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Abstract—The 3D pendulum consists of a rigid body, supported
at a fixed pivot, with three rotational degrees of freedom; it is
acted on by gravity and it is fully actuated by control forces. The
3D pendulum has two disjoint equilibrium manifolds, namely
a hanging equilibrium manifold and an inverted equilibrium
manifold. The contribution of this paper is that two fundamental
stabilization problems for the inverted 3D pendulum are posed
and solved. The first problem, asymptotic stabilization of a
specified equilibrium in the inverted equilibrium manifold , is
solved using smooth and globally defined feedback of angular
velocity and attitude of the 3D pendulum. The second problem,
asymptotic stabilization of the inverted equilibrium manifold, is
solved using smooth and globally defined feedback of angular
velocity and a reduced attitude vector of the 3D pendulum.
These control problems for the 3D pendulum exemplify attitude
stabilization problems on the configuration manifold SO(3) in
the presence of potential forces. Lyapunov analysis and nonlinear
geometric methods are used to assess global closed-loop proper-
ties, yielding a characterization of the almost global domain of
attraction for each case.

Index Terms—3D pendulum, equilibrium manifold, attitude
control, gravity potential, almost global stabilization.

I. I NTRODUCTION

PENDULUM models have provided a rich source of ex-
amples in nonlinear dynamics and, in recent decades, in

nonlinear control. The most common rigid pendulum model
consists of a mass particle attached to one end of a massless,
rigid link; the other end of the link is fixed to a pivot point
that provides a rotational joint for the link and mass particle.
If the link and mass particle are constrained to move within a
fixed plane, the system is a planar 1D pendulum. If the link
and mass particle are unconstrained, the system is a spherical
2D pendulum. Control problems for planar and spherical
pendulum models have been studied in [1]–[11].

Numerous extensions of simple pendulum models have been
proposed. These include various elastic pendulum models and
multi-body pendulum models. Interesting examples of multi-
body pendulum models are: a pendulum on a cart, an acrobot,
a pendubot, a pendulum actuated by a reaction wheel, the
Furuta pendulum, and pendula consisting of multiple coupled
bodies. Dynamics and control problems for these multi-body
pendulum models have been studied in [10], [12], [13], [14],
[15], [16], [17], [18].
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Pendulum models are useful for both pedagogical and
research reasons. They represent simplified versions of me-
chanical systems arising in robotics and spacecraft. In addition
to their role in demonstrating the foundations of nonlinear
dynamics and control, pendulum models have motivated re-
search in nonlinear dynamics and nonlinear control. In [19],
controllers for pendulum problems with applications to control
of oscillations have been presented using the speed-gradient
method.

The 3D pendulum is a rigid body supported at a fixed
pivot point with three rotational degrees of freedom. It is
acted on by a uniform gravity force and, perhaps, by control
and disturbance forces. The 3D pendulum was introduced
in [20], and preliminary stabilization results were presented
in [21]. The 3D pendulum has two equilibrium manifolds,
namely, the hanging and inverted equilibrium manifolds. This
paper treats two stabilization problems for stabilizationof the
inverted 3D pendulum. The first part of the paper studies
stabilization of a specified inverted equilibrium in the in-
verted equilibrium manifold using angular velocity and attitude
feedback. The second part of the paper studies stabilization
of the inverted equilibrium manifold using angular velocity
and reduced attitude feedback. These control problems for
the 3D pendulum exemplify attitude stabilization problemson
the configuration manifoldSO(3) in the presence of potential
forces. Stabilization of the inverted equilibrium manifold is
distinct, in terms of the physical meaning and in terms of the
nonlinear control details, from the problem of stabilizingan
equilibrium that lies in the inverted equilibrium manifold.

The controllers designed for each case provide asymptotic
stabilization with local exponential convergence. Analysis of
the closed-loops shows that the domains of attraction are
almost global. By almost global, we mean that the domain
of attraction of the equilibrium is open and dense. In [18]
almost global stability of the inverted equilibrium of a sim-
ple planar pendulum was studied. The proposed controller
involved a switching strategy; however unlike previous results,
the nonlinear controller renders the inverted equilibriumnot
only attractive, but also stable. As mentioned in [18], thiscould
only be carried out for a simple planar pendulum because of
its simple phase space given byR × S1. In this paper, we
present a single smooth nonlinear controller, which involves
no switching, that achieves almost global asymptotic stability
of the 3D inverted pendulum.

It may be noted that the work in [22], [23], wherein
controllers for systems evolving on Riemannian manifolds
were proposed, does not directly apply to the stabilizationof
an equilibrium manifold of the 3D pendulum. Furthermore,
in contrast with the controllers in [22], [23] that generally
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give a conservative estimate of the domain of attraction, we
provide almost global asymptotic stabilization results for the
3D pendulum. Indeed, one of the aims of this paper is to give
a complete picture of the global dynamics for the closed-loop
3D pendulum.

This paper arose out of our continuing research on a lab-
oratory facility, namely, the Triaxial Attitude Control Testbed
(TACT). The TACT provides a testbed for physical experi-
ments on attitude dynamics and attitude control. This device
is supported by a spherical air bearing that serves as an ideal
frictionless pivot, allowing nearly unrestricted motion in three
degrees of freedom. Issues of nonlinear dynamics for the
TACT have been treated in [24], [25], [26], and stability and
control issues have been treated in [27], [28], [29], [30], [31],
[32]. The present paper is partly motivated by the realization
that the TACT is, in fact, a physical implementation of a 3D
pendulum.

II. M ATHEMATICAL MODELS OF THE3D PENDULUM

The 3D pendulum is a rigid body supported by a fixed,
frictionless pivot, acted on by constant uniform gravity as
well as control forces. Two Euclidean reference frames are
introduced. An inertial frame has its origin at the pivot; the
first two axes lie in the horizontal plane while the third axisis
vertical and points in the direction of gravity. A second frame
with origin at the pivot point is fixed to the pendulum body.
In this body fixed frame, the moment of inertia matrix of the
pendulum is constant.

Rotation matrices, which provide global representations of
attitude, are used to describe the attitude of the 3D pendulum.
In this paper, we follow the convention in which a rotation
matrix maps representations of vectors resolved in the body-
fixed frame to representations resolved in the inertial frame.
Although attitude representations such as exponential coor-
dinates, quaternions, and Euler angles can be used, each of
these representations has a disadvantage due to an ambiguity
or singularity [33]. Therefore, the attitude of the 3D pendulum
is represented by a rotation matrixR, viewed as an element of
the special orthogonal groupSO(3). The angular velocity of
the 3D pendulum with respect to the inertial frame, resolvedin
the body-fixed frame, is denoted byω in R3. Although global
representations are used, the feedback controllers proposed
in this paper could be expressed in terms of feedback using
any other attitude representation, such as Euler angle or
quaternions.

The constant inertia matrix, resolved in the body-fixed
frame, is denoted byJ . The vector from the pivot to the
center of mass of the 3D pendulum, resolved in the body-fixed
frame, is denoted byρ. The symbolg denotes the constant
acceleration due to gravity.

Standard techniques yield the equations of motion for the
3D pendulum. The dynamics are given by the Euler-Poincaré
equation which includes the moment due to gravity and a
control momentu ∈ R3 which represents the control torque
applied to the 3D pendulum, resolved in the body-fixed frame,

Jω̇ = Jω × ω +mgρ×RTe3 + u, (1)

wheree3 = [0 0 1]T. The rotational kinematics equation is

Ṙ = Rω̂, (2)

whereR ∈ SO(3), ω ∈ R3 and

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (3)

Note thata× b = âb.
The equations of motion (1) and (2) for the 3D pendulum

model has dynamics that evolve on the tangent bundleTSO(3)
[35]. Note that sincee3 = [0 0 1]T denotes the unit vector in
the direction of gravity in the specified inertial frame,RTe3 in
(1) denotes the dimensionless unit vector in the direction of
gravity resolved in the body-fixed frame.

In the case where the center of mass of the 3D pendulum
is located at the pivot,ρ = 0, equation (1) simplifies to the
Euler equation with no gravity terms. In the context of the
3D pendulum, this is referred to as the balanced case. In this
paper we focus on the more interesting unbalanced case, where
ρ 6= 0.

III. E QUILIBRIUM STRUCTURE OF THEUNCONTROLLED

3D PENDULUM

In this section, we setu = 0 and obtain two integrals
of motion for the uncontrolled 3D pendulum. These integrals
expose the unforced dynamics of the 3D pendulum and can
be used to construct control-Lyapunov functions.

There are two conserved quantities for the 3D pendulum.
First, the total energy, which is the sum of the rotational kinetic
energy and the gravitational potential energy, is conserved.
The other conserved quantity is the component of angular
momentum about the vertical axis through the pivot.

Proposition 1 ([20], [26]): Let u = 0 in (1). The total

energyE =
1

2
ωTJω −mgρTRTe3 and the component of the

angular momentum vector about the vertical axis through the
pivot given byh = ωTJRTe3 are constant along motions of
the 3D pendulum given by (1) and (2).

To further understand the dynamics of the 3D pendulum,
we study the equilibria of (1) and (2). Equating the RHS of
(1) and (2) to zero withu = 0 yields

Jωe × ωe +mgρ×RT
ee3 = 0, (4)

Reω̂e = 0. (5)

Now Reω̂e = 0 if and only if ωe = 0. Substitutingωe = 0 in
(4), we obtain

ρ×RT
ee3 = 0. (6)

Hence,
RT

ee3 =
ρ

‖ρ‖
, (7)

or
RT

ee3 = −
ρ

‖ρ‖
. (8)

Hence an attitudeRe is an equilibrium attitude if and only
if the direction of gravity resolved in the body-fixed frame,
RT

ee3, is collinear with the vectorρ. If RT
ee3 is in the same
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direction as the vectorρ, then(0, Re) whereRe satisfies (7),
is a hanging equilibrium of the 3D pendulum; ifRT

ee3 is in
the opposite direction as the vectorρ, then(0, Re) whereRe

satisfies (8), is an inverted equilibrium of the 3D pendulum.
According to (7) and (8), there is a smooth manifold

of hanging equilibria and a smooth manifold of inverted
equilibria, and these two equilibrium manifolds are clearly
distinct. The former is the hanging equilibrium manifold; the
latter is the inverted equilibrium manifold.

IV. A SYMPTOTIC STABILIZATION OF A SPECIFIED

INVERTED EQUILIBRIUM

Let (0, Rd) denote a specified equilibrium in the inverted
equilibrium manifold of the 3D pendulum given by (1) and
(2). In this section we present controllers that stabilize this
specified equilibrium(0, Rd).

Let Φ : [0,∞) → [0,∞) be aC2 function such that

Φ(0) = 0 and Φ′(x) > 0 for all x ∈ [0,∞). (9)

Let Ψ : R3 → R3 be aC1 function satisfying

Ψ′(0) is positive definite,

P(x) ≤ xTΨ(x) ≤ α(‖x‖) for all x ∈ R3,

}
(10)

whereP : R3 → R is a positive definite function andα(·) is
a class-K function [36]. Givena = [a1 a2 a3]

T ∈ R3, denote

Ωa(R) ,

3∑

i=1

ai

[
(RT

dei) × (RTei)
]
. (11)

Further, letA ∈ R3×3, be a diagonal matrix defined as

A , diag(a). (12)

We study controllers of the form

u = −Ψ(ω) + κ
(
(RT

de3) × (RTe3)
)

+ Φ′
(
trace(A−ARdR

T)
)
Ωa(R), (13)

whereκ ≥ mg‖ρ‖.
The controller (13) requires measurements of the angular

velocity and attitude, in the form of the rotation matrixR, of
the 3D pendulum. The angular velocity dependent termΨ(ω)
in (13) provides damping, while the attitude dependent termin
(13) can be viewed as a modification or shaping of the gravity
potential. For the control law (13), no knowledge is required
of the moment of inertia or of the location of the center of
mass of the 3D pendulum relative to the pivot. However, the
constantκ is an upper bound on the gravity moment about the
pivot. Hence a bound onmg‖ρ‖ must be known.

We subsequently show that(ω,R) = (0, Rd) is an equilib-
rium of the closed-loop consisting of (1), (2) and (13), and it is
almost globally asymptotically stable with locally exponential
convergence.

A. Equilibrium Structure of the Closed-Loop

In this section, we study the equilibria inTSO(3) of the
closed-loop system consisting of (1), (2) and (13). Define

ā , [a1 a2 ā3]
T, (14)

where

ā3 , a3 +
κ−mg‖ρ‖

Φ′
(
trace(A− ARdRT)

) ≥ a3. (15)

Since (0, Rd) lies in the inverted equilibrium manifold, it
follows from (8) thatRT

de3 = −
ρ

‖ρ‖
. Then, substituting (13)

in (1) and (2), and simplifying, we can express the closed-loop
system as

Jω̇ = Jω × ω − Ψ(ω) + Φ′
(
trace(A−ARdR

T)
)
Ωā(R),

Ṙ = Rω̂.





(16)
Lemma 1: Consider the closed-loop system (16) of a 3D

pendulum given by (1) and (2), with controller (13), where
the functionsΦ andΨ satisfy (9) and (10),κ ≥ mg‖ρ‖ and
A defined in (12) satisfiesa1, a2 < a3 wherea1 and a2 are
distinct positive numbers. Then, the closed-loop system (16)
has four equilibrium solutions given by

E =
{
(ω,R) ∈ TSO(3) : ω = 0, R = MRd, M ∈ Mc

}
,

(17)
where

Mc ,

{
diag(1, 1, 1), diag(−1, 1,−1), diag(1,−1,−1),

diag(−1,−1, 1)
}
. (18)

Proof: To obtain the equilibria of the closed-loop system,
equate the RHS of (16) to zero, which yieldsω = 0 and

Ωā(R) = a1R̂T
de1R

Te1 + a2R̂T
de2R

Te2 + ā3R̂T
de3R

Te3 = 0.
(19)

Next multiplying both sides byRd and using the equality
R̂ei = RêiR

T [37], we obtain

a1ê1RdR
Te1 + a2ê2RdR

Te2 + ā3ê3RdR
Te3 = 0. (20)

Writing RdR
T = [ri,j ]i,j∈{1,2,3}, equation (20) can be ex-

pressed asa2r32 = ā3r23, a1r31 = ā3r13, a1r21 = a2r12.
Then, sincea1, a2 and ā3 are positive, the rotation matrix
RdR

T can be expressed as

RdR
T =



r11 r12 r13
a2

a1
r12 r22 r23

ā3

a1
r13

ā3

a2
r23 r33


 , (21)

Then it follows from orthogonality of rotation matrices and
algebraic manipulations that

(
1 −

a2
2

a2
1

)
r212 +

(
1 −

ā2
3

a2
1

)
r213 = 0,

(
1 −

ā2
3

a2
1

)
r213 +

(
1 −

ā2
3

a2
2

)
r223 = 0,

(
1 −

a2
2

a2
1

)
r212 −

(
1 −

ā2
3

a2
2

)
r223 = 0.





(22)
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Since ā3 ≥ a3 > a1, a2, thereforea1, a2 and ā3 are distinct
positive integers and hence it can be easily show that the
solution to (22) is given byr12 = r13 = r23 = 0. Hence
from (21),RdR

T is one of the four matrices given in (18).
Remark 1: Note that the desired equilibrium(0, Rd) ∈ E .

Each of the other three equilibrium solutions inE corresponds
to an attitude configuration formed by the desired attitudeRd,
followed by a rotation about one of the three body fixed axes
by 180 degrees.

B. Local Analysis of the Closed-Loop

Consider a perturbation of the initial conditions about an
equilibrium (0, Re) ∈ E given in (17) in terms of a per-
turbation parameterε ∈ R. We express the perturbation in
the rotation matrix using exponential coordinates [35], [37],
[38]. Let the perturbation in the initial condition for attitude
be given asR(0, ε) = Ree

εΘ̂0 , whereReR
T
d ∈ Mc and

Θ0 ∈ R3 is a constant vector. The perturbation in the initial
condition for angular velocity is given asω(0, ε) = εω0,
whereω0 ∈ R3 is a constant vector. Note that ifε = 0 then,
(ω(0, 0), R(0, 0)) = (0, Re) and hence

(ω(t, 0), R(t, 0)) ≡ (0, Re) (23)

for all time t ∈ R. This simply represents the unperturbed
equilibrium solution.

Next, consider the solution to the perturbed equations of
motion for the closed-loop 3D pendulum given by (16). These
are given by

Jω̇(t, ε) = Jω(t, ε) × ω(t, ε) − Ψ(ω(t, ε))

+ Φ′
(
trace(A−ARdR

T(t, ε))
)
Ωā(R(t, ε)), (24)

Ṙ(t, ε) = R(t, ε)ω̂(t, ε). (25)

Differentiating both sides with respect toε and substituting
ε = 0, yields

Jω̇ε(t, 0) = −Ψ′(0)ωε(t, 0)

+ Φ′(trace(A−ARdR
T
e))Ωā(Rε(t, 0)), (26)

Ṙε(t, 0) = Reω̂ε(t, 0), (27)

whereωε(t, 0) ,
∂ ω(t, ε)

∂ε

∣∣∣∣
ε=0

andRε(t, 0) ,
∂R(t, ε)

∂ε

∣∣∣∣
ε=0

.

Define linearization variables∆ω,∆Θ ∈ R3 as ∆ω(t) ,

ωε(t, 0) and∆̂Θ(t) , RT
eRε(t, 0). Then from (27) we obtain

∆Θ̇ = ∆ω, (28)

and from (26), we obtain

J∆ω̇ = −Ψ′(0)∆ω + Φ′(trace(A−ARdR
T
e))Ωā(Re∆̂Θ).

(29)
Combining (28) and (29) and simplifying, we obtain the
linearization of (16) as

J∆Θ̈ + Ψ′(0)∆Θ̇ + K∆Θ = 0, (30)

where

K = Φ′
(
trace(A−ARdR

T
e)

)[
− a1R̂T

de1 R̂
T
ee1

− a2R̂T
de2 R̂

T
ee2 − ā3R̂T

de3 R̂
T
ee3

]
, (31)

andā3 is given in (15) withR = Re. SinceM = ReR
T
d ∈ Mc,

the equalityR̂ei = RêiR
T, whereR ∈ SO(3) [37], yields

R̂T
dei R̂

T
eei = R̂T

eMei R̂T
eei = RT

eM̂ei êiRe,

for i ∈ {1, 2, 3}. Using the above, the expression forK in (31)
can be written as

K = Φ′
(
trace(A−ARdR

T
e)

)
RT

e QRe, (32)

where

Q = −a1M̂e1 ê1 − a2M̂e2 ê2 − ā3M̂e3 ê3 (33)

andM = ReR
T
d ∈ Mc, as in (18).

Lemma 2: Consider the closed-loop model of a 3D pen-
dulum given by (1) and (2), with controller (13), where the
functionsΦ and Ψ satisfy (9) and (10),κ ≥ mg‖ρ‖ andA
defined in (12) satisfiesa1, a2 < a3 wherea1, a2 anda3 are
distinct positive numbers. Then the closed-loop equilibrium
(0, Rd) ∈ E is asymptotically stable and the convergence is
locally exponential.
Proof: Combining equations (1), (2) and (13), we obtain
the closed-loop system given by (16). Next, we linearize
the dynamics of (16) about the equilibrium(0, Rd) yielding
equation (30) whereRe = Rd.

Now Ψ′(0) is positive definite andM is the identity matrix.
Hence, from (33)

Q = −a1 ê
2

1 − a2 ê
2

2 − ā3 ê
2

3

is positive definite. Next, sinceΦ′(·) is positive andK is a
similarity transform ofQ, K in (32) is positive definite. Thus,
sinceK andΨ′(0) are positive definite, linear theory guaran-
tees that the linearized system given by (30) is asymptotically
stable. Hence, the equilibrium(0, Rd) of (16) is locally
asymptotically stable with local exponential convergence.

Consider the equilibria(0, Re) of the closed-loop (16) such
thatRe 6= Rd. From Lemma 1, we express the three equilibria
(0, Re) ∈ E such thatRe 6= Rd asRe, i = MiRd, i ∈ {1, 2, 3},
whereM1, M2 andM3 are

diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1), (34)

respectively. We next show that the above three equilibria
(0, Re, i), i ∈ {1, 2, 3} of the closed-loop (16) are unstable
and present local properties of the closed-loop trajectories.

Lemma 3: Consider the closed-loop model of a 3D pen-
dulum given by (1) and (2), with controller (13), where the
functionsΦ and Ψ satisfy (9) and (10),κ ≥ mg‖ρ‖ andA
defined in (12) satisfiesa1, a2 < a3 where a1 and a2 are
distinct positive numbers. Consider an equilibrium(0, Re, i) ∈
E , such thatRe, i 6= Rd, i ∈ {1, 2, 3}. Then, (0, Re, i) is
unstable. Furthermore, there exist an invariant 3-dimensional
submanifold and an invariant 4-dimensional submanifold (M1
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andM2), and an invariant 5-dimensional submanifoldM3 in
TSO(3) with zero Lebesgue measure, such that(a) for all
initial conditions(ω(0), R(0)) ∈ Mi, i ∈ {1, 2, 3}, the closed-
loop solutions converge to the equilibrium(0, Re, i) and(b) for
all initial conditions(ω(0), R(0)) ∈ TSO(3)\Mi, the closed-
loop solutions do not converge to the equilibrium(0, Re, i),
i ∈ {1, 2, 3}.
Proof: Combining equations (1), (2) and (13), we obtain
the closed-loop system given by (16). Next, we linearize the
dynamics of (16) about the equilibrium(0, Re, i), i ∈ {1, 2, 3}
yielding equation (30). Since,Re, i 6= Rd, the three equilibria
are given by(0, Re, i) = (0,MiRd), whereMi, i ∈ {1, 2, 3}
is as given in (34).

Next, we compute the matrixQi using (33) corresponding
to the three equilibria(0,MiRd), i ∈ {1, 2, 3}. This yields

Q1 = diag(−a2 − ā3, a1 − ā3, a1 − a2),

Q2 = diag(a2 − ā3,−a1 − ā3,−a1 + a2),

Q3 = diag(−a2 + ā3,−a1 + ā3,−a1 − a2).

Since0a1, a2 < a3 ≤ ā3 anda1 anda2 are distinct positive
numbers, all eigenvalues ofQ1, Q2 andQ3 lie in R\{0} and
each ofQ1, Q2 andQ3 has a negative eigenvalue.

SinceRe, i ∈ SO(3), it follows from (32) that corresponding
to Q1, Q2 andQ3, all eigenvalues of the matricesK1,K2 and
K3 lie in R\{0} and each ofK1,K2 and K3 has a negative
eigenvalue. Now, it follows from [38] that (30) is unstable.
Hence, each equilibrium(0, Re, i), i ∈ {1, 2, 3} of the closed-
loop (16) is unstable.

Next, since,Ψ′(0) is positive definite and all eigenvalues
of the matricesK1,K2 and K3 lie in R\{0}, it follows that
each equilibrium(0, Re, i) ∈ E , i ∈ {1, 2, 3} of (16) is hyper-
bolic. Theorem 3.2.1 in [39] guarantees that each equilibrium
(0, Re, i) ∈ E of (16) has a nontrivial unstable manifoldWu

i .
LetW s

i denote its corresponding stable manifold. The tangent
space to the stable manifoldW s

i at the equilibrium(0, Re, i) is
tangent to the stable eigenspace of the linearized system (30),
and hence is 3-dimensional and 4-dimensional for eitherW s

1

or W s
2 , and is 5-dimensional forW s

3 .
Since, the equilibria are hyperbolic, there are no center

manifolds. Then, all trajectories near(0, Re, i) other than those
in W s

i diverge from that equilibrium. Since the dimension
of the submanifoldW s

i is less than the dimension of the
tangent bundleTSO(3), the Lebesgue measure of the global
invariant submanifoldW s

i is zero [40]. DenotingMi , W s
i ,

i ∈ {1, 2, 3}, the result follows.

C. Global Analysis of the Closed-Loop

In the last subsection, we presented results for local proper-
ties of the closed-loop (16) near each of its equilibria. In this
subsection, we describe the global convergence propertiesof
closed-loop trajectories.

Theorem 1: Consider the closed-loop model of a 3D pen-
dulum given by (1) and (2), with controller (13), where
the functionsΦ and Ψ satisfy (9) and (10),κ ≥ mg‖ρ‖
and A defined in (12) satisfiesa1, a2 < a3 where a1

and a2 are distinct positive numbers. Then,(0, Rd) is an
asymptotically stable equilibrium of the closed-loop (16)with

local exponential convergence. Furthermore, there exist an
invariant manifoldM ⊂ TSO(3), whose Lebesgue measure
is zero and whose complement is open and dense such that
for all initial conditions (ω(0), R(0)) ∈ TSO(3)\M, the
solutions of the closed-loop system given by (16) satisfy
lim
t→∞

ω(t) = 0 and lim
t→∞

R(t) = Rd. For all other initial con-

ditions (ω(0), R(0)) ∈ M, the solutions of the closed-loop
system given by (16) satisfylim

t→∞
(ω(t), R(t)) ∈ E \{(0, Rd)}.

Proof: Consider the closed-loop system consisting of (1), (2)
and (13) given by (16). Then, it immediately follows from
Lemma 2 that(0, Rd) is an asymptotically stable equilibrium
of the closed-loop (16) with local exponential convergence.

Next, we propose the following candidate Lyapunov func-
tion.

V (ω,R) =
1

2
ωTJω + (κ−mg‖ρ‖)(1 − eT

3RdR
Te3)

+ Φ
(
trace(A−ARdR

T)
)
. (35)

Note that V (ω,R) ≥ 0 for all (ω,R) ∈ TSO(3) and
V (ω,R) = 0 if and only if (ω,R) = (0, Rd). ThusV (ω,R)
is a positive definite function onTSO(3).

We show that the Lie derivative of the Lyapunov function
along any solution of the closed-loop vector field of (16) is
negative semidefinite. Denote the closed-loop vector field of
(16) byZ. Then,

LZΦ
(
trace(A−ARdR

T)
)

= −Φ′
(
trace(A−ARdR

T)
)
[trace(ARd(Rω̂)T)],

= −Φ′
(
trace(A−ARdR

T)
)
ωTΩa(R).

The derivative of the Lyapunov function along a solution of
the closed-loop is

V̇ (ω,R) = ωTJω̇ − (κ−mg‖ρ‖)eT
3RdṘ

Te3

+ LZΦ
(
trace(A−ARdR

T)
)
,

= ωT {Jω × ω +mgρ×RTe3 + u} + (κ−mg‖ρ‖)eT
3Rdω̂R

Te3

+ LZΦ
(
trace(A−ARdR

T)
)
,

= ωT

{
u− κ(RT

de3 ×RTe3) − Φ′
(
trace(A−ARdR

T)
)
Ωa(R)

}
.

(36)

Substituting (13) into (36), we obtaiṅV (ω,R) = −ωTΨ(ω) ≤
−P(‖ω‖). Thus, the derivative of the Lyapunov function
along a solution of the closed-loop system is negative semidef-
inite.

Recall thatΦ(·) is a strictly increasing monotone func-
tion and SO(3) is compact. Hence, for any(ω(0), R(0)) ∈
TSO(3), the set

K =
{

(ω,R) ∈ TSO(3) : V (ω,R) ≤ V (ω(0), R(0))
}
,

is a compact, positively invariant set of the closed-loop.
By the invariant set theorem, it follows that all solutions that

begin in K converge to the largest invariant set inV̇ −1(0)
contained inK . Now, sinceP is a positive definite function,
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V̇ (ω,R) ≡ 0 impliesω ≡ 0. Substituting this into the closed-
loop system (16), it can be shown that

V̇ −1(0) =
{
(ω,R) ∈ TSO(3) : ω ≡ 0, Ωā(R) ≡ 0

}
,

where Ωā(·) is as given in (11). Thus, following the same
arguments as in Lemma 1, it can be shown that the largest
invariant set inV̇ −1(0) is given by (17). Note that each of
the four points given in (17) correspond to an equilibrium
of the closed-loop system inTSO(3). Hence, all solutions
of the closed-loop system converge to one of the equilibrium
solutions inE ∩ K , whereE is given in (17).

Next, consider an equilibrium(0, Re, i) ∈ E such that
Re, i 6= Rd, i ∈ {1, 2, 3}. Lemma 3 implies that the solutions
of the closed-loop system except for solutions in the invariant
submanifoldsM1, M2 and M3, whose Lebesgue measure is
zero, diverge from the equilibria(0, Re, i), i ∈ {1, 2, 3}. Thus,
solutions of the closed-loop system for initial conditionsthat
do not lie in M = M1 ∪ M2 ∪ M3 must converge to the
equilibrium (0, Rd). Thus, since the domain of attraction of
an asymptotically stable equilibrium is open,M is closed and
hence it follows that it is nowhere dense. This follows from the
fact thatM is a closed subset ofTSO(3) of Lebesgue measure
zero. Solutions of the the closed-loop system (16) for initial
conditions that lie inM = M1 ∪M2 ∪M3 converge to one of
the equilibrium solutions inE \{(0, Rd)}.

Theorem 1 is the main result on asymptotic stabilization of a
specified inverted equilibrium of the 3D pendulum. Under the
indicated assumptions, almost global asymptotic stabilization
is achieved. This is the best possible result for this stabilization
problem, in the sense that global stabilization using smooth
feedback is not achievable [33].

The controller expression (13) is quite useful in control
design as it allows freedom to arbitrarily design the local
dynamics of the closed-loop near the desired inverted equilib-
rium. It also provides some freedom in shaping the manifold
M of solutions that do not converge to the desired inverted
equilibrium. In this way, control design can be carried out to
achieve both local and global control objectives.

Simulation studies that demonstrate the validity of Theorem
1 and illustrate its use in a control design context are reported
in [34]. Due to space limitations, we do not provide the results
of those studies in this paper.

V. A SYMPTOTIC STABILIZATION OF THE INVERTED

EQUILIBRIUM MANIFOLD OF THE 3D PENDULUM

In the last section, we presented a control law that almost
globally asymptotically stabilizes a specified inverted equilib-
rium in the inverted equilibrium manifold. The specific focus
of this section is to develop stabilizing controllers for the
inverted equilibrium manifold of the 3D pendulum described
by (1) and (2).

For the purpose of stabilization of the inverted equilibrium
manifold, it is advantageous to study a lower dimensional
reduced model for the 3D pendulum. This model is obtained
by noting that the dynamics and kinematics equations can be
written in terms of the reduced attitude vectorΓ = RTe3 ∈ S2,

which is the unit vector that expresses the direction of gravity
in the body-fixed coordinate frame.

Specifically, let Πψ denote theS1-group action Πψ :

SO(3) → SO(3) as Πψ(R) = ReΓ̂ψ, whereΓ = RTe3 and
ψ ∈ [−π, π). Then, theorbit space SO(3)/S1 is the equivalent
set of rotations

[R] ,

{
R′ ∈ SO(3) : R′ = ReΓ̂ψ, Γ = RTe3, ψ ∈ R

}
.

(37)
The equivalence relation in (37) is thatR1 ∼ R2 if and only
if RT

1e3 = RT
2e3 and hence the equivalence relation in (37)

can be alternately expressed as

[R] ,

{
Rs ∈ SO(3) : RT

se3 = RTe3

}
. (38)

Thus, for eachR ∈ SO(3), [R] can be identified with
Γ = RTe3 ∈ S2 and henceSO(3)/S1 ∼= S2. SinceTSO(3) ∼=
SO(3) × R3, Πψ induces a projectionπ : TSO(3) →
TSO(3)/S1 given asπ : (R,ω) 7→ ([R], ω), where [R] is
as given in (38).

Proposition 2 ([41]): The dynamics of the 3D pendu-
lum given by (1) and (2) induce a flow on the quotient
spaceTSO(3)/S1 through the projectionπ : TSO(3) →
TSO(3)/S1, given by the dynamics

Jω̇ = Jω × ω +mgρ× Γ + u, (39)

and the kinematics for the reduced attitude

Γ̇ = Γ × ω. (40)

Furthermore,TSO(3)/S1 ∼= S2 × R3.
Equations (39) and (40) are expressed in a non-canonical

form; they are referred to as thereduced attitude dynamics of
the 3D pendulum onTSO(3)/S1.

Let Re denote an attitude rotation that satisfies (6) and
defineΓe = RT

ee3. Then, every attitude in the configuration
manifold given by

{
R ∈ SO(3) : R = Re e

Γ̂eψ̄, ψ̄ ∈ R

}
= [Re], (41)

satisfies (6) and hence, defines an equilibrium attitude corre-
sponding toω = 0. We can use Rodrigues’s formula to write

eΓ̂eψ̄ = I3 + sin ψ̄ Γ̂e + (1 − cos ψ̄)Γ̂2
e.

Thus, if the attitudeRe of a 3D pendulum satisfies (6),
then starting fromRe, a rotation of the 3D pendulum about
the gravity vector by an arbitrary angle is also an equilibrium.
As mentioned before, the manifold corresponding to the case
where the center of mass is below the pivot for each attitude
in the manifold is referred to as thehanging equilibrium
manifold, and the manifold corresponding to the case where
the center of mass is above the pivot for each attitude in the
manifold is referred to as theinverted equilibrium manifold.
Note that the invariant solutions in each of the equilibrium
manifolds are the equilibrium solutions.

Now, if Re satisfies (6), then(0,Γe) is an equilibrium of
(39) and (40). Thus, corresponding to the hanging equilibrium
manifold and the inverted equilibrium manifold of (1) and
(2), there exist two isolated equilibrium solutions of the
reduced attitude equations (39) and (40). These are given by
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the hanging equilibrium(0,Γh) and the inverted equilibrium
(0,Γi), where

Γh =
ρ

‖ρ‖
, Γi = −

ρ

‖ρ‖
.

Proposition 3 ([41]): The hanging and inverted equilib-
rium manifolds of the 3D pendulum given by (1) and (2)
are identified with the hanging and the inverted equilibrium
solutions of the reduced attitude equations given by (39) and
(40).

From Proposition 3, it follows that the stabilization of the
inverted equilibrium of the reduced attitude dynamics (39)
and (40) guarantees stabilization of the inverted equilibrium
manifold of the 3D pendulum dynamics (1) and (2).

We next present controllers that stabilize the inverted equi-
librium manifold. The controllers use angular velocity and
reduced attitude feedback for stabilization. Thus, to stabilize
the inverted equilibrium manifold of (1) and (2), we do not
require complete knowledge of the attitudeR ∈ SO(3),
but only the direction of gravity resolved in the body-fixed
coordinate frame given byΓ ∈ S2.

Let Φ : [0,∞) → [0,∞) be aC2 function such that

Φ(0) = 0 and Φ′(x) ≥ 0 for all x ∈ [0,∞). (42)

Let Ψ : R3 → R3 be a smooth function satisfying
{

Ψ′(0)T = Ψ′(0), Ψ′(0) is positive definite,

P(x) ≤ xTΨ(x) ≤ α(‖x‖), ∀x ∈ R3,
(43)

whereP : R3 → R is a positive definite function, andα(·) is
a class-K function. We propose controllers given by

u = K(Γ)(Γi × Γ) − Ψ(ω), (44)

whereK(Γ) =
[
Φ′

(
1
2 (1 − ΓT

i Γ)
)

+ κ
]

and κ is a positive
number satisfyingκ > mg‖ρ‖.

Again, we do not require knowledge of the moment of
inertia or the vectorρ, and the only parameter needed to
construct (44) is an upper bound on the maximum moment
due to gravity given bymg‖ρ‖.

ExpressingΓi = −ρ/‖ρ‖, the closed-loop attitude dynamics
based on (1), (2) and the controller (44) are

Jω̇ = Jω × ω − Ψ(ω)

+
[
mg‖ρ‖ − κ− Φ′

(
1−ΓT

i
RTe3

2

)] ρ

‖ρ‖
×RTe3,

Ṙ = Rω̂,





(45)

and the closed-loopreduced attitude dynamics based on (39),
(40) and the controller (44) are

Jω̇ = Jω × ω − Ψ(ω)

+
[
mg‖ρ‖ − κ− Φ′

(
(1−ΓT

i
Γ)

2

)] ρ

‖ρ‖
× Γ,

Γ̇ = Γ × ω.





(46)

The controller (44) can be interpreted as modifying the po-
tential of the 3D pendulum through the attitude dependent
term. The termΨ(ω) induces energy dissipation in the closed-
loop. The functionΦ in K(Γ) provides freedom to shape the
potential.

Note that sinceΦ is non-decreasing andκ > mg‖ρ‖, the
coefficient multiplying (ρ × Γ) in (46) is strictly negative.
Hence, it can be shown that the closed-loop (46) has exactly
two equilibrium solutions corresponding to the hanging equi-
librium and the inverted equilibrium. As expected, it can be
shown that the closed-loop (45) has two equilibrium manifolds
corresponding to the hanging equilibrium manifold and the
inverted equilibrium manifold. Thus, all equilibria of (45) are
given by (0, Re) ∈ TSO(3), whereRe satisfies (6).

A. Local Analysis of the Closed-Loop

We begin the analysis of the closed-loop (45) by studying
the eigenstructure of its linearization about an arbitraryequi-
librium in one of the two equilibrium manifolds. Consider an
equilibrium (0, Re) ∈ TSO(3) whereRe ∈ SO(3) satisfies
(6). To linearize the closed-loop (45), consider a perturbation
of the initial conditions about an equilibrium(0, Re). Then,
as in Section IV, one can show that the linearization of the
closed-loop (45) is given by

J∆Θ̈ + Ψ′(0)∆Θ̇ − k
mg

‖ρ‖
ρ̂ 2∆Θ = 0, (47)

wherek ∈ R is given by

k =





ki ,
1

mg‖ρ‖
(κ+ Φ′(0) −mg‖ρ‖) ,

kh , −
1

mg‖ρ‖
(κ+ Φ′(1) −mg‖ρ‖) ,

(48)

whereki and kh correspond to(0, Re) being an inverted or
hanging equilibrium, respectively. Sinceκ > mg‖ρ‖ and Φ
is a C1 non-decreasing function, it follows thatki > 0 and
kh < 0.

Now note that ρ̂ 2 is a rank 2, symmetric, negative-
semidefinite matrix. Thus, it follows from [42], [43] that
one can simultaneously diagonalizeJ and ρ̂ 2. Thus, there
exists a non-singular matrixM such thatJ = MM T and
−
mg

‖ρ‖
ρ̂ 2 = MΛM T, whereΛ is a diagonal matrix. Denote

Λ , diag(mgl1,mgl2, 0), wherel1 andl2 are positive. Define
x , M T∆Θ and denoteD , M−1Ψ′(0)M−T. SinceΨ′(0)
is symmetric and positive definite,DT = D andD is positive
definite.

From (47), the linearization of (45) at(0, Re) can be
expressed usingx = (x1, x2, x3) ∈ R3 as

ẍ+Dẋ+ kΛx = 0. (49)

Equation (49) consists of three coupled second order linear
differential equations.

We next study linearization of (46) about an equilibrium
(0,Γe) = (0, RT

ee3), where(0, Re) is an equilibrium of (45).

Sincedim
[
TSO(3)/S1

]
= 5, the linearization of (46) evolves

on R5.
Proposition 4: The linearization of the reduced attitude

dynamics of the 3D pendulum at the equilibrium(0,Γe) =
(0, RT

ee3) described by equations (46) can be expressed using
(x1, x2, ẋ1, ẋ2, ẋ3) ∈ R5 according to (49).
Proof: Consider a perturbation(ω(t, ε), R(t, ε)) of the closed-
loop (45) in terms of the perturbation parameterε ∈ R. Then,
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since Γ = RTe3, the perturbed solution of the closed-loop
(46) is given by(ω(t, ε),Γ(t, ε)) whereΓ(t, ε) = RT(t, ε)e3.
Define the linearization variables of (46) as∆ω(t) , ωε(t, 0)
and ∆Γ(t) , Γε(t, 0) = RT

ε(t, 0)e3. From definition of∆Θ

in Section IV, note that∆Γ = −∆̂ΘRT
ee3 = Γ̂e∆Θ ∈ TΓe

S2.
Then from (47) and the definition of∆Γ, it can be easily
shown that the linearization of (46) is given as

J∆ω̇ = −Ψ′(0)∆ω − ‖k‖
ρ̂

‖ρ‖
∆Γ, (50)

∆Γ̇ = −sign(k)
ρ̂

‖ρ‖
∆ω. (51)

We next, express (50) and (51) in terms of(x, ẋ). Specifically,
we show that(∆Γ,∆ω) ∈ TΓe

S2×R3 can be expressed using
(x1, x2, ẋ1, ẋ2, ẋ3) ∈ R5.

Sincex = M T∆Θ, andM is nonsingular,∆ω = M−Tẋ

and ∆Γ = −sign(k)
ρ̂

‖ρ‖
M−Tx. We now give an orthogonal

decomposition of the vector∆Θ = M−Tx into a component
along the vectorρ and a component normal to the vectorρ.
This decomposition is

M−Tx = −
ρ̂ 2

‖ρ‖2
(M−Tx) +

1

‖ρ‖2

[
ρT(M−Tx)

]
ρ,

where
1

‖ρ‖2

[
ρT(M−Tx)

]
ρ ∈ span{ρ} and−

ρ̂ 2

‖ρ‖2
(M−Tx) ∈

span{ρ}⊥.
Thus, ∆Γ = −sign(k) ρ̂

‖ρ‖∆Θ = −sign(k) ρ̂

‖ρ‖M
−Tx =

−sign(k)
mg‖ρ‖2 ρ̂MΛ x, does not depend onx3 since Λ =

diag(mgl1,mgl2, 0). Thus, we can express the linearization
of (46) at (0,Γe) = (0, RT

ee3) in terms of the variables
(x1, x2, ẋ1, ẋ2, ẋ3) according to (49).

Remark 2: It is easily seen from the structure of the matrix
Λ that (49) is not asymptotically stable fork = ki > 0.
This is due to the fact that the inverted equilibrium manifold
constitutes a 1D center submanifold inTSO(3). However,
due to our careful choice of variables, one can discardx3

from (49) to study the stability property of the inverted
equilibrium manifold. Thus,x3 corresponds to a component of
the perturbation in the attitude that is tangential to the inverted
equilibrium manifold.

The following Lemmas are needed.
Lemma 4: Consider the linear model (49), representing

linearization of (45) at an inverted equilibrium(0, Re) ex-
pressed in first order form as

d

dt

[
x
ẋ

]
=

[
0 I

−kΛ −D

] [
x
ẋ

]
, Ai

[
x
ẋ

]
, (52)

wherex = (x1, x2, x3). Then,Ai has one zero eigenvalue and
all other eigenvalues have negative real part and at least one
of them is negative real.
Proof: In the prior notation,k = ki > 0 in (49) for an
inverted equilibrium. Letv = [vT

1 vT
2]

T be an eigenvector of
Ai corresponding to the eigenvalueλ, where v1, v2 ∈ C3.
Then,Aiv = λv yields v2 = λv1 andDv2 + kiΛv1 = −λv2.
Combining these equations yieldsλ2v1 + Dλv1 + Λv1 = 0.
Thus, every eigenvalue-eigenvector pair(λ, [vT

1 vT
2]

T) of Ai
satisfiesv2 = λv1 andλ2v1 + λDv1 + kiΛv1 = 0.

Next, taking the inner product of the above equation with
respect to the complex conjugate ofv1 yields

aλ2 + bλ+ c = 0, (53)

wherea = v̄T
1v1, b = v̄T

1Dv1 and c = kiv̄
T
1Λv1. SinceD is

symmetric and positive definite,Λ is diagonal and positive
semidefinite,ki > 0, and v1 6= 0, it follows that a, b, c ∈ R

satisfy a > 0, b > 0 and c ≥ 0. Furthermore, sinceΛ =
diag(mgl1,mgl2, 0), c = 0 if and only if v1 = βe3, where
e3 = [0 0 1]T andβ ∈ C\{0}.

Now, since (53) has two solutions andv = [vT
1 vT

2]
T =

[vT
1 λv

T
1]

T, it is clear that the eigenvalue-eigenvector pair(λ, v)
of Ai can be written as

{(
λj ,

[
v1j
λj v1j

])
,

(
λ∗j ,

[
v1j
λ∗j v1j

])}
, j ∈ {1, 2, 3}, (54)

whereλj andλ∗j are the two solutions to the quadratic equation
(53) corresponding toa = aj = v̄T

1jv1j , b = bj = v̄T
1jDv1j

andc = cj = kiv̄
T
1jΛv1j , j ∈ {1, 2, 3}.

Now choosev11 = βe3. Then, a1 = β̄β = |β|2, b1 =
|β|2eT

3De3 > 0 and c1 = 0. Therefore, the roots of (53) are
given byλ1 = 0 andλ∗1 = −eT

3De3. Hence,0 and−eT
3De3

are two of the six eigenvalues ofAi in (52). Thus,Ai has a
zero and a negative real eigenvalue.

Now for each ofv12 and v13, we obtain a corresponding
quadratic equation as given in (53). First, note that sincev11 =
βe3 yields a zero eigenvalue, neitherv12 nor v13 is equal to
γe3, γ ∈ C\{0}. This follows since if not, then there is a
repeated zero eigenvalue which implies thatAi has rank less
than or equal to four. However, it is easy to see that all columns
of Ai except the third column, which is identically zero, are
linearly independent. Since bothv12 andv13 are not equal to
γe3, it follows thataj , bj andcj , j ∈ {2, 3} are positive. Then
the corresponding roots of (53) are given by

λj = −
bj
2aj

+

√
b2j − 4ajcj

2aj
, and λ∗j = −

bj
2aj

−

√
b2j − 4ajcj

2aj
,

where j ∈ {2, 3}. Thus, since4ajcj > 0, it follows that if
b2j − 4ajcj < 0, thenλj and λ∗j are complex with negative

real part given by−
bj
2aj

, and if b2j − 4ajcj ≥ 0, thenλj and

λ∗j are real negative sinceb2j > b2j − 4ajcj . Thus, the real part
of λj andλ∗j is negative forj ∈ {2, 3}.

Lemma 5: Consider the reduced attitude dynamics of the
3D pendulum given by (39) and (40) with the controller (44).
Assume thatΦ : [0,∞) → [0,∞) is aC2 function satisfying
(42), Ψ : R3 → R3 is a smooth function satisfying (43), and
κ > mg‖ρ‖. Then, the inverted equilibrium of the closed-loop
reduced attitude dynamics (46) is asymptotically stable and the
convergence is locally exponential.
Proof: Consider the linearization of the closed-loop system
(46) about the inverted equilibrium, given by (49) written in
terms of the state variablez = (x1, x2, ẋ1, ẋ2, ẋ3) ∈ R5. Writ-
ing (49) in terms ofz yields ż = Āiz, whereĀi is obtained
by deleting the third row and third column fromAi given in
(52). Let Spec(M) denote the eigenvalues of the matrixM .
Then, it is easy to see that det(Ai−λI6) = −λdet(Āi−λI5).
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Hence,Spec(Āi) = Spec(Ai)\{0}. Then, from Lemma 4, it
follows that all eigenvalues of̄Ai have negative real parts and
at least one eigenvalue is negative real.

Hence, it follows that all eigenvalues of the linearization
of the closed-loop system (46) about the inverted equilibrium
have negative real parts. Thus, the inverted equilibrium of
the nonlinear system (46) is asymptotically stable with local
exponential convergence.

Remark 3: Let (0, Re) be an inverted equilibrium. Sup-
poseD = diag(d1, d2, d3) is diagonal anddi > 0, i ∈
{1, 2, 3}. Recall that ki > 0. Then the eigenvalues of
the linearized closed-loop reduced attitude dynamics (46)at
(0, RT

ee3) are the roots of the polynomial

(s2 + d1s+ kimgl1)(s
2 + d2s+ kimgl2)(s+ d3) = 0.

Next, we study the linearization of the closed-loop at the
hanging equilibrium. This yields the local structure of trajec-
tories of the closed-loop (46) near the hanging equilibrium.

Lemma 6: Consider the linear model (49), representing
linearization of (45) at a hanging equilibrium(0, Re) ex-
pressed in first order form as

d

dt

[
x
ẋ

]
=

[
0 I

−kΛ −D

] [
x
ẋ

]
, Ahng

[
x
ẋ

]
, (55)

where x = (x1, x2, x3). Then, Ahng has one zero, three
negative and two positive real eigenvalues.
Proof: In the prior notationk = kh < 0 in (49) for a hanging
equilibrium. Letv = [vT

1 v
T
2]

T be an eigenvector corresponding
to the eigenvalueλ of Ahng, wherev1, v2 ∈ C3. Then, as in
Lemma 4, one can show that all eigenvalues ofAhng satisfy

aλ2 + bλ− c = 0,

wherea = v̄T
1v1, b = v̄T

1Dv1 and c = |kh|v̄
T
1Λv1. Arguing as

in Lemma 4, one can show thatλ1 = 0 and λ∗1 = −eT
3De3

are two of the six eigenvalues ofAhng in (55) and the other
four eigenvalues are of the form

λi = −
bi
2ai

+

√
b2i + 4aici

2ai
, and λ∗i = −

bi
2ai

−

√
b2i + 4aici

2ai
,

whereai, bi andci, i ∈ {2, 3} are positive. Thus, since4aici >
0, it follows that λi is positive andλ∗i is negative fori ∈
{2, 3}. Hence,Ahng has one zero eigenvalue, three negative
eigenvalues, and two positive eigenvalues.

Lemma 7: Consider the reduced attitude dynamics of the
3D pendulum given by (39) and (40) with the controller (44).
Assume thatΦ : [0,∞) → [0,∞) is aC2 function satisfying
(42), Ψ : R3 → R3 is a smooth function satisfying (43), and
κ > mg‖ρ‖. Then, the hanging equilibrium of the closed-loop
reduced attitude dynamics (46) is unstable. Furthermore, the
set of closed-loop trajectories that converge to the hanging
equilibrium is a 3-dimensional invariant manifoldMh.
Proof: Consider the linearization of the closed-loop system
(46) about the hanging equilibrium, given by (49) written in
terms of the state variablez = (x1, x2, ẋ1, ẋ2, ẋ3) ∈ R5.
Writing (49) in terms ofz yields ż = Āhngz, whereĀhng is
obtained by deleting the third row and third column fromAhng

given in (55). Then, it is easy to see that det(Ahng − λI6) =
−λdet(Āhng −λI5). Hence,Spec(Āhng) = Spec(Ahng)\{0}.

Then, from Lemma 6, it follows that̄Ahng has three negative
and two positive eigenvalues. Hence, the inverted equilibrium
of (46) is unstable.

Furthermore, there exists a 3-dimensional stable invariant
manifold Mh of the closed-loop (46) such that all solutions
that start inMh converge to the hanging equilibrium [39]. The
tangent space to this manifold at the hanging equilibrium isthe
stable eigenspace corresponding to the negative eigenvalues.
Since there are no eigenvalues on the imaginary axis, the
closed-loop (46) has no center manifold and every closed-loop
trajectory that converges to the hanging equilibrium lies in the
stable manifoldMh.

Remark 4: Let (0, Re) be a hanging equilibrium. Suppose
D = diag(d1, d2, d3) is diagonal anddi > 0, i ∈ {1, 2, 3}.
Recall thatkh < 0. Then the eigenvalues of the linearized
closed-loop reduced attitude dynamics at(0, RT

ee3) are the
roots of the polynomial

(s2 + d1s+ khmgl1)(s
2 + d2s+ khmgl2)(s+ d3) = 0.

In summary, we have shown that the inverted equilibrium
of the closed-loop (46) is locally exponentially stable andthe
hanging equilibrium of (46) is unstable. Furthermore, the set
of all closed-loop trajectories that converge to the hanging
equilibrium form a 3-dimensional, invariant manifoldMh.

B. Global Analysis of the Closed-Loop

In this section, we study the global behavior of trajectories
of the closed-loop system (46) using Lyapunov analysis.

Theorem 2: Consider the reduced attitude dynamics of the
3D pendulum given by (39) and (40) with the controller (44).
Assume thatΦ : [0,∞) → [0,∞) is aC2 function satisfying
(42), Ψ : R3 → R3 is a smooth function satisfying (43), and
κ > mg‖ρ‖. Let Mh denote the 3-dimensional invariant mani-
fold as in Lemma 7. Then all solutions of the closed-loop given
by (46), such that(ω(0),Γ(0)) ∈ (TSO(3)/S1)\Mh, satisfy
lim
t→∞

ω(t) = 0 and lim
t→∞

Γ(t) = Γi. Furthermore, all solutions

of the closed-loop (46), such that(ω(0),Γ(0)) ∈ Mh, satisfy
lim
t→∞

ω(t) = 0 and lim
t→∞

Γ(t) = Γh.
Proof: Consider the closed-loop reduced attitude dynamics
given by (46), and the Lyapunov function given as

V (ω,Γ) =
1

2
ωTJω+

(
κ−mg‖ρ‖

)
(1−ΓT

iΓ)+2Φ
(

(1−ΓT
i
Γ)

2

)
.

(56)
Note thatV (ω,Γ) is positive definite onTSO(3)/S1 ∼= S2 ×
R3 andV (0,Γi) = 0. Furthermore, sinceS2 is compact and
the Lyapunov functionV (ω,Γ) is quadratic inω, each sublevel
set of V (ω,Γ) is compact. Next, we compute the derivative
of V along a trajectory of the closed-loop. Thus,

V̇ (ω,Γ) = ωTJω̇ −
(
κ−mg‖ρ‖

)
ΓT
iΓ̇ − Φ′

(
(1−ΓT

i
Γ)

2

)
ΓT
iΓ̇.

Since,Γi = −
ρ

‖ρ‖
, it follows that

V̇ (ω,Γ) = −ωTΨ(ω) ≤ −P(ω). (57)

Thus,V̇ (ω,Γ) is a negative semi-definite function and hence,

K ,

{
(ω,Γ) ∈ R3 × S2 : V (ω,Γ) ≤ V (ω(0),Γ(0))

}



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 10

is a compact, positively invariant sublevel set. Hence, by the
invariant set theorem, all solutions converge to the largest
invariant set in

{
(ω,Γ) ∈ K : V̇ (ω,Γ) = 0

}
. Since P is

a positive definite function,̇V (ω,Γ) = 0 impliesω ≡ 0.
Substitutingω ≡ 0 in (46), it can be shown that the

largest such invariant set is given by{(0,Γh)}
⋃
{(0,Γi)}.

However, from Lemma 7, we know that all trajectories
that converge to the hanging equilibrium are contained in
the 3-dimensional manifoldMh. Therefore, all solutions of
the closed-loop given by (46), such that(ω(0),Γ(0)) ∈
(TSO(3)/S1)\Mh, converge to the inverted equilibrium and
hence, satisfylim

t→∞
ω(t) = 0 and lim

t→∞
Γ(t) = Γi.

Remark 5: Since Mh is a 3-dimensional invariant man-
ifold, its Lebesgue measure is zero [40]. Furthermore, fol-
lowing arguments as in Theorem 1, it can be shown that the
complement ofMh in TSO(3)/S1 is open and dense. Thus,
from Theorem 2 it follows that the domain of attraction of the
inverted equilibrium for the closed-loop (46) isalmost global.

The result presented in Theorem 2 applies to the solution
of the closed-loop reduced attitude dynamics of the 3D pen-
dulum given by (46). Thus, the almost global result holds
on TSO(3)/S1. We now study the implication for the 3D
pendulum dynamics given by (45). Specifically, we show that
the controller (44) almost globally asymptotically stabilizes
the inverted equilibrium manifold inTSO(3). The following
Lemma is needed.

Lemma 8 ([41]): Let π : TSO(3) → TSO(3)/S1 denote
the projection, whereTSO(3)/S1 is endowed with the quo-
tient topology. LetU ⊆ TSO(3)/S1 be a set whose com-
plement is open and dense inTSO(3)/S1. Then,π−1(U) ⊆
TSO(3) is a set whose complement is open and dense in
TSO(3).

We now show that the controller (44) almost globally
asymptotically stabilizes the inverted equilibrium manifold
according to the closed-loop equations (45).

Theorem 3: Consider the dynamics of the 3D pendulum
given by (1) and (2) with the controller (44). Assume that
Φ : [0,∞) → [0,∞) is a C2 function satisfying (42),
Ψ : R3 → R3 is a smooth function satisfying (43), and
κ > mg‖ρ‖. Then, the inverted equilibrium manifold is
asymptotically stable with local exponential convergence. Fur-
thermore, there exists an invariant setMh ⊂ TSO(3) with
Lebesgue measure zero such thatTSO(3)\Mh is open and
dense and all solutions of the closed-loop given by (1), (2)
and (44) such that(ω(0), R(0)) ∈ TSO(3)\Mh converge to
the inverted equilibrium manifold. All solutions of the closed-
loop such that(ω(0), R(0)) ∈ Mh converge to the hanging
equilibrium manifold.
Proof: Asymptotic stability of the inverted equilibrium man-
ifold and local exponential convergence of closed-loop tra-
jectories follows immediately from Lemma 5 and Proposition
3. We next show almost global convergence property of the
closed-loop trajectories.

Consider the projectionπ : TSO(3) → TSO(3)/S1 which
yields the reduced attitude dynamics as in Proposition 2. Let
Mh be the set as in Theorem 2 and denoteMh = π−1(Mh) ⊂
TSO(3). It follows from Lemma 8 that the complement ofMh

in TSO(3) is open and dense. Furthermore, from Proposition
3 and Theorem 2, it follows that for the closed-loop (1), (2)
and (44), all trajectories contained inTSO(3)\Mh converge to
the inverted equilibrium manifold and all trajectories in the set
Mh converge to the hanging equilibrium manifold. Since the
dimension of the equilibrium manifold is one and the Lebesgue
measure ofMh is zero, it follows that the Lebesgue measure
of Mh = π−1(Mh) is zero [40].

Remark 6: SinceTSO(3)\Mh is open and dense, it fol-
lows from Theorem 3 that the domain of attraction of the
inverted equilibrium manifold for the closed-loop (1), (2)and
(44) is almost global.

The controllers in (44) provide a combination of potential
shaping and damping injection. It may be noted that the
argument of the potential functionΦ(·) is proportional to the
cosine of the angle betweenΓ andΓi. This yields the following
closed-loop property: ifω(0) = 0, then for allt ≥ 0, the angle
betweenΓ(t) andΓi is bounded above by the angle between
Γ(0) andΓi.

Corollary 1: Consider the reduced attitude dynamics of the
3D pendulum given by (39) and (40) with controller as in (44).
Furthermore, letω(0) = 0 andΓ(0) 6= Γh. Then, for allt ≥ 0,
trajectories of the closed-loop reduced attitude dynamics(46)
satisfy

∡(Γi,Γ(t)) ≤ ∡(Γi,Γ(0)).

Proof: Consider the candidate Lyapunov function (56), for the
closed-loop (46). As already shown in Theorem 2,V̇ (ω,Γ) =
−ωTΨ(ω). Thus, since V̇ (ω,Γ) is negative semidefinite,
V (ω(t),Γ(t)) ≤ V (ω(0),Γ(0)). Thus substitutingω(0) = 0
in (56), we obtain the result that for allt ≥ 0,

1

2
ω(t)TJω(t) + [κ−mg‖ρ‖](1 − ΓT

iΓ(t)) + 2Φ
(

(1−ΓT
i
Γ(t))

2

)

≤
(
κ−mg‖ρ‖

)
(1 − ΓT

iΓ(0)) + 2Φ

(
1

2
(1 − ΓT

iΓ(0))

)
.

Since, the kinetic energy term is strictly non-negative,κ >
mg‖ρ‖ and Φ(·) is a non-decreasing function, we obtain
(1 − ΓT

iΓ(t)) ≤ (1 − ΓT
iΓ(0)), and hence,ΓT

iΓ(t) ≥ ΓT
iΓ(0),

for all t ≥ 0. Since,‖Γ(t)‖ ≡ 1 for all t ≥ 0, it follows
that cos (∡(Γi,Γ(t))) ≥ cos (∡(Γi,Γ(0))) , t ≥ 0. Since
∡(Γi,Γ(t)) ∈ [0, π) and cos(·) is non-increasing in[0, π),
the result follows.

A trivial choice for the functionΦ is given byΦ(x) ≡ 0.
Then, the controller (44) simplifies to

u = κ(Γi × Γ) − Ψ(ω), (58)

where Ψ is chosen as in (43) andκ is a positive number
satisfyingκ > mg‖ρ‖. Thus, a nontrivialΦ function in (44) is
not essential for stability of the inverted equilibrium manifold.
However, it can be used to modify the domain of attraction
or the amount of control effort required as a function of the
reduced attitude. Although the domain of attraction of the
inverted equilibrium is almost global, the domain of attraction
is hard to compute explicitly.

Theorem 3 is the main result on asymptotic stabilization
of the inverted equilibrium manifold of the 3D pendulum.
Under the indicated assumptions, almost global asymptotic
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stabilization is achieved. This is the best possible resultfor
this stabilization problem, in the sense that global stabilization
using smooth feedback is not achievable.

The controller expression (44) is quite useful in control
design as it allows freedom to arbitrarily design the local
dynamics of the closed-loop near the inverted equilibrium
manifold. It also provides some freedom in shaping the
manifold of solutions that do not converge to the inverted
equilibrium manifold. In this way, control design can be
carried out to achieve both local and global control objectives.

Simulation studies that demonstrate the validity of Theorem
3 and illustrate its use in a control design context are reported
in [21], [44], [45]. In addition, experimental studies havebeen
reported in [46] that demonstrate the value of this theory
when used to asymptotically stabilize the inverted equilibrium
manifold of the TACT. Due to space limitations, we do not
provide the results of those studies in this paper.

VI. CLOSED-LOOPPERFORMANCEL IMITATIONS

We presented two families of controllers that stabilize a
specified equilibrium or the inverted equilibrium manifold,
respectively. Consider the controller (13) for stabilization of
a specified equilibrium in the inverted equilibrium manifold.
It was shown that there exists a nowhere dense setM of
Lebesgue measure zero such that all solutions that do not start
in this set converge to the specified inverted equilibrium.

The existence of the setM is related to the topological
obstruction that exists for any continuous time-invariant, sta-
bilizing controller defined on a compact configuration space.
However, there also exists a performance constraint for such
controllers. This arises since the setM influences the dynamics
of nearby closed loop trajectories. Note thatM is composed
of the union of stable manifolds of the unstable equilibria;
hence solutions starting inM converge to one of the unstable
equilibria (0, Re, i). Thus, from continuity of solutions with
respect to initial conditions, it follows that solutions that start
close toM remain nearM for an extended period of time
before they converge to the specified equilibrium. The closer
a trajectory lies toM, the longer it takes to converge to
the specified equilibrium. This property is due to the saddle
character of the unstable closed loop equilibria. Computation
of the setM is difficult. Although, one can easily obtain linear
approximations to this manifold using the stable subspace of
the linearized equations about any of the unstable equilibria,
this provides information aboutM only near the unstable
equilibrium solutions. The non-local properties of the setM

are not well understood.
It is important to emphasize that the presence of the setM,

whose existence is asserted in Theorem 1, is not a consequence
of the specific smooth controller that is proposed. Rather, such
a setM necessarily exists for any continuous time-invariant
feedback controller. Indeed, there is a topological obstruction
to global attitude stabilization [33], and we have shown that
there is also a performance limitation that arises from this
fact in the sense that there always exist initial conditionsin
the domain of attraction that converge arbitrarily slowly to
the desired equilibrium attitude. A similar result holds for
stabilization of the inverted equilibrium manifold.

VII. C ONCLUSIONS

This paper has presented a complete analysis for two prob-
lems on stabilization of the inverted 3D pendulum. In the first
case, we treat the problem of asymptotically stabilizing a spec-
ified equilibrium solution in the inverted equilibrium manifold.
In the second case, we treat the problem of asymptotically
stabilizing the inverted equilibrium manifold. In each case,
we have developed feedback expressions, based on feedback
of the angular velocity and attitude, or reduced attitude, of
the 3D pendulum. The emphasis throughout the paper has
been on global definition of the 3D pendulum models, global
description of the controllers, and global geometric analysis of
the closed-loops. The control problems for the 3D pendulum
exemplify attitude stabilization problems on the compact con-
figuration manifoldSO(3) in the presence of potential forces.
The results obtained in the paper demonstrate the complexity
of nonlinear control problems for the 3D pendulum.

In a related paper [41], we have treated asymptotic stabiliza-
tion of the hanging equilibrium manifold of the 3D pendulum
using feedback of angular velocity only. That paper and this
one that treats asymptotic stabilization of the inverted 3Dpen-
dulum can be considered as providing the basic stabilization
theory for the 3D pendulum.

A number of interesting extensions can be suggested. This
would include extensions assuming underactuation of the
control inputs, partial or incomplete feedback, and control
saturation. Attention has already been given to some of these
topics [44], [47]. Extensions to problems involving multi-
body 3D pendulum problems can also be formulated; for
example, we mention the challenging problem of stabilization
of an inverted 3D pendulum, mounted on a cart that can be
controlled to move in a plane.
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