action I,
V=H(0) = {(%R) €TS0(3):w=0, Qs(R) = 0}7 SO(3) — SO(3) asTl,(R) = Re'™, wherel' = R'e3 and

, , ) ) ) € [—m, 7). Then, theorbit space SO(3) /S is the equivalent
where Q5(-) is as given in (11). Thus, following the sameset of rotations

arguments as in Lemma 1, it can be shown that the largest -
invariant set in’~1(0) is given by (17). Note that each of [R] £ {R’ €80(3): R'=Re", I'=Re3, 1 € R}-
the four points given in (17) correspond to an equilibrium (37)
of the closed-loop system iff'SO(3). Hence, all solutions The equivalence relation in (37) is th&; ~ R, if and only
of the closed-loop system converge to one of the equilibriuin Ries = Rjes and hence the equivalence relation in (37)
solutions in& N ¢, whereé&’ is given in (17). can be alternately expressed as

Next, consider an equilibriun{0, R.;) € & such that
Rei # Ra, i € {1,2,3}. Lemma 3 impqlies that the solutions 7] = {RS €50(3) : Ries = RTe?’}' (38)
of the closed-loop system except for solutions in the irarmri Thus, for eachR € SO(3), [R] can be identified with
submanifoldsMy, M- and M3, whose Lebesgue measure ig _ R'e; € S? and hence&0(3)/S" = §2. SinceTSO(3)
zero,_diverge from the equilibri@,RQi),z’_e_{l,Q,S}._Thus, SO(3) x B3, II,, induces a projectionr : TSO(3) —
solutions of the closed-loop system for initial conditichst TSO(3)/S" given ast : (R,w) — ([R],w), where[R] is
do not lie inM = M; U M2 UMz must converge to the ;4 given in (38).
equilibrium (0, R4). Thus, since the domain of attraction of Proposition 2 ([41]): The dynamics of the 3D pendu-

an asymptotically stgple equilibrium is opeM,is closed and lum given by (1) and (2) induce a flow on the quotient
hence it follows that it is nowhere dense. This follows frdma t spaceTSO(3)/S" through the projectiont : TSO(3) —

fact thatM is a closed subset @fSO(3) of Lebesgue measure gy (3)

. L /S, given by the dynamics
zero. Solutions of the the closed-loop system (16) for ahiti

conditions that lie inM = M; UMy UMz converge to one of Jw=Jwxw+mgpxT +u, (39)
the equlllbrlum SOIUtlor.]S {0, Ra)}- . ™ and the kinematics for the reduced attitude

Theorem 1 is the main result on asymptotic stabilization of a .
specified inverted equilibrium of the 3D pendulum. Under the '=_"xw. (40)

indicated assumptions, almost global asymptotic staditn
is achieved. This is the best possible result for this diziibn

ggglbeargl’( Iirsl ::;\ ;c?f?ise?/z;glit [glé)]bal stabilization using ShnOoftorm; they are referred to as timeduced attitude dynamics of
' the 3D pendulum 0'sO(3)/S?.

de;h?q C;:smirtogigv(:;(pfrris:ég; (t103)alri)it?;gf léséifiulnlr:hgolrg(r:c; Let R, denote an attitude rotation that satisfies (6) and
9 y 9 c’efinel“e = Rles. Then, every attitude in the configuration

dynamics of the closed-loop near the desired inverted igquil : .

rium. It also provides some freedom in shaping the manifo[H"jmlfoId given by

M of solutions that do not converge to the desired inverted {R €S0(3) : R=R. efel/?’ € R} = [Rd, (41)
equilibrium. In this way, control design can be carried aut t

achieve both local and global control objectives. satisfies (6) and hence, defines an equilibrium attitudeeeorr

Simulation studies that demonstrate the validity of Theoresponding tow = 0. We can use Rodrigues’s formula to write
1 and illustrate its use in a control design context are riejlor R TR T2
in [34]. Due to space limitations, we do not provide the resul ¢’V = Iy +sinyLe + (1 - cos )T,
of those studies in this paper. Thus, if the attitudeR. of a 3D pendulum satisfies (6),
then starting fromR,., a rotation of the 3D pendulum about
the gravity vector by an arbitrary angle is also an equilibri
As mentioned before, the manifold corresponding to the case
where the center of mass is below the pivot for each attitude

In the last section, we presented a control law that almaat the manifold is referred to as thieanging equilibrium
globally asymptotically stabilizes a specified invertedi#- manifold, and the manifold corresponding to the case where
rium in the inverted equilibrium manifold. The specific fecuthe center of mass is above the pivot for each attitude in the
of this section is to develop stabilizing controllers foreth manifold is referred to as thiawerted equilibrium manifold.
inverted equilibrium manifold of the 3D pendulum describetlote that the invariant solutions in each of the equilibrium
by (1) and (2). manifolds are the equilibrium solutions.

For the purpose of stabilization of the inverted equilibomiu  Now, if R, satisfies (6), theri0,T',) is an equilibrium of
manifold, it is advantageous to study a lower dimensioné39) and (40). Thus, corresponding to the hanging equilitri
reduced model for the 3D pendulum. This model is obtainedanifold and the inverted equilibrium manifold of (1) and
by noting that the dynamics and kinematics equations can (&), there exist two isolated equilibrium solutions of the
written in terms of the reduced attitude veclor= R'e; € S?, reduced attitude equations (39) and (40). These are given by

Furthermore'SO(3)/S* =2 2% x R3.
Equations (39) and (40) are expressed in a non-canonical

V. ASYMPTOTIC STABILIZATION OF THE INVERTED
EQUILIBRIUM MANIFOLD OF THE 3D PENDULUM
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the hanging equilibriun{0,T;,) and the inverted equilibrium  Note that sinced is non-decreasing and > mg||p||, the

(0,T;), where coefficient multiplying (p x T) in (46) is strictly negative.
p p Hence, it can be shown that the closed-loop (46) has exactly
Th = mv Ly = _m- two equilibrium solutions corresponding to the hangingiequ

" i _ .. librium and the inverted equilibrium. As expected, it can be

_ Proposition 3 ([41]): The hanging and inverted equilib-gpq\n that the closed-loop (45) has two equilibrium madiol
rium manifolds of the 3D pendulum given by (1) and (2}4responding to the hanging equilibrium manifold and the
are identified with the hanging and the inverted equilibriumerteq equilibrium manifold. Thus, all equilibria of (#&re
fz)(l)l;tmns of the reduced attitude equations given by (39) aiven by (0, R.) € TSO(3), whereR, satisfies (6).

From Proposition 3, it follows that the stabilization of the ,
inverted equilibrium of the reduced attitude dynamics (39) Local Analysis of the Closed-Loop
and (40) guarantees stabilization of the inverted eqiiiior ~ We begin the analysis of the closed-loop (45) by studying
manifold of the 3D pendulum dynamics (1) and (2). the eigenstructure of its linearization about an arbitreqyi-

We next present controllers that stabilize the inverted-eqlibrium in one of the two equilibrium manifolds. Consider an
librium manifold. The controllers use angular velocity an@quilibrium (0, R.) € T'SO(3) where R, € SO(3) satisfies
reduced attitude feedback for stabilization. Thus, toiktab (6). To linearize the closed-loop (45), consider a perttioina
the inverted equilibrium manifold of (1) and (2), we do noef the initial conditions about an equilibriurto, 2.). Then,
require complete knowledge of the attitude € SO(3), as in Section IV, one can show that the linearization of the
but only the direction of gravity resolved in the body-fixeg¢losed-loop (45) is given by

coordinate frame given by € 52. .. , - mg . o _
Let @ : [0,00) — [0,00) be aC? function such that JAO +W(0)A0 — & Toll” A6 =0, (47)

®(0) =0 and ®'(z) >0 for all = € [0,0). (42) wherek € R is given by

& o (64 90) gl
k= A (48)
(43) kn = — (k + @'(1) —mygllpl),

(1>

Let ¥ : R? — R? be a smooth function satisfying
U'(0)" = ¥'(0), ¥'(0) is positive definite
P(z) <27 ¥(z) < aflz]), VaeR

mg||pl|

wherek; and k;, correspond to0, R.) being an inverted or
hanging equilibrium, respectively. Sinee > mg||p|| and ®
is a C' non-decreasing function, it follows tha > 0 and
u=KT)T; xT) - ¥(w), (44) kn <O.
] N Now note thatp 2 is a rank 2, symmetric, negative-
where K(T') = (@' (5(1—T7T)) +x] andx is a positive semidefinite matrix. Thus, it follows from [42], [43] that
number satisfyings > mg||p|. one can simultaneously diagonalizeand p 2. Thus, there

Again, we do not require knowledge of the moment afyists a non-singular matri®/ such thatJ = MM™ and
inertia or the vectorp, and the only parameter needed t0 9 ~2 _ 3 A 21r7 \whereA is a diagonal matrix. Denote

construct (44) is an upper bound on the maximum moment||p||

where? : R? — R is a positive definite function, and(-) is
a classX function. We propose controllers given by

due to gravity given byng||p||. A £ diag(mgli, mgls,0), wherel; andl, are positive. Define
Expressind’; = —p/||p||, the closed-loop attitude dynamicsz = MTA© and denoteD £ M~1¥’(0) M ~". Since ¥’'(0)
based on (1), (2) and the controller (44) are is symmetric and positive definitd)” = D and D is positive
definite.

Jo=Juwxw-¥w) - From (47), the linearization of (45) af0, R.) can be
17111: R €3

+ |mgllpl| — k — @' (f)} H%H x R'es, (45) expressed using = (z1,22,73) € R® as
R = Ro, i+ Di+k Az = 0. (49)

and the closed-loopeduced attitude dynamics based on (39)Equation (49) consists of three coupled second order linear

(40) and the controller (44) are differential equations.
We next study linearization of (46) about an equilibrium

Jw=Jwxw-—T(w) ) (0,T¢) = (0, Rles), where(0, R.) is an equilibrium of (45).
+ |mygllpl| — x — @ (LI;F))} ﬁ x T, (46) Sincedim TSO(3)/S1} =5, the linearization of (46) evolves

- on R®.

I'=T xw.

Proposition 4: The linearization of the reduced attitude
The controller (44) can be interpreted as modifying the polynamics of the 3D pendulum at the equilibriuii, I's) =
tential of the 3D pendulum through the attitude dependeftt, Rle;) described by equations (46) can be expressed using
term. The termP (w) induces energy dissipation in the closedfxy, z2, i1, @2, 43) € R® according to (49).
loop. The function® in K(T") provides freedom to shape theProof: Consider a perturbatiofw(t, €), R(t, <)) of the closed-
potential. loop (45) in terms of the perturbation parameter R. Then,
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sinceI' = RTes, the perturbed solution of the closed-loop Next, taking the inner product of the above equation with
(46) is given by(w(t,e),T'(t,e)) whereI'(t,e) = R'(t,e)es. respect to the complex conjugate«f yields

Define the linearization variables of (46) asv(t) = w.(t,0) 5

and AI'(t) £ T'.(t,0) = RL(t,0)es. From definition of A© aX” + b +ec=0, (53)

in Section IV note that\I" = —A("')RT€3 F AO e Tl" S . wherea = 11101. b = levl andc = k v Av1 Since D is

Then from (47) and the definition oAl it can be easily symmetric and positive definite) is d|agonal and positive
shown that the linearization of (46) is g|ven as semidefinite,k; > 0, andv; # 0, it follows thata,b,c € R
satisfya > 0, b > 0 and ¢ > 0. Furthermore, since\ =
o ” diag(mgly, mgls,0), ¢ = 0 if and only if v; = fes, where
. 5 =[00 1]" and 8 € C\{0}.
AT = —sign(k) ol Aw. (51)  Now, since (53) has two solutions and= [v] v}]" =
P [v] Avi]", it is clear that the eigenvalue-eigenvector gairv)
We next, express (50) and (51) in terms(of ). Specifically, of A, can be written as
we show thal AT, Aw) € Tr,S% x R? can be expressed using

(21,72, 81, 2, 83) € R, {(Aj, [A“” D(AJ {Ai’” ])} je{1,2:3}, (54)
Sincex = M'AO, andM is nonsingularAw = M™% g V1j j V1)

and A" = —sign(k) — ol P M Tr We now give an orthogonal Where\; and\} are the two solutions to the quadratic equation

JAG = —0'(0)Aw — ||k -2 (50)

J
(53) correspondlng ta = a; = vj;v15, b = b; = v7;Dvy;

andc = cj = ki’t_){jA’Ulj, jE {1, 2,3} B
Now choosevi; = fBes. Then,a; = 38 = |B]?, by =
|3|2eL Des > 0 ande¢; = 0. Therefore, the roots of (53) are

decomposition of the vectoh® = M "z into a component

along the vectop and a component normal to the vecjor

This decomposition is
/\ 2

_ _ 1 _ given by \; = 0 and \] = —e}Des. Hence,0 and —e’ Des
Ty — T T T 3 3
M= llp ||2( @)+ llpl|? {p (M x)}p’ are two of the six eigenvalues of; in (52). Thus,4; has a
1 52 zero and a negative real eigenvalue.
where —- e [ (M )}P € span{p} and— H P (M~"z) € Now for each ofvi, andwv;3, we obtain a corresponding

span{p} L. guadr_a}i(;: equation as giveln in (SS_zHFirst, note that sinq:le?
. 5 . es yields a zero eigenvalue, neither, nor vy3 is equal to
Thus, AT = —sign(k) (£ A6 = —sign(k) oM "o = 7e3,y7 e C\{0}. Th?s follows since if not, then thqere is a
:Sﬁ\npuz pMAz, does not depend onzz since A = repeated zero eigenvalue which implies thathas rank less
diag(mgli, mgl2,0). Thus, we can express the linearizatiothan or equal to four. However, it is easy to see that all colsim
of (46) at (0,Tc) = (0,Ries) in terms of the variables of A; except the third column, which is identically zero, are
(w1, 22,41, %2, &3) according to (49). B Jinearly independent. Since both, andv,3 are not equal to
Remark 2: Itis easily seen from the structure of the matrixc,, it follows thata;, b; andc;, j € {2, 3} are positive. Then

A that (49) is not asymptotically stable fdr = k; > 0. the corresponding roots of (53) are given by
This is due to the fact that the inverted equilibrium martfol

constitutes a 1D center submanifold #SO(3). However, b /07 —4ajc; b /07 —4ajc;
due to our careful choice of variables, one can discayd Aj = _T:+T’ and /\,}k' = e
from (49) to study the stability property of the inverted ’ !
equilibrium manifold. Thusgs corresponds to a component ofvherej € {2,3}. Thus, sinceda;c; > 0, it follows that if
the perturbation in the attitude that is tangential to theited b5 — 4ajc; < 0, then); and X are complex with negative
equilibrium manifold.

The following Lemmas are needed.

Lemma 4: Consider the linear model (49), representing; are real negative S'ndﬁ > b? —4ajc;. Thus, the real part

2(1.7' 2aj

3

real part given by—b— and if b2 dajc; > 0, then); and
a

linearization of (45) at an inverted equilibriuid, R.) ex- Of A; and A’ is negative forj € {2,3}. u
pressed in first order form as Lemma 5 Consider the reduced attitude dynamics of the
d 0 7 3D pendulum given by (39) and (40) with the controller (44).
el {I] — { } {I] Yy [“ﬂ , (52) Assume thatd : [0,00) — [0,00) is aC? function satisfying
dt —kA —D[ |z t (42), ¥ : R? — R? is a smooth function satisfying (43), and

wherez = (z1, 22, 23). Then,A; has one zero eigenvalue ands > mg||p||. Then, the inverted equilibrium of the closed-loop
all other eigenvalues have negative real part and at least saduced attitude dynamics (46) is asymptotically stabtethe

of them is negative real. convergence is locally exponential.

Proof: In the prior notation,k = k; > 0 in (49) for an Proof: Consider the linearization of the closed-loop system
inverted equilibrium. Letv = [v] v}]" be an eigenvector of (46) about the inverted equilibrium, given by (49) writtem i
A; corresponding to the eigenvalue wherew;, v, € C3. terms of the state variable= (1, z2, 41, @2, 43) € R5. Writ-
Then, A;v = v yields vy = Av; and Dvy + k;Avy = —Awvg.  ing (49) in terms ofz yields 2 = A;z, where A; is obtained
Combining these equations yield$v; + DAv; + Av; = 0. by deleting the third row and third column from; given in
Thus, every eigenvalue-eigenvector pék, [v; v3]") of A; (52). Let Spec(M) denote the eigenvalues of the matiX.
satisfiesvy, = Av; and A\?v; + ADwvy + k;Avy = 0. Then, it is easy to see that ddt — \Is) = —Adet(A4; — \I5).
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Hence,Spec(A;) = Spec(4;)\{0}. Then, from Lemma 4, it Then, from Lemma 6, it follows thatl,,,,; has three negative
follows that all eigenvalues ofl; have negative real parts andand two positive eigenvalues. Hence, the inverted eqitilibr
at least one eigenvalue is negative real. of (46) is unstable.

Hence, it follows that all eigenvalues of the linearization Furthermore, there exists a 3-dimensional stable invarian
of the closed-loop system (46) about the inverted equilibri manifold M;, of the closed-loop (46) such that all solutions
have negative real parts. Thus, the inverted equilibrium tfat start inM;, converge to the hanging equilibrium [39]. The
the nonlinear system (46) is asymptotically stable withaloctangent space to this manifold at the hanging equilibriuthés
exponential convergence. B stable eigenspace corresponding to the negative eigersvalu

Remark 3: Let (0, R.) be an inverted equilibrium. Sup-Since there are no eigenvalues on the imaginary axis, the
pose D = diag(dsy,ds,ds) is diagonal andd; > 0, ¢ € closed-loop (46) has no center manifold and every closeg-lo
{1,2,3}. Recall thatk; > 0. Then the eigenvalues oftrajectory that converges to the hanging equilibrium Ireshie
the linearized closed-loop reduced attitude dynamics 646) stable manifoldV(y,. ]

(0, Rles) are the roots of the polynomial Remark 4: Let (0, R.) be a hanging equilibrium. Suppose
D = diag(dy,ds,ds) is diagonal andi; > 0, i € {1,2,3}.

(5% + dis + kimgly)(s* + das + kimgla) (s + d3) = 0. Recall thagtkh < O.) Then the eigenvalues of thé Iinea};ized

Next, we study the linearization of the closed-loop at thgosed-loop reduced attitude dynamics (&t R{es) are the
hanging equilibrium. This yields the local structure ofiga  roots of the polynomial
tories of the closed-loop (46) near the hanging equilibrium 2 2 o

Lemma 6: Consider the linear model (49), representing (57 + das + knmglh)(s” + das + knmgla)(s + ds) = 0.

linearization of (45) at a hanging equilibriurf0, R.) ex- In summary, we have shown that the inverted equilibrium
pressed in first order form as of the closed-loop (46) is locally exponentially stable dhel
d Tz 0 710 . hanging equilibrium of (46) is unstable. Furthermore, the s
— .| = | & Apng , (55) of all closed-loop trajectories that converge to the haggin
di |T kA —-D| |Z o ) . . . .
equilibrium form a 3-dimensional, invariant manifa,.
where z = (z1,x2,23). Then, An,, has one zero, three
negative and two positive real eigenvalues. B. Global Analysis of the Closed-Loop

Proof: In the prior notatiork = k;, < 0 in (49) for a hanging
equilibrium. Letv = [v] v}]" be an eigenvector correspondin%f
to the eigenvalue\ of Ay,g, Wherevy, vy € C3. Then, as in
Lemma 4, one can show that all eigenvaluesigf,, satisfy

In this section, we study the global behavior of trajectorie
the closed-loop system (46) using Lyapunov analysis.
Theorem 2: Consider the reduced attitude dynamics of the
3D pendulum given by (39) and (40) with the controller (44).
ar? + b\ —c=0, Assume tha® : [0, 00) — [0,00) is aC? function satisfying
~ _ ~ _ (42), ¥ : R? — R3 is a smooth function satisfying (43), and
wherea = vjvy, b = v} Dvy ande = |kh|v{Av1*' Arngng a5 & > mg||p||. Let M, denote the 3-dimensional invariant mani-
in Lemma 4, one can show thag = O and Aj = —e3De3 514 asin Lemma 7. Then all solutions of the closed-loop give
are tvyo of the six eigenvalues of;,, in (55) and the other by (46), such thatw(0),T(0)) € (TSO(3)/SY)\My, satisfy
four eigenvalues are of the form tlim w(t)=0 andtlim I'(t) = T';. Furthermore, all solutions
) bi | /b7 +4ac . b; /02 +4a;c;  of the closed-loop (46), such thab(0), I(0)) € M, satisfy

i=—r—t+—F———, and \] =~ ———, . A

2a; 2a; ¢ 2a; 2a; tlir{)lo w(t)=0 andtlirgo L(t) =T.

wherea;, b; ande;, i € {2, 3} are positive. Thus, sincki;c; > Proof: Consider the closed-loop reduced attitude dynamics
0, it follows that ); is positive and\* is negative fori ¢ given by (46), and the Lyapunov function given as

{2,3}. Hence,An,; has one zero eigenvalue, three negative 1 . . (1-1TT)
eigenvalues, and two positive eigenvalues. m V(wID)= JwJwt (/ﬁ—mg”p”)(l—FiF)—i—Wb ( 2 ) :
Lemma 7: Consider the reduced attitude dynamics of the (56)

3D pendulum given by (39) and (40) with the controller (44)Note thatV(w, I') is positive definite ori’SO(3)/5* = 52 x
Assume thatd : [0, 00) — [0, c0) is a C’? function satisfying R’ andV(0,T;) = 0. Furthermore, sincé* is compact and
(42), ¥ : R? — R3 is a smooth function satisfying (43), andthe Lyapunov fgnctlorv(w, I') is quadratic inv, each subl_eve_l
% > mg||p||. Then, the hanging equilibrium of the closed-looget of V(w,T') is compact. Next, we compute the derivative
reduced attitude dynamics (46) is unstable. Furthermbee, ©f V' along a trajectory of the closed-loop. Thus,

set of closed-loop trajectories that converge to the hangin T T 1 (=TT frp
equilibrium is a 3-dimensional invariant manifald,. Viw ) =wo - (H B mg”pH)FiF - ¢ ( 2 ) LT
Proof: Consider the linearization of the closed-loop systerg, .. _ _ £
(46) about the hanging equilibrium, given by (49) written in o lell’
terms of the state variable = (x1,2,41,42,43) € RS. . g

Writing (49) in terms ofz yields 2 = Ay,g2, Where Ay, is V(w,T) = —w"¥(w) < =Pw). (57)
obtained by deleting the third row and third column fretn,,  Thus,V (w,T) is a negative semi-definite function and hence,
given in (55). Then, it is easy to see that [d&t,; — \s) = N . )

" Adet(Apng — Ms). Hence Spec(Ang) = Spec( A \(0}. X 2 {(@.T) € R x $2: V(w,T) < V(w(0),7(0)) }

it follows that
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is a compact, positively invariant sublevel set. Hence,h®y tin TSO(3) is open and dense. Furthermore, from Proposition
invariant set theorem, all solutions converge to the larged and Theorem 2, it follows that for the closed-loop (1), (2)
invariant set in{(w,l“) e X:VwD) = 0}_ Since P is and (44), all trajectories containedT50(3)\M;, converge to
the inverted equilibrium manifold and all trajectories retset
Substitutingw = 0 in (46), it can be shown that the'v.lh converge o the .h_an.ging eqqilibri_um manifold. Since the
largest such invaﬁant set is éiven HY0, )Y U{(0,T))} dimension of the equilibrium manifold is one and the Leb&sgu
’ Y measure ofM, is zero, it follows that the Lebesgue measure
However, from Lemma 7, we know that all trajectorle%f My, = -1 (My) is zero [40] =
that converge to the hanging equilibrium are contained In Rehmark 6 Si}%ceTSO(i%)\l\/.l is open and dense, it fol-
the 3—dimensiona|_manifoldv[h. Therefore, all solutions of lows from T.heorem 3 that thg domain of attractioyn of the
t(f}esé:l(g?/egll)o\(;\?t given by (46), quh tha't}(0>’?(0.)) < Olnverted equilibrium manifold for the closed-loop (1), @)d
_ n,» converge to the inverted equilibrium an (44) is almost global
hence, Sat'SfxliI_?ow(t) _.O a”dtlifélor(t)_ o Fi.‘ ] " The controllers in (44) provide a combination of potential
~ Remark 5: Since My, is a 3-dimensional invariant man-ghaning and damping injection. It may be noted that the
ifold, its Lebesgue measure is zero [40]. Furthermore, folyq,ment of the potential functioh(-) is proportional to the
lowing arguments as in Theorem 1, it can be shown that tggjne of the angle betwedhandr';. This yields the following
complement of(;, in TSO(3)/S" is open and dense. Thus,;josed-loop property: it(0) = 0, then for all¢ > 0, the angle
from Theorem 2 it follows that the domain of attraction of th%etweenl“(t) andT; is bounded above by the angle between
inverted equilibrium for the closed-loop (46)atmost global. '(0) andT;.
The result presented in Theorem 2 applies to the solutioncorgliary 1: Consider the reduced attitude dynamics of the
of the closed-loop reduced attitude dynamics of the 3D pegp pendulum given by (39) and (40) with controller as in (44).
dulum given by (46). Thus, the almost global result howﬁurthermore, lew(0) = 0 andT'(0) # T';.. Then, for allt > 0,

on TSO(3)/S*. We now study the implication for the 3Dy ajectories of the closed-loop reduced attitude dynar#63
pendulum dynamics given by (45). Specifically, we show th%&tisfy

a positive definite functiony (w,T") = 0 impliesw = 0.

the controller (44) almost globally asymptotically states £(T;,T(t)) < £(T;, T(0))
the inverted equilibrium manifold i"SO(3). The following v - '
Lemma is needed. Proof: Consider the candidate Lyapunov function (56), for the

Lemma 8 ([41]): Let = : TSO(3) — T'SO(3)/S! denote closed-loop (46). As already shown in Theoreni/Zw,T) =
the projection, wherd’SO(3)/S* is endowed with the quo- —wT¥(w). Thus, sinceV(w,T) is negative semidefinite,
tient topology. Letll € T'SO(3)/S! be a set whose com-V(w(t),T'(¢)) < V(w(0),T'(0)). Thus substitutings(0) = 0
plement is open and dense 780(3)/S*. Then,7—1(U) C in (56), we obtain the result that for all> 0,

TSO(3) is a set whose complement is open and dense {n (1-rTr()
TSO(3). St T(t) + s — mglpl] (1 ~ TTO(0)) + 20 (=500

We now show that the controller (44) almost globally 1
asymptotically stabilizes the inverted equilibrium matdf < (fi - mg||PH)(1 - Ii1'(0)) + 2@ (5(1 - FIF(O))) -
according to the closed-loop equations (45).

Theorem 3: Consider the dynamics of the 3D pendulun®ince, the kinetic energy term is strictly non-negative;>
given by (1) and (2) with the controller (44). Assume thatgllpl and @(-) is a non-decreasing function, we obtain
® : [0,00) — [0,00) is a C? function satisfying (42), (1 —Li[(t)) < (1 —I30(0)), and hencel7I'(¢) > I7L'(0),
¥ : R® — R? is a smooth function satisfying (43), andfor all ¢ > 0. Since, [I'(¢)|| = 1 for all ¢ > 0, it follows
k > mgllp|. Then, the inverted equilibrium manifold isthat cos (£(I';,I'(¢))) = cos (£(I';,I'(0))), ¢t = 0. Since
asymptotically stable with local exponential convergetree- £ (', I'(t)) € [0,7) and cos(-) is non-increasing in0, ),
thermore, there exists an invariant 9df, ¢ 7SO(3) with the result follows. u
Lebesgue measure zero such tﬂaO(,g)\Mh is open and A trivial choice for the function® is given byq)(.%') =0.
dense and all solutions of the closed-loop given by (1), (Zhen, the controller (44) simplifies to
and (44) such thatw(0), R(0)) € TSO(3)\M;, converge to o
the inverted equilibtriljm) ma(\ni)f)old. All SE)|l)J}i0nS of the sled- =l xT) = ¥(w), (58)
loop such that(w(0), R(0)) € M, converge to the hangingwhere ¥ is chosen as in (43) and is a positive number
equilibrium manifold. satisfyingx > mgl||p||. Thus, a nontrivialb function in (44) is
Proof: Asymptotic stability of the inverted equilibrium man-not essential for stability of the inverted equilibrium nifatd.
ifold and local exponential convergence of closed-loop trédowever, it can be used to modify the domain of attraction
jectories follows immediately from Lemma 5 and Propositioor the amount of control effort required as a function of the
3. We next show almost global convergence property of theduced attitude. Although the domain of attraction of the
closed-loop trajectories. inverted equilibrium is almost global, the domain of attiaic

Consider the projection : 7SO(3) — T'SO(3)/S* which is hard to compute explicitly.
yields the reduced attitude dynamics as in Proposition 2. Le Theorem 3 is the main result on asymptotic stabilization
M;, be the set as in Theorem 2 and denldtg= 7—1(M;,) C of the inverted equilibrium manifold of the 3D pendulum.
TSO(3). It follows from Lemma 8 that the complementidf, Under the indicated assumptions, almost global asymptotic
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stabilization is achieved. This is the best possible refult VII. CONCLUSIONS
this stabilization problem, in the sense that global sizdtibn This paper has presented a complete analysis for two prob-
using smooth feedback is not achievable. lems on stabilization of the inverted 3D pendulum. In thet firs

The controller expression (44) is quite useful in contrglase, we treat the problem of asymptotically stabilizingecs
design as it allows freedom to arbitrarily design the locgfieq equilibrium solution in the inverted equilibrium méoid.
dynamics of the closed-loop near the inverted equilibriufy the second case, we treat the problem of asymptotically
manifold. 1t also provides some freedom in shaping thgapilizing the inverted equilibrium manifold. In each eas
manifold of solutions that do not converge to the invertege have developed feedback expressions, based on feedback
equilibrium manifold. In this way, control design can b&t the angular velocity and attitude, or reduced attitude, o
carried out to achieve both local and global control obj@sti he 3p pendulum. The emphasis throughout the paper has

Simglation stL_Jdies th_at demonstrate.the validity of Theorepeen on global definition of the 3D pendulum models, global
3 and illustrate its use in a control design context are epor yescription of the controllers, and global geometric asialpf
in [21], [44], [45]. In addition, experimental studies hev@en e closed-loops. The control problems for the 3D pendulum
reported in [46] that demonstrate the value of this theogempiify attitude stabilization problems on the compamt-c
when used to asymptotically stabilize the inverted equiid  fig,ration manifoldSO(3) in the presence of potential forces.
manifold of the TACT. Due to space limitations, we do nofhe results obtained in the paper demonstrate the complexit
provide the results of those studies in this paper. of nonlinear control problems for the 3D pendulum.

VI CLOSED-L 0OP PERFORMANCEL IMITATIONS _ In a related paper [41.],. we have trgated asymptotic stabiliz
' tion of the hanging equilibrium manifold of the 3D pendulum

We presented two families of controllers that stabilize gsjng feedback of angular velocity only. That paper and this
specified equilibrium or the inverted equilibrium manifpldone that treats asymptotic stabilization of the invertedo@d-
respectively. Consider the controller (13) for stabiliaatof qyujum can be considered as providing the basic stabilizatio
a specified equilibrium in the inverted equilibrium mandol theory for the 3D pendulum.

It was shown that there exists a nowhere denseMedf A number of interesting extensions can be suggested. This
Lebesgue measure zero such that all solutions that do mbt sfgould include extensions assuming underactuation of the
in this set converge to the specified inverted equilibrium.  control inputs, partial or incomplete feedback, and cdntro

The existence of the setl is related to the topological saturation. Attention has already been given to some ofthes
obstruction that exists for any continuous time-invarjata- topics [44], [47]. Extensions to problems involving multi-
bilizing controller defined on a compact configuration SpPacBody 3D pendulum problems can also be formulated; for
However, there also exists a performance constraint fohn SUsxample, we mention the challenging problem of stabilazati
controllers. This arises since the $éinfluences the dynamics gf an inverted 3D pendulum, mounted on a cart that can be
of nearby closed loop trajectories. Note thdtis composed ¢gntrolled to move in a plane.
of the union of stable manifolds of the unstable equilibria;
hence solutions starting il converge to one of the unstable REFERENCES
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